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Abstract
Increasingly extreme temperature events under global warming can have considerable impacts on sectors such as 
industrial activities, health, and transportation, suggesting that risk for these kinds of events under climate change and 
its regional sensitivity should be reassessed. In this study, the observation and multi-model simulations from CMIP6 are 
comprehensively used to explore the regional differences of the extreme temperature response to climate change from 
the perspective of return period (RP). The Gumbel model of generalized extremum distribution is applied to estimate 
the RP for the annual extremum of temperature based on Gaussian distribution of daily temperature. The analysis on the 
observation in selected three sites indicates that the regional inconsistency of RP variation is not only existed in extreme 
high temperature (HTx) but also in low temperature (LTn) during the past several decades. The annual amplitude of tem-
perature extremum in the Northeast China is enlarged with summer becoming hotter and winter becoming colder while 
the opposite situation is detected in Huang-Huai River Basin with cooler summer and relatively stable winter, and South 
China is characterized by hotter summer and slight warmer winter. From the spatial distribution of the HTx and LTn vari-
ations of fix RP, it is found that the Northeast China and Jiang-Huai River Basin is the most sensitive areas, respectively, in 
the response of extreme low temperature and high temperature to global warming. However, the regional inconsistency 
of the extreme temperature change is only observed under SSP1-2.6 scenario in the CMIP6 simulation but gradually 
disappeared from SSP2-4.5 to SSP5-8.5.
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1  Introduction

Warm and cold extremes have been frequently occurred 
during recent several decades under global warming [4, 
15, 23, 28, 32, 40]. Numerous disasters caused by these 
extreme climate or weather events have been exerting 
profound influences on the economy, human lives and 
environmental sustainability, thereby arousing world-
wide public awareness and scientific concern [6, 16, 20, 
21, 25, 32]. Intuitively, the warming climate could lead to 
a rise of extreme high temperature events and reduction 
of the opposite extremes. Both the winter extreme cold 

events and summer heatwave cases, however, have been 
increased in the recent two decades [15, 28, 40], implying 
that the amplitude of the annual extreme temperature is 
enlarged under the context of global warming. Further-
more, it is found that the asymmetry or inconsistency is 
not only observed in the seasonal variation of tempera-
ture but also existed in its spatial distribution [1, 23, 28], 
which means that the evolution of the extreme tempera-
ture events is very complicated under the comprehensive 
influences of multiple factors, and therefore, risk assess-
ment based on these kinds of climate events should be 
reconsidered under climate change.
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The return period (RP) or recurrence interval of extreme 
events refers to the average interval time that is greater 
than or equal to a certain threshold defined as the recip-
rocal of the occurrence frequency. Generally, the occur-
rence probability of extreme events is small but always 
initiate disasters, so the recurrence period is extensively 
applied as a design basis in engineering to estimate the 
potential risk of extreme events [11, 14, 24]. Meanwhile, 
understanding and predicting extreme events occurrence 
in the future is helpful for disaster prevention, mitigation 
measures and risk management. As the occurrence fre-
quency of extreme events has been exhibiting an upward 
trend and causing increasing loss of economy in recent 
years, much attention has been paid to focus the poten-
tial risk reassessment of extreme events [18, 19, 31, 34]. 
Therefore, it is crucial to precisely quantify the recurrence 
interval of the extreme event, which is commonly cal-
culated from the historical data but is comparable to or 
longer than the available record. Previous related work 
mostly focused the hydrological extreme events due to 
its severe impact on economy and human lives, and its RP 
is critically considered in water resources management [2, 
9, 24, 27, 29, 34]. However, the natural disasters are gener-
ally a multivariate process instead of one single element 
event, which means that its occurrence probability should 
be comprehensively described by a multivariate analysis 
of various contributed variables [14, 24, 27]. Additionally, 
the stationary assumption of extreme events to estimate 
return period and risk may be problematic due to climate 
change [7, 8, 13, 26, 29, 33, 38], so the temporally chang-
ing environment should be explicitly taken into considera-
tion. For many industrial activities, estimation of extreme 
events in terms of a return level in a non-stationary con-
text becomes necessary. Anthropogenic influence is esti-
mated to prolong the occurrence interval of extreme low 
temperature events but substantially shorten the RP of 
extreme high temperature events [17, 42]. Nevertheless, 
significant regional differences in the changes of extreme 
temperature events especially the cold events have been 
detected [4], implying that the reactions of the extreme 
temperature events in different regions to climate change 
cannot be considered as a whole. Taking the above into 
consideration, it is of significance and necessary to further 
explore the responses of the extreme temperature events 
and estimate its risk under climate change from the per-
spective of the recurrence period.

Since the Coupled Model Intercomparison Project in 
Phase 6 (CMIP6) results are available, the extreme tem-
perature events are widely evaluated and projected based 
on the multi-model simulations but most work focus on 
the change of climate extreme indices by the ETCCDI 
[3, 12, 22, 36]. In this study, we aim to draw a risk map 
of extreme temperature events under climate change by 

estimating and comparing annual extreme high and low 
temperature values based on return level. The rest of the 
paper is organized as follows. Section 2 describes the data 
and method. The RP change of the extreme temperature 
events based on observation is discussed in Sect. 3 and its 
projection under different scenarios from CMIP6 results is 
presented in Sect. 4. A summary and discussion are pro-
vided in Sect. 5.

2 � Data and method

2.1 � Data

Two datasets used in this paper are as follows:

1.	 The daily maximum (Tx) and minimum temperature 
(Tn) in 724 meteorological sites of China with time 
spanning from 1951 to 2010 are from National Cli-
mate Center of China [39]. The 724 sites are spatially 
distributed in Fig. 1 with black dots. Three selected 
typical stations of Shuangliao, Kaifeng and Guang-
zhou, respectively, representing for the North, Center 
and South of Eastern China are marked with red.

2.	 The simulated daily maximum and minimum tempera-
ture from 2015 to 2100 under different scenarios of 
SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 are derived 
from CMIP6 results. Based on the performance of 
model in simulating the indices of extreme climate 
[12, 37, 41], 10 models, which show good adaptability 
to China climate, are selected and listed in Table 1.

2.2 � Method

The RP is commonly calculated by the following formula 
with the annual maximum value of the specific variable:

where T and P are the RP and exceedance probability, 
respectively, and F(x) is the cumulative distribution func-
tion for the annual extremum of the specific variable. In 
this study, the annual highest value of daily maximum 
temperature (HTx) and the lowest value of daily mini-
mum temperature (LTn) are considered for calculating 
the RP of the extreme temperature. Generally, the gener-
alized extreme value (GEV) model is applied to estimate 
the probabilities of extreme events (e.g., [12, 35, 36]). The 
Gumbel model is one simplified form of the GEV that could 
be used to discuss the extremes of Gauss-distribution vari-
ables such as temperature [5, 10, 30]. As the original daily 
temperature is distributed as Gauss model, the annual 
extremum of temperature could be fitted with the Gumbel 

(1)T = 1∕P = 1∕(1 − F(x))
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distribution, in which the probability F(x) and probability 
density function f(x) are listed as follows:

where the x is the random variable of HTx or LTn; � is the 
scale parameter and b is the mode of distribution density; 
both are dependent on the sample distribution.

Meanwhile, as the resolutions of the selected 10 
models are different, bilinear interpolation method is 
used in this study.

(2)F(x) = e
−e−(x−b) , −∞ < x < +∞

(3)f (x) = 𝛼e
−𝛼(x−b)−e−𝛼(x−b) , −∞ < x < +∞

3 � Results from the observations

3.1 � The examination of RP for the three typical 
stations

The probability density function (PDF) is used to under-
stand the distribution of the Tx and Tn. It should be 
noted that the raw data is first normalized based on 
each specific calendar day, and then normalized by all 
adjacent days. The PDF distributions of the Tx and Tn in 
the three selected stations accord with Gaussian distri-
bution (Fig. 2), suggesting that the HTx and LTn samples 

Fig. 1   Spatial distributions of 
724 meteorological sites in 
China (Black dots) (Red marks 
are for three selected stations)

Table 1   The selected 10 models in CMIP6

Model Developer Resolution (lon-
gitude × latitude)

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organization, Australia 192 × 145
AWI-CM-1-1-MR Alfred Wegener Institute, Germany 384 × 192
BCC-CSM2-MR Beijing Climate Center, China 320 × 160
CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada 128 × 64
EC-Earth3 EC-Earth-Consortium 512 × 256
INM-CM4-8 Russian Academy of Science, Institute for Numerical Mathematics, Russia 180 × 120
IPSL-CM6A-LR Institute Pierre Simon Laplace, France 144 × 143
MIROC6 Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean 

Research Institute, The University of Tokyo, Japan
256 × 128

MPI-ESM1-2-HR Max Planck Institute for Meteorology, Germany 384 × 192
MRI-ESM2-0 Meteorological Research Institute, Japan 320 × 160
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could be fitted with the Gumbel model of the general-
ized extremum distribution.

To examine the return level under climate change 
and assure the data sample is effective, two periods are 
selected: 1951–1990 (P1) and 1971–2010 (P2), which 
means the same period of 1971–1990 are mutually 
included in two samples. The fitting Gumbel distribution 
for three selected stations in two periods is presented in 
Fig. 3. Obviously, the distribution of HTx in Shuangliao 
shows slight difference in the two periods, indicating that 
the extreme high temperature remains stable during the 
last 60 years. However, the distribution in Kaifeng during 
the P2 shows a significantly leftward shift comparing to 
the P1. This suggests that the frequency of extreme high 
temperature in P2 is obviously lower than that in P1. Mean-
while, the distribution in Guangzhou is opposite to that in 
Kaifeng with the PDF peak in P2 is somewhat rightward 
shift in respect to P1, implying the frequency of extreme 
high temperature in P2 stage is increased in contrast with 
P1. Thus, the regional difference in the distribution of HTx 
is significant in the two periods. Particularly, the HTx vari-
ation in central region of Eastern China exhibits its unique 
decline feature.

Different from the HTx, the distribution variation in LTn 
shows consistent among three stations with the PDF peak 
during P2 moving rightward in respect to P1 (Fig. 3). It 
means that the upward trend is dominant in the frequency 

variation of the extreme low temperature in all regions 
of Eastern China, which is in accordance with the global 
warming background.

Based on the fitting distribution of HTx and LTn with 
Gumbel model, the temperature extremum corresponding 
to the RPs from 5 to 200 years, respectively, derived from 
samples of two periods are analyzed as shown in Fig. 4. 
Compared to the P1, the higher HTx values are found dur-
ing P2 in Shuangliao and Guangzhou. As the annual high-
est temperature absolutely occurs in summer season, the 
summer climate of the two stations in P2 is hotter than P1. 
The situation in Kaifeng is opposite with the green curve 
positioning below the black one, signifying that the HTx 
corresponding to specific RP derived from P2 is lower than 
that during P1 and the summer climate of this site is cooler 
than before. According to the LTn, the case in Shuangliao is 
significantly different from the other two stations. The LTn 
corresponding to specific RP in Shuangliao in P2 is obvi-
ously lower than that in P1 while little differences can be 
observed in the other two stations. Therefore, the regional 
inconsistency is not only detected in HTx change but also 
in LTn variation during the past several decades.

As above mentioned, the typical station in central and 
north region of the Eastern China exhibits the unique 
feature, respectively, in the extreme high and low tem-
perature variation. Since the HTx (LTn) occurs in summer 
(winter), the annual amplitude of extreme temperature 

Fig. 2   Probability density function (PDF) of the normalized daily maximum (Tx: Top panel) and minimum temperature (Tn: Bottom panel) 
for three selected stations, respectively
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is enlarged in the Northeast China. It suggests that 
hotter summer and colder winter frequently occurred 
over Northeast China in the past several decades. The 
opposite situation is detected in Huang-Huai River Basin 

with cooler summer and relatively stable winter, and 
the South China is characterized by hotter summer and 
slightly warmer winter.

Fig. 3   Gumbel distribution derived from observed HTx (Top panel) and LTn (Bottom panel) samples of three selected stations in two periods 
(The black line is for P1 and green for P2)

Fig. 4   Extreme values of different RP derived from observed HTx (Top panel) and LTn (Bottom panel) samples of three selected stations in 
two periods (The black line is for P1 and green for P2)
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3.2 � The RP changes over China

Figure 5 shows the spatial difference distributions of the 
HTx and LTn between two periods corresponding to the 
RP of 20, 50,100 and 200 years, respectively. The increase 
(decrease) in the high temperature extremum of the spe-
cific RP from P1 to P2 means the summer becoming hotter 
(cooler) under climate change. Apparently, three regions 
with negative value are indicated in Fig. 5 as Huang-Huai 
River Basin, Southwest China and Western Xinjiang, where 
the extreme summer high temperature has dropped in the 
past several decades. Especially, the Huang-Huai River 
Basin, at where the Kaifeng site locates, exhibits the most 
significant change among the three regions. Except for 
that, the rest of China are consistently dominated by posi-
tive values. The magnitude has increased with the latitude, 
indicating a severe heating in Northern China in summer. 
For the LTn, it is mostly covered by positive values except 
for the part region of northeast China and several small 
regions east to the Plateau. The significant positive areas 
are located at the Huang-Huai River Basin and northwest 
China. As the rise (drop) of the low temperature extremum 
of the specific RP from P1 to P2 means the winter becom-
ing warmer (colder) under climate change, the majority in 
China is characterized by the warming winter. The notable 

negative area is located at the northeast China, where 
extreme cold events frequently have occurred after 2000, 
also signifying the inconsistency of the low temperature 
extremum change in China under the global warming.

4 � Projection from CMIP6 simulation 
under different scenarios

The similar analysis has been performed on the CMIP6 
results under different scenarios. As the time of CMIP6 
simulation spans from 2015 to 2100, three sub-periods 
are divided: 2021–2060, 2041–2080, 2061–2100 marked 
as P3, P4 and P5, respectively. Figure 6 shows the multi-
model ensemble mean of HTx changes with RP under 
different scenarios for the three typical stations. As the 
grids of models might not be accurately located at the 
three observed sites, we interpolate the values of neigh-
boring grids into the observed sites after calculating the 
extreme temperature value of return level in the original 
model grids. Notice that under the SSP1-2.6 scenario, 
the HTx in Kaifeng gradually increases from P3 to P5 
with larger distance between P5 and P4 but smaller gap 
between P4 and P3, while in Shuangliao and Guang-
zhou the difference of HTx between P5 and P4 can be 

Fig. 5   Spatial difference distributions of HTx (Top panel) and LTn (Bottom Panel) between P2 and P1, respectively, corresponding to RP of 
20, 50,100 and 200 years derived from observation
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negligible but significant between P4 and P3. The incon-
sistency also be observed in the HTx change under the 
scenario of SSP2-4.5. The rise of HTx in Shuangliao from 
P3 to P4 is far lower than that in the other two stations. 
Nevertheless, the HTx of three sites under SSP3-7.0 and 
SSP5-8.5 are characterized by consistently increasing 
from P3 to P5.

The spatial difference distribution of HTx correspond-
ing to RP of 50 years between two periods under different 
scenario is demonstrated in Fig. 7. As aforementioned, it 
should be noted that as the resolutions of the selected 
10 models are different and interpolation of extreme val-
ues may cause data distortion, we calculate temperature 
extremum of return level and its difference between two 

Fig. 6   Ensemble mean of HTx changes with RP derived from simulated samples under different scenarios from SSP1-2.6 to SSP5-8.5 for 
three selected stations (The black line is for P3, green for P4 and red for P5)
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periods based on original data for each grid individually 
and then bilinearly interpolate the results into the same 
standard grid of 1° (Longitude) × 1° (latitude) for obtain-
ing ensemble mean. From Fig.  7a under SSP1-2.6, the 
positive difference between P4 and P3 with magnitude 
below 0.5 °C dominates the majority of China except for 
the northern region of Heilongjiang province, signifying 
that the summer in the mid-period of the next century 
will be hotter than the present. But the upward trend 
will not last to the late period as shown in Fig. 7b. More 
negative difference areas between P5 and P3 can be 
observed. Taking the same symbol ratio of models into 

consideration, the uncertainty and inconsistency of the 
HTx change under this scenario are significant. However, 
under the other three scenarios from SSP2-4.5 to SSP5-8.5 
(Fig. 7c–h), the positive difference areas cover all over the 
China and the magnitude increase with time and emission 
intensity, indicating that the inconsistency and uncertainty 
of HTx change are significantly declined from SSP1-2.6 to 
SSP5-8.5.

Fig. 7   Spatial difference dis-
tribution of HTx with RP-50 yr 
between two periods under 
different emission scenarios 
(Units in °C, the black dots are 
for the same symbol of models 
larger than 70%)
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As to the LTn as demonstrated in Figs. 8 and 9, the simi-
lar variation as the HTx in Figs. 6 and 7 is observed, namely, 

the inconsistency is only found under the SSP1-2.6 sce-
nario while it is disappeared from SSP2-4.5 to SSP5-8.5. 
Meanwhile, the LTn change in eastern China is more sensi-
tive than that in western China. 

Fig. 8   Same as Fig. 6 but for LTn
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5 � Conclusion and discussion

In this study, the observation in the past several decades 
and simulation from CMIP6 under different scenarios 
are used to comprehensively explore the changes of the 
extreme temperature under climate change from the 
angle of RP and risk assessment. The Gumbel model of 
generalized extremum distribution is introduced to esti-
mate the RP for the annual extremum of temperature. The 
analysis on the observed data in three selected sites indi-
cates that the regional inconsistency of RP variation is not 

only detected in HTx but also in LTn during the past several 
decades. The annual amplitude of extreme temperature in 
Northeast China is enlarged with summer becoming hot-
ter and winter becoming colder while the different situ-
ation is detected in Huang-Huai River Basin with cooler 
summer and relatively stable winter, and South China is 
characterized by hotter summer and slight warmer winter. 
From the spatial distribution of the HTx and LTn variations 
of fix RP, it is found that the Northeast China and Jiang-
hui River Basin is the most sensitive areas, respectively, 
in the response of extreme low temperature and high 

Fig. 9   Same as Fig. 7 but for 
LTn
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temperature to global warming. However, the inconsist-
ency of the extreme temperature change is only observed 
in the CMIP6 simulation under SSP1-2.6 scenario but dis-
appeared from SSP2-4.5 to SSP5-8.5. Above analysis indi-
cate that risk of extreme temperature events is increased 
under the global warming but the regional inconsistency 
should be considered to some extent.

The risk change of extreme temperature events under 
climate change is estimated only based on temperature 
in this study. As aforementioned, the natural disaster is a 
multivariate process which is comprehensively affected by 
different elements. For example, the summer heatwave is 
always accompanied with the drought while the extreme 
cold events in winter occurs involving in snowfall or fro-
zen rain process. The risk estimate or assessment for the 
extreme temperature events should be taken more ele-
ments into consideration instead of one variable. Moreo-
ver, the non-stationary series need to be considered due 
to the warming background. Additionally, the response 
of the RP of extreme temperature to climate change is 
anlyzed but its mechanism not discussed in this study 
which need to be further explored.
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