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Abstract
Aiming to monitor wear condition of milling cutters in time and provide tool change decisions to ensure manufacturing 
safety and product quality, a tool wear monitoring model based on Bagging-Gradient Boosting Decision Tree (Bagging-
GBDT) is proposed. In order to avoid incomplete tool state information contained in a single domain feature parameter, 
a multi-domain combination method is used to extract candidate characteristic parameter sets from time domain, fre-
quency domain, and time–frequency domain. Then top 21 significant features are screened by eXtreme Gradient Boost-
ing selection method. Synthetic Minority Oversampling Technique technology is integrated during feature selection to 
overly sample feature vectors, so that wear condition categories can be well balanced. Bagging idea is then introduced 
for parallel calculation of the gradient boosting decision tree and to improve its generalization ability. A Bagging-GBDT 
milling cutter wear condition prediction model is constructed and verified by public ball-end milling data set. Experi-
ments show that random features and training samples selection can effectively improve prediction performance and 
generalization ability of prediction model. Our Bagging-GBDT model gains F1 score of 0.99350, which is 0.2% and 13.2% 
higher than the random forest algorithm and basic GBDT model, respectively.

Article Highlights

•	 Candidate parameter sets are extracted from multi-domain (time, frequency, and time–frequency).
•	 Topmost significant features are screened by XGBoost selection, and balanced via SMOTE technology.
•	 Bagging idea is introduced for parallel calculation of the gradient boosting decision tree and to improve generaliza-

tion ability of the prediction model.

Keywords  Wear condition prediction · XGBoost feature selection · SMOTE · Bagging-GBDT

1  Introduction

High-speed milling technology is an important branch 
of advanced manufacturing industry. Cutting tool acts 
directly on workpieces, so its wear state will affect machin-
ing accuracy, surface quality and production efficiency 
of products. In recent years, with the development of 

new-generation information technologies such as sensors 
and artificial intelligence, realization of intelligent moni-
toring of tool wear has become one of research hotspots 
[1–3].

A fitful model for study of tool wear is difficult to 
construct when all signal and factors are considered, 
thus scholars have to try various models. One direct 
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method to perform tool health assessment is through 
logistic regression (LR). In Yu [4], prognostic features 
are selected with a penalization method, and predic-
tion model formed via manifold regularization. Liu [5] 
proposes a novel unsupervised CNN-transformer neural 
network (CTNN) model for wear estimation. The trans-
former model and convolutional neural networks (CNN) 
are parallely used to process condition monitoring (CM) 
data. The effectiveness and superiority of this method 
are validated on a public dataset. Zhang [6] establishes 
a Least Square Support Vector Machine (LS-SVM) based 
wear model, which manifests that the LS-SVM model 
is capable of tool wear prediction at specified cutting 
conditions.

Above basic models are mostly targeting at a certain 
monitoring condition and lack of accuracy. Some schol-
ars have been applying optimization method to achieve 
better prediction performance. To clearly obtain the 
grade of tool wear condition, Liao [7] optimizes the SVM 
classifier with a grey wolf algorithm, which reflects to 
be more accurate and with higher generalization abil-
ity. Li [8] aims at the problems of slow convergence of 
traditional artificial neural networks and ease of falling 
into local minimums. They adopted least square method 
to optimize a support vector machine model, so that the 
recognition accuracy of tool wear was higher than that 
of traditional neural networks. In García-Nieto [9], par-
ticle swarm optimization algorithm was used in kernel 
parameter setting of Supported Vector Machine (SVM), 
that resulted in accuracy of 95% for wear status evalu-
ation. Li [10] established a evaluation model based on 
Random Forest (RF) algorithm with accuracy rate up to 
99.1%. Krishnakumar [11] extracted statistical features 
from vibration signals to train one BP neural network, 
and the identification accuracy of high speed machining 
of titanium (Ti-6Al-4 V) alloy went to 95.4%.

Single method always lack the ability of generaliza-
tion, and optimization of a single model is difficult and 
easy to be overfit. To evaluate synthetic performance 
of different methods, thoughts of integrated learning, 
such as eXtreme Gradient Boosting (XGBoost) [12, 13] 
and Bagging [14], are now imported for cutting wear 
prediction.

In this paper, multi-domain feature extraction is per-
formed on machining data of one typical milling cutter. 
At the same time, aiming to reduce large dimensional-
ity of different sensor signal features, which negatively 
affect complexity and robustness of machine learning 
algorithm, an advanced feature extraction methodol-
ogy based on XGBoost feature significance analysis is 
proposed. In order to improve generalization ability and 
computing efficiency of basic Gradient Boosting Deci-
sion Tree (GBDT), we introduce the Bagging idea to form 
one Bagging-GBDT milling cutter wear prediction model. 
Compared with RF and basic GBDT prediction models, 
prediction performance of this modified model is going 
to be verified. To be more clear, we illustrate the struc-
ture of this paper in Fig. 1.

2 � Methods

Our methods will follow the pipeline of data acquisition, 
dimension reduction and prediction.

Data acquisition 

[Acquisition 

framework and data 

format introduction]

Data preprocessing 

[Feature extraction from time 

and frequency zones; feature 

selection and data balancing 

via XGBoost and SMOTE] 

Status prediction 

[Bagging-GDBT prediction 

model construction; comparative 

evaluation studies with RF, 

GBDT, SVM, Adaboost, etc.] 

Fig.1   Structure of this paper

Fig. 2   Flow chart of milling cutter wear condition recognition
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2.1 � Wear status data acquisition

Tool wear condition recognition is a multi-type pattern 
recognition problem. In Fig. 2, acquisited sensor signals 
are preprocessed, and then analyzed in time domain, fre-
quency domain and time frequency domain. Sensitive 
features of milling cutter wear condition are extracted 
and selected to form the optimal classification features. 
Finally, an evaluation model of milling cutter wear condi-
tion is constructed.The main steps are signal acquisition 
and data processing, feature selection and tool wear con-
dition recognition.

This experiment uses data set released by US PHM 
Society (2010) High Speed Milling Machine Tool Health 
Prediction Competition [15]. Equipment and processing 
parameters in PHM experiments are shown in Table 1.

Figure 3 is an experimental system for monitoring wear 
condition of milling cutters. Cutting force signal (qx, qy, qz) 
and vibration signal (zx, zy, zz) are collected by installing 
a three-way dynamometer and an acceleration vibration 
sensor. Every cutter is used for 315 times of 108 mm face-
milling cut along X axis under the exact same operation 

time. After each pass is completed, wear parameters of 
the 3 blades of the milling cutter are measured with a 
microscope.

2.2 � Feature extraction and dimension reduction

2.2.1 � Sensor signal features extraction

For that characteristic parameters in a single domain may 
contain incomplete information, several different char-
acteristic parameters are extracted from time domain, 
frequency domain and time frequency domain to form a 
candidate characteristic parameter set [16]. The extracted 
time domain and frequency domain feature values are 
listed in Table 2.

Wavelet packet decomposition theory [17] is employed 
to obtain frequency energy characteristics in different 
time periods. Wavelet packet transform is a supplement 
and extension of wavelet transform. Except the ability of 
low frequency signal decomposition, it can also decom-
pose high frequency region without any redundancy or 
omission, and extract the energy characteristics of the 
whole frequency band [18]. The wavelet packet basis db6 
is selected to decompose cutting force and vibration sig-
nals in three layers. Decomposition coefficients of 8 sub-
bands r(3,i), i = 0, 1,… , 7 of the low and high frequencies 
in the third layer are extracted. The wavelet packet energy 
of each subband is

N is the number of sampling points. There are 8 types of 
energy.

(1)E3i =

N∑

n=1

|||r(3,i)
|||
2

, i = 0, 1,… , 7

Table 1   PHM equipments and 
milling parameters

Equipment type Model Processing parameters Value

High speed CNC machine tool Roders Tech RFM760 Spindle speed (r/min) 10,400
Dynamometer Kistler 9265B Feed rate (mm/min) 1555
Vibration sensor Kistler 8636C Axial depth of cut (mm) 0.2
Knives Ball-end carbide milling cutter

3 blades
Radial width of cut (mm) 0.125

Data-acquisition card NI DAQ Feed (mm) 0.001
Wear measuring instrument LEICA MZ12 Microscope Sampling frequency (kHz) 50

Fig. 3   Schematic diagram of high-speed milling

Table 2   Time domain and frequency domain feature extraction parameters

Sensor signal qx, qy, qz zx, zy, zz

Extracted features per pass Max, Min, Mean, Standard deviation, Root mean 
square, Peak-to-peak, Skewness coefficient, Kurtosis 
Coefficient, Form factor, Crest factor, Impulse factor, 
Margin factor

Spectral Skewness Coefficient, Spectral Kurtosis 
Coefficient, Spectral power
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2.2.2 � Feature dimensionality reduction

Feature selection is for determining the upper limit of 
a model, and avoiding dimensional disaster by remov-
ing redundant features, thereby improving the accuracy 
of the model [19]. Feature selection methods mainly 
include filtering, packaging and embedding. The fea-
ture selection method based on XGBoost is one of the 
packaging methods, in which feature importance is used 
as a reference to extract features that are more pertain 
to wear loss.

XGBoost improves the objective function of GBDT, 
and introduces a regular term in the loss function, which 
can accelerate convergence speed while improving gen-
eralization ability of a single tree.

The objective function model is:

l
(
yi , ŷi

)
 is square loss function of the true value yi and the 

predicted value ŷi , Ω
(
fi
)
 is a regularization term.

where � represents the difficulty coefficient of tree seg-
mentation used to control the growth of the tree; T 
denotes number of leaf nodes; λ is a L2 regularization 
coefficient.

Finally, the available objective function is:

gi is the first derivative of the loss function l
(
yi , ŷi

)
 ; hi 

is the second derivative of the loss function l
(
yi , ŷi

)
 ; 

Ij ∈
{
q
(
Xi
)
= j

}
.

XGBoost feature selection depends on the importance 
of each feature’s contribution to the model, which is the 
sum of times the feature is used for tree segmentation. 
XGBoost uses a greedy strategy for tree segmentation, 
traversing each feature, calculating gains before and 
after splitting all features according to formula (4), and 
selecting the feature with the largest gain as the split 
node.

(2)Obj =

n∑

i=1

l
(
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(
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2.2.3 � Unbalanced data processing

Prediction of milling cutter wear condition has the prob-
lem of unbalanced data classification. There are more 
data of normal wear than initial and sharp wear, that will 
induce more samples being classified into categories 
with more samples, resulting in poor generalization of 
the model. Synthetic Minority Oversampling Technique 
(SMOTE) is often used for unbalanced data classification 
[12, 20]. The idea is to interpolate samples of the nearest 
K less-sample categories to form a new category and add 
it into the data set, so that different categories tend to 
be more balanced.

2.3 � Wear prediction based on Bagging‑GBDT

2.3.1 � GBDT method

Gradient Boosting Decision Tree (GBDT) is an integrated 
learning method based on decision tree, where the rela-
tionship between attribute vector and prediction object 
are mapped. Starting from irregular and disorder sample 
data, an optimal partition rule is followed until the pre-
dicted value is obtained at the leaf node. GBDT learns 
Classification And Regression Tree (CART) model T(x;θm) 
by fitting negative gradient of mean square error loss 
function, so that loss function can decrease gradually, 
and fitting function f0(x) infinitely close to the ground-
truth value. The GBDT algorithm flow is as follows:

1.	 Initialize the weak classifier

yi is the true value of the sample; � is a constant.
	   L denotes loss function:

	   The total loss of all N samples is

where fm(xi) is the mth predicted value.
2.	 Minimize the loss function
	   Negative gradient function is

(6)f0(x) = argmin

N∑

i=1

L(yi , �)

(7)L(y, f (x)) = (y − f (x))2

(8)Lall =

N∑

i=1

L(yi , fm(xi))

(9)−g
(
xi
)
= −

�L(yi , f (xi))

�f (xi)
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	   We construct a negative gradient fitting function 
h(xi ;α) to fit the negative gradient −g

(
xi
)
.

where αm and g
(
xi
)
 denote residual parameter and 

gradient, � and α are coefficients.
3.	 Optimize weight factor

where �m is weight coefficient; fm−1

(
xi
)
 is fitting func-

tion of the m-1st iteration.
4.	 Update forecast function

fm(x) is fitting function of the current iteration; 
�mhm(x;αm) is the m-1st iterative negative gradient fit-
ting function.

In the above there are dependencies between weak 
learners, so it is difficult to parallelize training data. For this 
reason, a Bagging ensemble learning method is employed 
to randomly select training samples to improve the gener-
alization ability of GBDT model.

2.3.2 � Construction of Bagging‑GBDT algorithm

Bagging [21] is an ensemble learning framework, which 
realizes parallel computation by forming a series of inde-
pendent base classifiers from different training samples, 
that can also improve algorithm accuracy and efficiency. 
In this paper, the idea of bagging is applied to the field of 
milling cutter wear condition prediction based on basic 
learning device of GBDT (Fig. 4).

BootStrap method [22] is adopted for updating sam-
ple distribution—original data is randomly sampled and 
put back, to diverse sample data of each classifier and 
improve performance of the ensemble classifier. For a 

(10)αm = argmin

N∑

i=1

(−g
(
xi
)
− �h(xi ;α))

2

(11)�m = argmin

N∑

i=1

L(yi , fm−1

(
xi
)
+ �h(xi ;αm))

(12)fm(x) = fm−1(x) + �mhm(x;αm)

given training set, T training feature subsets are formed 
by T-round bootstrap sampling, and then T weak classi-
fiers are generated by GBDT learning on the T training 
feature subsets respectively. Finally, those weak classi-
fiers are integrated into a strong classifier.

GBDT evaluation model is a series model. During its 
construction, weak decision tree model is established 
depending on the prediction results of the previous one. 
After adoption of Bagging algorithm, there will be no 
dependence between GBDT models of each base classi-
fier. Through parallel computing mechanism of Bagging 
framework, calculation speed is greatly improved. At the 
same time variance of prediction error is reduced, and 
model generalization is improved.

2.3.3 � Performance evaluation

The purpose of machine learning is to train samples for 
recognition of new samples. Common indexes to evalu-
ate effect of machine learning include precision, recall 
and weighted harmonic mean. In Table 3, T and F denote 
correct and wrong prediction, P and N represent posi-
tive and negative categories, and the diagonal lines of 
confusion matrices TP and TN represent correct predic-
tion results.

At the same time, Receiver Operating Characteristic 
(ROC) curve and Area Under the Curve (AUC) are often 
used to evaluate the quality of classifiers. ROC curve 
reflects a comprehensive prediction on relationship of 
sensitivity and specificity, where closer relationship will 
result in ROC curve to the upper left corner. Greater AUC 
value indicates higher prediction accuracy.

3 � Results

Data processing and modeling work in this paper are 
based on Python programming language, combined 
with Scikit-Learn machine learning library, Pywalvelets 
wavelet library and SMOTE library for dealing with unbal-
anced data.

Fig. 4   Bagging-GBDT algorithm flow

Table 3   Confusion matrix and evaluation indicators

Confusion matrix Actual value

Positive Negative

Predictive 
value

Positive TP FN
Negative FP TN

Precision =
TP

TP+FP
Recall =

TP

TP+FN
F1−score =

2PR

P+R
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3.1 � Data preparation

In the milling cutter wear monitoring experiment, a total 
of six milling cutters (c1–c6) under the same working con-
ditions are collected for their whole life cycle signal data, 
including cutting force signals and vibration signals. Trend 
of the wear value of the c4 milling cutter throughout its life 
cycle is given as an example in Fig. 5.

In this case, the first to the 30th pass is defined as the 
initial wear stage, the 31st to 210th pass as the normal 
stage, and the 211th until 315th as the sharp wear stage. 
In the following, c4 milling cutter data are mainly analyzed.

Figure 6 shows The number of tool passes() for the c4 
milling cutter during its whole cutting life cycle. Except 
qx_6 and qx_7, the other signals, qx_0 to qx_5, can be 
employed as indicators of the degree of wear.

According to the above signal analysis, we extract 12, 3 
and 8 features from time domain, frequency domain and 
time–frequency domain respectively, for each cutting 
force or vibration signal along x, y and z direction. Totally 
(12 + 3 + 8) × 6 = 138 features are extracted along life cycle 
(315 passes) of one cutter, so size of the final feature matrix 
is 315 × 138.

Also taking c4 milling cutter as an example, organize all 
features into a feature matrix and then train the XGBoost 
feature selection model to evaluate importance of each 
feature in descending order (Fig. 7).

The top 50 features are shown in Fig. 7. The maxi-
mum value, 0.0765, represents that the cutting force 
along z-axis direction is the most important. Unto this 
analysis, we select the topmost important 21 features 
to form a new feature matrix. It is easy to find that 18 Fig. 5   c4 milling cutter wear curve

Fig. 6   Energy curve of cutting 
force frequency band along 
x-axis

Fig. 7   XGBoost feature importance
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of those features represent cutting force signals, which 
also means the main factor affecting wear loss is cutting 
force. The final size of this feature matrix is now shrank 
into 315 × 21.

Let 0, 1 and 2 denote the three wear stages, ini-
tial wear, normal wear and sharp wear respectively. 
Figure 8 is comparison diagram of category distribu-
tion before and after adopting SMOTE method for the 
feature matrix. Originally samples of the three stages 
accounted for 9.5%, 57.1% and 33.3% respectively. After 
SMOTE, the number of samples of category 0 and 1 are 
increased significantly, and the resulted feature matrix 
size is increased into 540 × 21.

3.2 � Prediction

During Bagging-GBDT model training, 5-folds cross valida-
tion is exerted on the above balanced dataset. To obtain 
optimized Bagging-GBDT parameters and compare perfor-
mance between different models, all of the experimental 
prediction studies utilize the same data processed after 
SMOTE. The size of training samples input into Bagging-
GBDT model is 540 × 21. Parameters of our model is opti-
mized via Grid search method (Table 4).

Learning curve of Bagging-SVM and Bagging-GBDT 
model is shown in Fig. 9. Compared with Bagging-SVM, 
Bagging-GBDT gains a more higher classification accuracy, 
which is 5%.

Fig. 8   Comparison of sample category distribution before and after SMOTE

Table 4   Bagging-GBDT model parameter settings

Model n_estimators bootstrap bootstrap_features max_samples max_features learning_rate

Bagging-GBDT 130 True True 0.95 0.8 0.01

Fig. 9   Learning curve of Bagging-SVM and Bagging-GBDT
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Algorithms like traditional k-Nearest Neighborhood 
(KNN) and SVM, and other different algorithms as GBDT, 
Adaboost based on the Boosting idea and Random Forest 
based on the Bagging idea are included in our study. The 
experimental results are shown in Table 5.

In Fig. 10, SVM shows the worst prediction performance. 
The overall performance of integrated algorithms (such 
as RF, GBDT, and Adaboost) is better than that of a sin-
gle learner (such as KNN and decision tree). F1 value of 
Bagging-GBDT is the highest, which is up to 0.9935. Com-
pared with random forest and basic GBDT, the results are 
improved by 0.2% and 13.2% respectively.

ROC curves of RF and Bagging-GBDT models are shown 
in Fig. 11. The ROC curves of the Bagging-GBDT model on 
initial wear, normal wear and sharp wear are concentrated 
to the upper left corner, which also means it has a higher 
AUC value than RF.

4 � Discussion

From wear loss trend of the c4 milling cutter (Fig. 5), it can 
be seen that the average wear amount of three cutting 
edges of one cutting tool has high degree of differentia-
tion between three wear stages: initial wear, normal wear 
and sharp wear. This trend can also be easily reproduced 
from other milling cutters.

By wavelet analysis, we can easily partition and obtain 
new features from the angle of energy frequency. Those 
features, qx_0, …, qx_5 in Fig. 6, manifesting high correla-
tion between frequency band and wear loss are effective 
factors and will be employed for further analysis.

Learning curve is for judging generalization ability of a 
model. When prediction accuracy of training set is greater 
than that of cross validation set, the model appears to be 
over-fitted. When prediction accuracy of both training set 
and cross validation set is low, the model shows underfit. 
The learning curve of Bagging-GBDT (Fig. 9) shows high 
prediction accuracy on both training set and validation set, 
which increases as sample number increases, that implies 
strong generalization ability of this model.

Both GBDT and Adaboost belong to forward stepwise 
algorithm, and GBDT shows stronger robustness. Com-
pared with the random forest which also uses the Bag-
ging idea, the prediction performance of Bagging-GBDT 
is better, mainly because of random feature selection and 
sampling with replacement scheme during decision tree 
construction.

Table 5   Comparison of evaluation results of different algorithms

Model Accuracy Recall rate F1-score Time/s

KNN 0.97894 0.98787 0.96049 0.00994
DT 0.98148 0.98075 0.98223 0.00994
SVM 0.90740 0.91803 0.90624 0.01498
GBDT 0.98947 0.96969 0.98054 0.24973
Adaboost 0.98148 0.98333 0.97995 0.07990
RF 0.98947 0.99393 0.99147 0.10198
Bagging-GBDT 0.99383 0.99470 0.99350 0.37652

Fig. 10   Comparison of evaluation results of various algorithms

Fig. 11   ROC curve of RF and Bagging-GBDT model
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5 � Conclusion

In order to improve generalization performance of GBDT 
model, a Bagging algorithm is introduced for milling cut-
ter wear condition prediction.

1.	 First, synthesized candidate feature parameter sets are 
constructed from multiple domains. Then, 21 features 
closely related to wear condition are screened out 
according to importance evaluation via XGBoost algo-
rithm. 18 of them are statistical values of cutting force 
signals, so the cutting force has the greatest impact on 
wear condition of milling cutter.

2.	 During Bagging-GBDT modeling, randomly selected 
features and samples with replacement are input, and 
parallel computation is implemented, so our model 
tends to be more generalized. Experimental results of 
Bagging GBDT has F1 score of 0.9935, which is 0.2% 
and 13.2% higher than that of RF and GBDT respec-
tively, which also verifies that our model is more gen-
eralizing and more reliable and stable, thus has more 
excellent prediction performance.

The research of milling cutter wear loss prediction 
based on Bagging-GBDT model has certain theoretical 
and practical significance. This paper offers a data-driven 
offline prediction model of milling cutter wear loss 
based on an open historical experimental data, which is 
obviously mismatch with lots of real working conditions. 
In our further studies, online real-time monitoring and 
prediction is going to be realized.
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