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Abstract
Artificial neural network (ANN) provides a new way for mine water inflow prediction. However, the effectiveness of 
prediction using ANN model would not be guaranteed if the influencing factors of water inflow are difficult to quantify 
or there are only a few observation data. Chaos theory can recover the rich dynamic information hidden in time series. 
By reconstructing water inflow time series in phase space, the multi-dimensional matrix could be obtained, with each 
column representing an influencing factor of water inflow and its value representing the change of the influencing 
factor with time. Therefore, a new prediction model of mine water inflow can be established by combining ANN with 
chaos theory when lacking data on the influencing factors of water inflow. In the present study, the No. 12 coal mine 
of Pingdingshan China was selected as the study site. The Chaos-GRNN model and Chaos- BPNN model of mine, water 
inflow were established by using the water inflow data from February 1976 to December 2013. The model was verified 
by using the water inflow values in the 24 months from 2014 to 2015. The number embedded dimension (M) of influ-
encing factors of water inflow determined by phase space reconstruction was 7, meaning that there were 7 influencing 
factors of water inflow and 7 neurons in GRNN input layer, and the time delay was 13 months. The value of GRNN input 
layer neurons was determined accordingly. The maximum Lyapunov index was 0.0530, and the prediction time of GRNN 
was 19 months. The two models were evaluated by using four evaluation indices (R, RMSE, MAPE, NSE) and violin plot. 
It was found that both models can realize the long-term prediction of water inflow, and the prediction effectiveness of 
Chaos-GRNN model is better than that of Chaos-BPNN model.

Keywords  Chaos theory · Phase space reconstruction · Generalized regression neural network · Input layer neuron · 
Long-term prediction of mine water

1  Introduction

In China, more than 200 water inrushes from Ordovician 
limestone have occurred in North China coalfields over 
the past 40 years, resulting in economic losses of more 
than 30 billion yuan and 1300 deaths [22, 25].Water inrush 
problems in deep mining become increasingly serious as 
the mining depth increases. Mine water inflow is one of 
basic technical conditions for coal mine development, 

which is the total amount of surface water, fissure water, 
karst water, old kiln water, and other water flowing into 
mine pit. Accurately forecast the water inflow of coal mines 
can help to prevent coal mine accidents and ensure the 
safety of coal mine production and efficient use of mine 
water [34, 40]. Therefore, scholars have gradually devel-
oped the prediction of mine water inflow from deter-
ministic methods (such as hydrogeological analytical 
method, water balance method, numerical methods, etc.) 
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to non-deterministic stochastic prediction (such as analog 
method, fuzzy mathematical model, gray system theory, 
etc.) [1, 24, 33, 41]. However, mine water inflow is related to 
many factors, such as strata pressure, mining disturbance, 
geologic structures, and water pressure, and these factors 
have obvious nonlinear characteristics [11, 16]. Moreover, 
with the increasing depth of coal mining, the hydrogeo-
logical conditions of mine water filling are becoming more 
and more complex, and the control factors of mine water 
inflow are increasing. Consequently, these prediction 
methods are usually time-consuming and less reliable.

Artificial neural network (ANN) model is able to learn 
the underlying relationship between input and output sig-
nals of a sequential process with no need to take explicit 
physical rules into onsideration [18]. So many scholars use 
ANN to predict mine water onflow [3], and these models 
have higher prediction accuracy. Generalized Regression 
Neural Network (GRNN) is a radial basis function network 
based on mathematical statistics [5]. It has the advan-
tages of simple model structure, few parameters to adjust, 
strong approximation ability, fast learning speed, and high 
prediction accuracy, which has been widely used in many 
fields [5, 36]. Wang et al. [31] selected three main influ-
encing factors of mine water inflow as the input neurons 
in GRNN to predict the mine water inflow. Using GRNN 
to predict the mine water inflow, the numbers of input 
layer neurons and their values are the key to determining 
the accuracy of the model, which are determined by the 
choice of the influencing factors of mine water inflow and 
their values. However, the data of many influencing fac-
tors of mine water inflow usually are difficult to collect and 
quantify, moreover, it is difficult to determine the key fac-
tors among all the influencing factors of mine water inflow.

Fortunately, chaos theory considers that there are a lot 
of information about related factors in the time series of 
mine water inflow, and the number and value of related 
factors can be obtained through the reconstructed phase 
space [19, 29]. Chaos theory is an effective tool for study-
ing complex systems [13], which can restore the rich 
dynamic information hidden in a single variable of the 
system [27].

So, this study combined chaos theory with GRNN, using 
reconstructed phase space of mine water inflow time 
series to determine the number of GRNN input layer neu-
rons and their values (reducing the subjectivity and limita-
tions of the original GRNN), establishing Chaos-General-
ized Regression Neural Network (Chaos-GRNN) model to 
achieve a more effective prediction model of mine water 
inflow. Additionally, this model is used to predict the mine 
water inflow for a long time (24 months) to verify practical-
ity of the model.

The paper is organized as follows. Section  2 briefly 
introduces the basic theory behind reconstructed phase 

space, and GRNN, outlines the proposed Chaos-GRNN 
model approach. Section 3 describes the application of 
Chaos-GRNN model to predict mine water inflow. Sec-
tion 4 discusses the rationality, the range of parameters 
of the Chaos-GRNN model, and the comparison with the 
prediction results of the Chaos-BPNN model. Section 5 lists 
the main conclusions.

2 � Methodology

2.1 � Reconstructed phase space

Takens’ time-delay embedding theorem (1981) paved the 
way for the analysis of chaotic time series. In the recon-
structed m-dimensional space, the regular trajectory of the 
motive system can be restored [8, 10]. The key to recon-
struct phase space is to determine the time delay τ and the 
embedding dimension m. In the paper, the embedding 
dimension m was determined by the Cao method [2], the 
time delay τ was determined by the autocorrelation func-
tion method [7, 38].Further details about chaos theory can 
be found in Karunasingha et al. [13] and Huang et al. [12].

(1)	 Time delay τ

Let xi denotes the observed mine water inflow, with x 
denoting their means, and n denoting the number of data 
points considered, τ denoting the number of time moving. 
Autocorrelation functiont C(τ) can be expressed as

The curve draws with τ as the independent variable and 
C(τ) as the dependent variable. When C(τ) drops to (1–1/e) 
of the initial value, the corresponding τ is the time delay of 
reconstructing space.

(2)	 Embedding dimension m

The distance change �(i,m) of the nearest point in 
phase space under different embedding dimensions is cal-
culated by formula (2) firstly; then the mean E(m) of �(i,m) 
is calculated by formula (3), E1(m) is calculated by formula 
(4). Finally, to draw the curve between E1(m) and m. When 
the change of E1(m) gradually becomes stable, the m at the 
stable position is what is required.

(1)C(�) =

1

n−�

n−�∑
i=1

(xi − x)(xi+� − x)

1

n

n∑
i=1

(xi − x)2
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where ‖‖(m+1)
∞

 is the m + 1 dimensional space-norm; Yn is 
the closest vector.

(3)	 Reconstructed phase space

After τ and m are determined, phase space reconstruc-
tion is performed by the mine water inflow time series 
X = {x1, x2,…,xn}. Getting a m-dimensional vector sequence:

where i = 1,2, …, M, M = n-(m-1) τ.

2.2 � The maximum Lyapunov index λmax

The maximum Lyapunov exponent λmax not only is the 
identification parameter of the chaotic feature (if λmax > 0, 
then the system has chaotic characteristics), but also can 
determine the step size R (R = 1/λmax) of prediction model 
[30, 32].

After reconstructing the phase space, to calculate the 
distance (Li) between two adjacent points Y(j) and Y(i)in 
the m-dimensional space by the formula (6):

Then, λmax can be obtained by the formula (7):

The step size R of prediction model can be obtained by 
the formula (8):

2.3 � Generalized regression neural networks (GRNN)

Generalized regression neural networks (GRNN) were first 
proposed by Specht [26], which was a radial basis function 
network [5].

(2)�(i,m) =

‖‖‖Y�(n) − Yn
‖‖‖
(m+1)

∞

‖‖‖Y�(n) − Yn
‖‖‖
m

∞

(3)E(m) =
1

n −m�

n−m�∑

i=1

�(m, i)

(4)E1(m) =
E(m)

E(m + 1)

(5)Yi =
{
xi , xi+� ,… , xi+(m−1)�

}

(6)Li = min
�
‖Y(j) − Y(i)‖

�
, i, j = 1, 2,… ,M

(7)�max =
1

M − 1

1

�

M−1∑

i=1

ln
Li+1

Li

(8)R = 1∕�max

The function f (x, y) is defined as the joint probability 
density function (PDF) of two random variables x and 
y. When f (x, y) is known, the condition mean of y on a 
given x0 can be calculated by

In fact, f (x, y) is usually unknown in many systems. 
GRNN uses a group of measured x and y values to esti-
mate f (x, y) based on the consistent estimators pro-
posed by Parzen [26, 36]. For a given measured sample 
data point {xi, yi|I = 1, 2,…,N}, these timated PDF can be 
expressed as

where n is the number of measured samples, m is the 
dimension of vector random variable x, and σ is the 
smooth parameter of the Gauss function (also called the 
spread factor).

By substituting the estimated PDF in formula (10, 11 
and 12) into the condition mean in formula (9) and inter-
changing the order of integration and summation, the 
desired condition mean of y for a given x0 can be yielded:

GRNN is structurally composed of an input layer, a pat-
tern layer, a summation layer, and an output layer (Fig. 1).

(9)ŷ(x0) = E(y|x0) =
∫ +∞

−∞
yf (x0, y)dy

∫ +∞

−∞
f (x0, y)dy

(10)f (x0, y) =
1

n(2�)
m+1

2 �m+1

n∑

i=1

e−d(x0,xi )e−d(y0,yi )

(11)d(x0, xi) = (x0 − xi)
T (x0 − xi)∕2�

2

(12)d(y0, yi) = (x0 − xi)
2∕2�2

(13)ŷ(x0) =

n∑
i=1

yie
−d(x0,xi)

n∑
i=1

e−d(x0,xi )

Fig. 1   Structural diagram of GRNN
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The training set consists of values of inputs x, each 
with a corresponding value of an output y. This regres-
sion method produces the estimated value of y, which 
minimizes the squared error [14].The network has the 
advantages of simple structure, few parameters, and fast 
prediction speed, however, there is also a disadvantage 
that the selection of input layer neurons is subjective.

The MATLAB software (R2015b) is utilized to imple-
ment analysis of chaotic characteristics and GRNN for mine 
water inflow estimation.

2.4 � Chaos‑GRNN model

Giving full play to the respective advantages of chaos 
theory and GRNN, and combining them organically to 
establish a Chaos-GRNN prediction model for mine water 
inflow (Fig. 2).

The steps to establish the Chaos-GRNN model are as 
follows:

First, by chaos theory to construct the sample set of 
GRNN. To calculate the time delay τ and the embedding 
dimension m and the maximum Lyapunov exponent 
λmax of the time series{x1, x2,…,xn}. By formula (5), the 
time series{x1, x2,…,xn}will transform into the sample set: 
Y = (Y1,Y2,…,YM)T, M = n − (m − 1) τ. And the sample set will 
be divided into the training samples and test samples.

Second, to determine input layer neuron sand pattern 
layer neurons of GRNN. m is the number of factors affect-
ing the mine water inflow, which is equal the number of 
both input layer neurons and pattern layer neurons of 

the Chaos-GRNN model; the value of the input layer neu-
ron is determined by formula (5): Yi = (xi, xi+τ,…, xi+(m − 1) τ).

Third, to optimize the smooth parameter of GRNN. 
Based on the neural network toolbox in MATLAB, the 
cross-validation method is used to optimize the optimal 
Spread parameter value of newgrnn() function to obtain 
the smoothing factor σ.

Fourth, to set up model and forecast water inflow. 
Combine the trained input layer, mode layer data and 
optimization parameters to construct an optimized 
Chaos-GRNN model and import the data to predict. The 
step size of Chaos-GRNN model is determined by for-
mula (8).

Last, to evaluate the model. The model evaluation is 
based on four performance metrics described below. 
Let xo(i) and xe(i) denote, respectively, the estimated 
and observed mine water inflow, with xo  , xe  denoting 
their means, and n denoting the number of data points 
considered.

(1)	 The coefficient of correlation (R) can be expressed as

where the closer the coefficient R is to1,the more perfect 
is the positive linear relationship.

(14)R =

1

n

n∑
i=1

(xo(i) − xo)(xe(i) − xe)

�
1

n

n∑
i=1

(xo(i) − xo)
2
⋅

�
1

n

n∑
i=1

(xe(i) − xe)
2

Fig. 2   Structural diagram of Chaos-GRNN model
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(2)	 The root mean squared error (RMSE) can be expressed 
as:

(3)	 The mean absolute percentage error (MAPE) can be 
expressed as:

The closer the values of RMSE or MAPE are to 0, the 
more reliable is the model performance.

(4)	 Nash–Sutcliffe efficiency (NSE) can be expressed as:

The value of NSE is − ∞ to 1. NSE is close to 1, indi-
cating high reliability of the model; NSE is close to 0, 
indicating that the model is generally reliable, but the 

(15)RMSE =

√√√√1

n

n∑

i=1

(xe(i) − xo(i))
2

(16)MAPE =
1

n

n∑

k=1

||||
xo(i) − xe(i)

xo(i)

||||
× 100

(17)NSE = 1 −

n∑
i=1

(xo(i) − xe(i))
2

n∑
i=1

(xo(i) − xo)
2

process simulation error is large; NSE is far less than 0, 
indicating that the model is not credible.

There are many performance metrics to evaluate a 
model. In this study, the above four indices were chosen, 
because these four indices are most basic and used most 
widely [6].

3 � Application and results

3.1 � Sources of mine water inflow of the study sites

Pingdingshan No.12 Coal Mine is located in Pingdiang-
shan city of Henan province, China (Fig. 3).The study area, 
approximately 12.87 km2, is part of Pingdingshan Mining 
Area. So far, there have been 9 water inrush accidents in 
Pingdingshan No.12 Coal Mine.

At present, the normal mine water inflow is about 
129 m3/h. The direct sources of mine water inflow are the 
water in the goaf of the early mining, the sandstone water 
in the roof of the coal seam, and the limestone water in the 
coal floor. The indirect sources of mine water inflow are the 
atmospheric precipitation and surface water.

3.2 � Characteristics of water inflow

Monthly mine water inflow data are obtained from Ping-
dingshan No.12 Coal Mine between February 1976 and 

Fig. 3   Location of Pingdingshan No. 12 Coal Mine, China
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December 2015. Thus, the time series data set contains 
479 points (Fig. 4).

The data of mine water inflow from February 1976 to 
December 2013 (No.1–No.455) are used to reconstruct 
phase space of the mine water inflow time series. The 
data from July 2012 to December 2013 (No.438–No.455) 
are used to set up Chaos-GRNN model; the data from Janu-
ary 2014 to December 2015(No.456–No.479) are used to 
verify model.

3.3 � Phase space reconstruction

The time delay of the water inflow time series, 
τ = 13 months, is determined by formula (1) (Fig. 5a); the 
embedding dimension m = 7, is obtained by formulas (2, 
3 and 4) (Fig. 5b).Using formulas (6) and (7), the maximum 
Lyapunov exponent λmax is equal to 0.053.

The embedding dimension m = 7 indicates that there 
are 7 factors affecting the mine water inflow, so as to 
determine the number of input layer neurons in the 
Chaos-GRNN model is 7. λmax = 0.053 > 0, indicates that the 
mine water inflow time series has chaotic characteristics. 
R = 1/λmax = 18.86 ≈ 19, indicates that prediction step size 
of the Chaos-GRNN model is 19 steps.

The phase space of mine water inflow time series in 
Pingdingshan No. 12 Coal Mine is reconstructed to obtain 
a 7-dimensional vector space Y with a time delay of 
13 months:

Fig. 4   Monthly mine water inflow curve of Pingdingshan No.12 Coal Mine

Fig. 5   a Relationship between time delay τ and autocorrelation coefficient C(τ); b The relationship between m and E1(m) of mine discharge 
series
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3.4 � Water inflow forecast

Due to the test samples using the water inflow data from 
January 2014 to December 2015, so need to assume 
that the values of x456, …, x479 are unknown. That is, in 
the formula (18), the last column number of Y378 ~ Y401 is 
unknown, so the training samples must be selected before 
Y378. Additionally, the step size of the Chaos-GRNN model 
is 19steps. So the detailed procedure to predict mine water 
inflow is shown as follows:

Step one: To forecast x456.

Selecting (Y360, Y361,…,Y377)T as the training sample in 
GRNN. Output layer output is Ŷ378 , that is, the predicted 
value of Y378 is:

In Ŷ378 , x̂456 is predictive value of x456.

Step two: To forecast x457.

Let Y �
378

=
(
x378, x391, x404, x417, x430, x443, x̂456

)
 Selecting 

(Y361, Y362,…,Y377, Y ′
378

)T as the training sample in GRNN. 

(18)

(19)Ŷ378 =
(
x̂378, x̂391, x̂404, x̂417, x̂430, x̂443, x̂456

)

Output layer output is Ŷ379 , that is, the predicted value 
of Y379 is:

In Ŷ379 , x̂457 is predictive value of x457.

Step three: To forecast x458.

Let Y �
379

=
(
x379, x392, x405, x418, x431, x444, x̂457

)
 Selecting 

(Y362, Y363,…,Y377, Y
′
378

 , Y ′
379

)T as the training sample in 
GRNN. Output layer output is Ŷ380 , that is, the predicted 
value of Y380 is:

In Ŷ380 , x̂458 is predictive value of x458.

Step four: Repeat the above steps to obtain the pre-
dicted values of x459,…,x479, namely, the verified values 
of mine water inflow from January 2014 to December 
2015 in Pingdingshan No. 12 Mine.

In the prediction process, the initial value of the 
smoothing factor σ is set to 0.1, the step size is 0.1, and 
the final value is 2. Under MATLAB, the optimal smooth-
ing factors for the 24 groups of models selected by the 
cross-validation method are from 0.1to 0.9 (Table 1 and 
Fig. 6).

(20)Ŷ379 =
(
x̂379, x̂392, x̂405, x̂418, x̂431, x̂444, x̂457

)

(21)Ŷ380 =
(
x̂380, x̂393, x̂406, x̂419, x̂432, x̂445, x̂458

)

Table 1   Chaos-GRNN model 
prediction results

Time Measured 
values (m3/h)

σ Predictive 
values (m3/h)

Time Measured 
values (m3/h)

σ Predic-
tive values 
(m3/h)

2014.01 115 0.7 114.997 2015.01 99 0.4 111.417
2014.02 115 0.2 114.993 2015.02 99 0.3 112.850
2014.03 115 0.3 114.996 2015.03 100 0.5 112.795
2014.04 115 0.6 114.999 2015.04 102 0.1 111.994
2014.05 114 0.1 114.997 2015.05 115 0.6 112.573
2014.06 114 0.4 114.996 2015.06 113 0.4 112.722
2014.07 114 0.4 114.996 2015.07 114 0.8 112.972
2014.08 100 0.8 111.883 2015.08 112.3 0.9 112.972
2014.09 100 0.8 111.847 2015.09 112.2 0.7 112.943
2014.10 99 0.6 111.849 2015.10 112.2 0.1 112.945
2014.11 99 0.3 111.792 2015.11 112.1 0.6 113.075
2014.12 99 0.5 111.792 2015.12 112.3 0.9 112.543
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4 � Discuss

4.1 � Chaos Parameters of mine water inflow time 
series

Parameters like time delay τ, embedding dimension m 
and Maximum Lyapunov exponent λmax are very impor-
tant for describing the chaotic characteristics and pre-
dicting of mine water inflow. In this paper, we have cal-
culated the chaotic parameters of mine water inflow in 
some coal mines China (Table2).

In Table 2, we can see that:

(1)	 All the maximum Lyapunov exponent λmax in differ-
ent coal mines are greater 0. By chaos theory, λmax > 0 
means that the mine water inflow time series has 
chaotic characteristics. Therefore, this result lays the 
foundation to use the Chaos-GRNN model for mine 
water inflow prediction.

(2)	 τ, m, λmax of the mine water inflow time series are dif-
ferent, which reflects the diversity and complexity 
of factors related to mine water inflow. According to 
chaos theory, the embedding dimension m of mine 
water inflow time series is equal to the number of 
factors affecting the mine water inflow [15, 19, 29]. 
In Table 2, the value of m is between 4 and 8, which 
indicating that the influencing factors of mine water 
inflow in different coal mines are roughly 4–8. This 
result reflects the difficulty of accurately predicting 
the amount of mine water inflow. On the other hand, 
it also shows the advantage of chaos theory in mine 
water inflow prediction (influencing factors of mine 
water inflow and their values are quantified by Yi).

(3)	 However, the value of Yi is still the amount of mine 
water inflow, not the value of each influencing fac-
tor of mine water inflow, so this quantification is not 
a complete quantification. This also led to the slow 
application of chaos theory.

ANN simulates the way the human brain nerves pro-
cess information. It has powerful self-adaptation and self-
learning functions for samples, and just has the ability 
to process this information. Therefore, the chaos theory 
and ANN are coupled to establish the Chaos-ANN model 
(Fig. 7), which provides a powerful tool for the effective 
prediction of mine water inflow.

4.2 � Comparison of Chaos‑BPNN and Chaos‑GRNN 
prediction models

Artificial neural network (ANN), which owns powerful 
adaptive and self-learning functions for samples, can 
effectively obtain output from input neurons. Therefore, 
the chaos theory and ANN can be organically combined 
(the number and value of input neurons and predicted 
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Table 2   The chaotic 
parameters of mine water 
inflow in some coal mines 
China

Research area Coalfield Calculation scale τ m λmax References

Doulishan Mine Hunan China Month 6 8 > 0 Xiao [35]
Enkou Mine Hunan China Month 6 7 > 0 Xiao [35]
Qiaotouhe Mine Hunan China Month 5 6 > 0 Xiao [35]
Fangshan Mine North China Month – 4 – Huang [8, 10]
Hebi No.4 Mine North China Month – 4 – Huang [9]
Liuqiao No.2 Mine Huaibei China Month 3 8 0.1427 Yang [39]
Wutongzhuang Mine North China Month 2 5 0.1396 Tang [28]
Yangcun Mine North China Month 7 4 0.1679 Qiao [21]
Gujiao Mine North China Month 4 7 0.2053 Qi [20]
A certain Mine – Day 27 5 0.1094 Wang [30]
Acertain Mine – Month 4 4 0.053 Chen [4]
Pingdingshan No.12 Mine North China Month 13 7 0.053 This paper
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duration of ANN model can be determined by phase space 
reconstruction) to predict mine inflow.

Among the artificial neural networks, BP neural network 
(BPNN) is the most widely used now. So in order to com-
pare with the prediction effect of the Chaos-GRNN model, 
we also establish a Chaos-BPNN model for predicting the 
water inflow in Pingdingshan No. 12 Coal Mine.

The Chaos-BPNN model consists of three parts: the 
input layer, the hidden layer, and the output layer, and 
the layers are connected by weights. Since the embedding 
dimension m = 7, the Chaos-BPNN model sets 7 input ele-
ments, and 1 output element. The number of hidden layer 
neurons is determined by empirical Equation [42] and trial 
and error method [23, 37]. The Chaos-BPNN model sets 7 
hidden layer elements.

After normalizing the data, we conduct network train-
ing by MATLAB. The prediction results are shown in Fig. 8.

The models evaluation are based on R, RMSE, MAPE, 
NSE, and violin plot (Fig. 9). Using formulas (14, 15, 16 
and 17), the values of these four indices are calculated 
(Table 3).

It can be seen from Table3: (1) The value of R of Chaos-
GRNN model and Chaos-BPNN model is 0.755 and 0.546, 
respectively. The value of R of Chaos-GRNN model is 
more closer to 1. (2) The value of RMSE, MAPE, and NSE 

of Chaos-GRNN model is 7.63, 5.02%, and − 0.233, respec-
tively. The values of these three indices are closer to 0 than 
those of Chaos-BPNN model.

It can be seen from Fig. 9: (1) The median of Chaos-
GRNN model is close to the median of measured value, 
while the median of Chaos-BPNN model is obviously 
larger. (2) The discreteness of Chaos-BPNN model is much 
greater than that of Chaos-GRNN model. (3) The density 
function of Chaos-GRNN model is more concentrated than 
that of Chaos-BPNN model. Moreover, the maximum value 
of the density function of Chaos-GRNN model is more 
closer to the maximum value of the density function of 
the measured value.

By comparing the four indices (R, RMSE, MAPE, NSE) 
and violin plot of the two models, the forecast result of 

Fig. 7   Schematic representation of the proposed Chaos-ANN model (modified by Fig. 1, Mohammad [17])
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Fig. 8   Comparison of prediction results of Chaos-GRNN model and 
Chaos-BPNN model

Fig. 9   Violin plots of two predictive models

Table 3   Prediction results of Chaos-BPNN model

R RMSE MAPE NSE

Chaos-GRNN model 0.755 7.63 5.02% − 0.233
Chaos-BPNN model 0.546 10.75 8.71% − 1.450
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Chaos-GRNN model is better than that of Chaos-BPNN 
model.

5 � Conclusions

Chaos theory can recover the rich dynamic information 
hidden in time series. By reconstructing water inflow time 
series in phase space, the multi-dimensional matrix could 
be obtained, with each column representing an influenc-
ing factor of water inflow and its value representing the 
change of the influencing factor with time. Therefore, a 
new prediction model of mine water inflow is established 
by combining ANN with chaos theory when lacking data 
on the influencing factors of water inflow.

The two models were evaluated by using four evalu-
ation indices (R, RMSE, MAPE, NSE) and violin plot. It was 
found that both models can realize the long-term predic-
tion of water inflow, and the prediction effectiveness of 
Chaos-GRNN model is better than that of Chaos-BPNN 
model.

However, whether all the time series of mine water 
inflow has chaotic characteristics, there is no clear answer 
yet. Therefore, before using the Chaos-GRNN model, it is 
necessary to verify the chaotic characteristics of the water 
inflow time series firstly. Once the water inflow time series 
does not have chaotic characteristics, other predict meth-
ods need to be used.
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