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Abstract 
We can automate inspection work of infrastructure facilities by analyzing the characteristics of 3D structure information 
obtained through 3D structure visualization using a point cloud. The safety level of equipment can then be diagnosed 
quantitatively. In this paper, we investigate the modeling of wire structures such as overhead communication cables 
between utility poles, which are close to the ground, have many obstructions, and have a complex structure. We evaluate 
the accuracy of cable models and compare them to the correct model. We use three modeling methods: a machine-
learning method based on the extruded surface of a point cloud as a feature, a rule-based method involving principal 
component analysis, and models generated from a combination of these models. In addition, we focus on modeling 
overhead cables from field data (urban and suburban). Results show the practicability of modeling overhead cables with 
a cable length of 10–70 m regardless of the area type. We find that the best cable modeling rate with the precision and 
recall of 80.76% and 83.84%, respectively, can be obtained using the machine-learning method and by specifying the 
cable reproduction rate to be 2 m.

Article highlights 

•	 This study is useful in determining the practicality of 
3D visualization of communication cables based on a 
3D point cloud.

•	 Precision and recall are presented as indices to deter-
mine the practicality of 3D cable modeling.

•	 This study provides 3D cable modeling for actual field 
data (in suburban, bridges, and urban areas).
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Abbreviations
MMS	� Mobile mapping system
VLS	� Vehicle-based laser scanning
TLS	� Terrestrial laser scanning
RANSAC	� Random sample consensus
PCA	� Principal component analysis
PR	� Precision recall
(PPFS)	� Point pair features

1  Introduction

Optical communications, which is now positioned as 
a social infrastructure, must be stable and low cost to 
respond to the rapidly increasing volume of communi-
cation traffic accompanying the distribution of digital 
information such as high-definition video and big data. 
To ensure such a high level of reliability, it is important to 
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inspect facilities that underpin communication services 
on a daily basis and the more recent the inspection, the 
higher the degree of reliability. The wired connection sec-
tion from a customer building to a communication sta-
tion comprises various optical communication facilities 
such as utility poles and optical cables. Image analysis is 
popular as an automatic inspection technique for these 
facilities. Siddiqui et al. [1] proposed an inspection method 
for detecting a variety of facilities attached to utility poles 
from images taken by a camera using machine learning 
and classifying them with high accuracy. However, image 
analysis is not suitable for precise and quantitative spa-
tial diagnosis. Quantitative diagnosis becomes possible 
through the analysis of 3D digital information of infrastruc-
ture facilities converted based on point-cloud information. 
Digital numerical analysis satisfies our requirements for 
comprehensive and efficiently performing a large number 
of outdoor inspections.

Lehtola et al. [2] succeeded in 3D visualization of a 
building through in-door point cloud acquisition using 
commercial indoor mapping systems.

Methods for acquiring a 3D point cloud include using 
airborne laser scanning [3, 4], unmanned aerial vehicles 
[5], vehicle-based laser scanning (VLS) [6, 7], and terrestrial 
laser scanning (TLS) [2, 8], the use of which differs depend-
ing on the area to be measured. These methods involve 

emitting lasers and detecting the return light to acquire 
a point cloud. Therefore, the shorter the distance to the 
object, the higher the acquisition density of the point 
cloud. Communication facilities, the focus of this investi-
gation, are installed mainly along roads. Therefore, VLS is 
a very effective tool for inspection. A technique to convert 
camera images into a 3D point cloud was proposed [9, 10], 
but the accuracy of this method is inferior to using a laser 
point cloud depending on the photographing environ-
ment such as backlighting.

Figure 1 shows an inspection and diagnosis process for 
outdoor communication structures. A mobile mapping 
system (MMS) utilizes a 3D laser scanner mounted on a 
vehicle to acquire raw laser data from communication 
equipment deployed roadside. The acquired data are pro-
cessed to calculate a 3D laser point cloud of an absolute 
coordinate system from the position and attitude of the 
vehicle and laser data. This point cloud is converted into 
3D digital models of outdoor communication structures. 
Thus, an inspector inspects and diagnoses the condition of 
the structure in a safe area where reference materials nec-
essary for inspection and diagnosis can be easily obtained 
without going to the site.

Since a laser point cloud is simply a collection of points, 
two major steps are necessary to use it for infrastruc-
ture inspection. First, a structural model of an object is 
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Fig. 1   Inspection and diagnosis process for outdoor communication structures
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generated from the laser point cloud. To determine the 
features of the structure to be measured such as shape and 
size, it is necessary to extract a point cloud of the feature 
of the target outdoor structure from the acquired point 
cloud and recognize it as an individual structure through 
model generation. The second step is to define and quan-
tify the indicators used for infrastructure inspection based 
on digital model data. The safety status of the facility to 
be inspected can be automatically determined based on 
defined numerical values.

To the best knowledge of the authors, the feasibility of 
modeling overhead communication cables between utility 
poles, which are close to the ground, are often surrounded 
by many obstructions, and have a complex structure, has 
not yet been thoroughly discussed. In this paper, we car-
ried out modeling of such wire structures to show quanti-
tatively the accuracy of the cable model. Three features of 
the modeling approach are compared: a machine learning 
method based on the extruded surface of the point cloud, 
a rule-based method including principal component anal-
ysis, and a model generated from a combination of these 
models showing optimal parameters. In addition, we focus 
on modeling overhead cables from field data (urban and 
suburban) and present quantitative indices that clarify the 
practicality of 3D visualization.

The rest of the paper is structured as follows. Section 2 
outlines 3D modeling techniques. Section 3 compares 
the 3D modeling results from each technique. Section 4 
explains the concept of accuracy evaluation and defines 
the variables used in the evaluation formula. Section 5 
presents verification of the utilized method based on the 
results of the accuracy evaluation. Finally, Sect. 6 con-
cludes the paper and notes future issues.

2 � Background

2.1 � Utility‑pole inspection

A 3D-model-generation and inspection-indexing 
method for utility poles, which are communication facili-
ties, was proposed [11]. This method is used to gener-
ate a 3D model as a columnar structure in which utility 
poles comprise circular models connected in series and 
the curvature value of the central axis connecting the 
centers of the circular models is defined as an inspection 
index. If the safety level of a utility pole decreases due 
to factors such as cracks, the curvature of the central 
axis increases. This concept changed inspection using 
the conventional visual qualitative inspection method 
to that using a quantitative inspection method. By 
using the MMS, a laser point cloud of a utility pole that 
is installed along the road can be acquired while driving 

the measurement car, and the inspection work efficiency 
is greatly improved. A circular model is generated using 
the Random Sample Consensus (RANSAC) method 
[12–14], which is robust against noise. For inspection 
in an area where a vehicle cannot enter, the inspection 
area can be covered using TLS. It is important to verify 
the condition of utility poles using these technologies 
and processes and to open the way for infrastructure 
inspection by expanding the range of objects for mod-
eling. Expanding the types of modeling objects is an 
important element for unifying field inspection using 3D 
digital data. When inspecting communication facilities 
as a complex network deployed in a planar manner, not 
only utility poles that exist as columnar structures but 
also communication cables as wire structures must be 
included as inspection objects. By managing communi-
cation cables as digital data, it is possible to quantify the 
safety status. For example, in the case of ground height, 
after modeling a cable, the height information can be 
used to check if the standard safe height has been met. 
An example of this is given later in this paper.

2.2 � 3D Cable modeling methods

A utility pole, which has a characteristic columnar struc-
ture, has a diameter of approximately 40 cm or less, so it 
can be easily modeled. On the other hand, since a com-
munication cable laid between utility poles has a small 
diameter of approximately 4 cm or less, it is difficult to 
model this wiring structure because the amount of point 
cloud data is insufficient using the MMS. Some experi-
mental results [15–17] have been reported on 3D wire 
modeling for power lines between pylons, which exist 
at several tens of meters high. Point cloud extraction 
of power lines can be classified from several elements 
based on geometric assumptions from the processed 
data set [15] or using a machine learning approach [16]. 
The point cloud identified as a power line can be recon-
structed as a 3D model using the RANSAC algorithm [17]. 
A point cloud analyzed using these results can be clearly 
captured because it focuses on the height with little 
effect from obscured elements. Meanwhile, evaluation of 
field data of communication cables between utility poles 
has not been reported. In an area of several meters in 
height containing many elements such as houses, trees, 
and signs, it is very difficult to model point groups of 
communication cables or power lines between utility 
poles because these elements are partially obscured. 
Therefore, in this study, we show the feasibility and opti-
mum parameters for evaluation and 3D modeling of a 
communication cable between utility poles employing 
a rule-based method using principal component analysis 
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(PCA) [18] and a machine-learning method using various 
structural classification approaches [19, 20].

2.2.1 � Rule‑based method

The rule-based method generates segments from a block 
of points on a communication cable and connects seg-
ments of the same shape in time order. The point-cloud 
data to be analyzed are read and a point cloud within a 
predetermined range is extracted. Take for example a sce-
nario in which there is a 3D space located between two 
utility poles and a 3D model of the detected columnar 
structure is generated. The height of the poles is known in 
advance as the installation position of the communication 
line. The 3D model is generated by clustering point clouds 

located in a 3D space within a specified range, calculating 
a direction vector from the clustered point cloud using 
PCA, detecting the direction vector of the cable structure, 
and connecting the detected direction vectors, as shown 
in Fig. 2. A 3D model of the cable structure is generated by 
connecting the center coordinates of the detected direc-
tion vectors.

2.2.2 � Machine‑learning method

The machine-learning method extracts features such as 
shape and size from a cluster point cloud [19] and models 
a communication overhead cable.

First, point clouds are clustered based on the similarity 
of the cross-section of a structure. Based on the results, 
elongated structures are grouped as identical point-cloud 
clusters. The feature quantities of the point-cloud cluster 
within radius r based on point pair features (PPFs) [21] are 
extracted using normal and extrusion directions, and the 
clustered point clouds are classified in terms of whether 
or not the cable is based on AdaBoost classifiers (Fig. 3). 
Next, a quadratic curve model is fitted using RANSAC for 
the point cloud identified as the cable. Finally, whether 
or not the quadratic curves are connected is determined 
based on machine learning to generate cable models. The 
distance between the end points, tangent direction at the 
end position, and number of errors when two curves are 
approximated as one curve are used as feature quantities. 
To generate a database of feature quantities, a measured 
point cloud and a correct 3D model created on the basis 
of the point cloud are prepared as data for learning, and 
the machine-learned results (parameters of the AdaBoost 

Generate cable model based on 
point-cloud continuity

Connect linear point cloud

Obtained point cloud 

Fig. 2   3D modeling using rule-based method. Generate model by 
connecting the same direction vectors from PCA results of clus-
tered point cloud

Extract cross -section 
from point cloud.

Extract features from 
clustered point cloud.
Then identify cable model 
using machine learning.

Point cloud is clustered based on 
similarity of cross -sectional shapes.

Fig. 3   3D point clustering using machine learning.　Feature amount based on PPFs is extracted using normal direction and extrusion direc-
tion



Vol.:(0123456789)

SN Applied Sciences           (2021) 3:860  | https://doi.org/10.1007/s42452-021-04844-6	 Case Study

discriminator) are stored in advance. Therefore, the mod-
eling accuracy improves by increasing the number of 
cable-structure models stored in the database, and the 
results are learned based on the correct 3D model, which 
approximates the shape of an actual cable structure.

Cable models are not always generated for the same 
location using the two methods. Some cable models 
have only machine-learning models and others have only 
rule-based models. Combining these two models fur-
ther improves the modeling accuracy. When generated 
at the same location, either cable model is automatically 
selected. When laser measurement is carried out using the 
MMS, the point density to be acquired is different even for 
objects of equal length due to the distance from the MMS 
and the presence of occlusions. The method for calculat-
ing the degree of inclusion of a point cloud is shown in 
Fig. 4. A 3D model of a cable structure comprises cable-
model-construction points continuously positioned at 
equal intervals in a 3D space. We calculate a construction 
point in a point cloud and a construction point not in a 
point cloud within an arbitrary radius centered on each 
construction point. Then we calculate the ratio of the 
construction points within the range including the point 
cloud among all the construction points as the degree of 
inclusion of the point cloud. For example, if a cable model 
is 10 m, and 6 m of it includes a point cloud, the degree of 
which the cable model includes a point cloud is 60%. The 
higher the degree of inclusion, the more likely the model 
is to have the same shape as the actual cable. We calculate 
the degree of inclusion of a point cloud using the models 
generated by the rule-base method and the models gen-
erated by the machine-learning method. The two mod-
els are combined by comparing the inclusiveness of the 
point clouds in models generated at the same location 
and selecting models with higher values.

In this study, we focus on evaluating the modeling accu-
racy of three methods, i.e., machine learning method, rule 
base method, and combination of both, and the 3D point 
cloud used is field data. Goto et al. [19] reported that the 

model accuracy of the cable installed between utility poles 
was approximately 21%. The reported results represent a 
very primitive evaluation method using some verification 
data. On the other hand, we compare the manually gener-
ated accurate data with the mechanically generated cable 
model to express the modeling accuracy in terms of preci-
sion and recall. The field data are obtained from the three 
areas in which the MMS can move: suburban, bridges, and 
urban areas. Then, the practical results encourage us to 
discuss the application of the parameters obtained from 
the modeling to the inspection.

3 � Case description

Figure 5 (top left) shows a point cloud including a cable 
structure straddling utility poles. The point cloud was 
acquired from an MMS (MMS-Xv220, Mitsubishi Electric, 
Tokyo, 2016) equipped with a laser (ZF -9012), in which 
the light emitted from the laser rotated obliquely at 1 mil-
lion points per second at 1 revolution per 0.01 s. The MMS 
traveled at a speed of 20–60 km/h in the left lane of a road, 
and measured the objects along the road including cables 
on the left and right. It is possible to distinguish between 
communication lines and power lines based on their 
height above the ground. The acquired 3D point cloud is 
output as absolute coordinates and modeled by in-house 
software based on the method described in Sect. 2.

Figure 5 (top right) shows a 3D wire model of a cable 
structure created using the rule-based method. The util-
ity poles are pre-modeled using the method described by 
Matsuda et al. [11]. The clustering range after reading the 
point cloud is set at 3 cm. A linear element is created from 
a clustered point cloud and connected to generate the 
cable model. To reduce the generation of non-cable mod-
els, the following two conditions are set.

•A cable model is generated from a 10-m section on the 
left side and 12-m section on the right side with the lane 
running from front to back in the figure. In this case study, 
the point cloud of the cable on the left and right sides is 
acquired when the vehicle travels on one side of the road. 
The value for the right section is greater than that on the 
left because the traffic rules stipulate vehicles drive on the 
left side of the road.

•The minimum length is set at 5 m for the cable model 
parallel to the road and at 1 m for the cable model crossing 
the road. The relationship between the minimum distance 
setting and the accuracy is described in detail in Sect. 5.1.

In contrast, Fig. 5 (bottom left) shows cable models 
generated from the machine-learning method. These 
models are generated using a database containing infor-
mation regarding cable structures in another part of the 
same urban area. Point clouds of the communication 

Cable model construction point 
w/ point clouds

Cable model construction point 
w/o point clouds

Fig. 4   Cable-model-construction point used to determine degree 
of inclusion of point clouds. A model with many cable-model-con-
struction points including a point cloud is similar to an actual cable
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and electric power cables structures installed roadside at 
approximately 1 km were recorded and a manually con-
structed cable model was registered in the database. The 
model-generation process required approximately 1.5 h 
on a PC with a Core i9-7900 X CPU and 32 GB of memory. 
Figure 5 (bottom right) shows a cable model generated by 
combining the machine-learning and rule-based genera-
tion models. There is a rule-based false-generation model 
on the roof in this model. When models are generated at 
the same position from both machine-learning and rule-
based methods, the one with the highest degree of point-
cloud inclusion is selected. These modeling accuracies are 
evaluated as described in the next section.

4 � Precision and recall

We evaluate the modeling accuracy of the methods. The 
indices for modeling accuracy are precision and recall 
expressed in Eqs. (1) and (2), respectively. Here, Nmg is the 
number of manually generated correct cable models; Ng is 
the number of cable models generated from the machine-
learning method, rule-based method, or combination 
of the two models; and Mg is the number of matches 
between Nmg and Ng.

Figure 6 shows a flow chart for evaluating the accuracy 
of 3D cable modeling. By incorporating the point cloud 

(1)Precision[%] = Mg∕Ng × 100

(2)Recall[%] = Mg∕Nmg × 100

into the development tool for 3D modeling with the two 
methods or the combination of the two, the cable models 
can be placed and visually recognized in the 3D space. 
Increasing the amount of learning data is an important 
factor for improving model accuracy in machine learning. 
The considered training data used in this study is approxi-
mately 1 km of road measured using an MMS. The cables 
between utility poles are separated and counted. Cables 
are installed on both sides of the road, and the training 
data amount is approximately 1000 cables. The models 
generated from the two methods and the combination 
of them are compared to the correct model to evaluate 
modeling accuracy. The correct cable model for compari-
son is used to identify visually the cable from point-cloud 
data displayed on a 3D space and to model manually a 
correct cable structure (sometimes we use image data to 
distinguish them). In this case study, the generated-cable 
model is considered correct if it matches more than half 
the length of the correct-cable model.

5 � Results and discussion

5.1 � Precision‑recall plots of three methods

The following is from the precision–recall (PR) curve. If 
precision is high and recall is low, many cable models 
match the correct cable models, but many correct mod-
els are often missing. When recall is high and precision is 
low however, many correct cable models are generated, 
but there are also many non-cable models. The aim is to 
achieve high precision and high recall.

Fig. 5   (Top left) Original point cloud, (top right) 3D rule-based cable models in yellow and pink, (bottom left) 3D machine-learning cable 
models in blue, and (bottom right) cable model generated from combining both models in green
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Figure 7 shows a PR curve modeled from the three types 
of models. We use the cable-model length as the threshold 
and plot the results for thresholds of 0 m or longer, 0.5 m 
or longer, 1 m or longer, 2 m or longer, 3 m or longer, 4 m 
or longer, and 5 m or longer. The three types of models 

show high recall for low thresholds and high precision for 
high thresholds. This means that for all thresholds, false-
generation models, for example, those found in gutters, 
trees, walls, and road surfaces, are included; however, the 
lower the threshold (short in length), the more non-cable 

Fig. 6   Evaluation procedure of 
3D cable modeling accuracy
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models are included. The results of the rule-based method 
with low thresholds and low precision indicate that short-
cable models include many false-generation models. The 
machine-learning method however exceeds 70% preci-
sion even with the cable model with a low threshold of 
0 m. Of course, the machine-learning method is not a fully 
upward-compatible method, as is the rule-based method. 
The reason for this is that the recall of the model generated 
with the combination of the two models with a threshold 
of 0 m is 1.5% higher than that for the model with the 
same threshold generated from the machine-learning 
method. That is, a cable that is not modeled from the 
machine-learning method can be modeled using the rule-
based method. Our objective is to achieve well-balanced 
and highly accurate modeling, not good recall or precision. 
Therefore, the results suggest that the model generated 
from the machine-learning method with a threshold of 

2 m or longer is the most realistic model with the highest 
accuracy and reproducibility.

Table 1 gives Ng, Nmg, and Mg of the models with the 
threshold of 2  m or longer. There are approximately 
1.4 km of cables of different diameters running parallel 
to or across the road, with 786 cables separated by poles. 
The Mg value is the highest for the model generated from 
the machine-learning method, i.e., 659. Regarding the 
combination model, cables in a close spatial range are 
combined regardless of machine learning or rule-based 
methods, so two adjacent cables become one by coupling, 
and the number of matches is lower than the number of 
models generated from the machine-learning method. In 
addition, a cable from the cable structure on the road and 
wall of a house is generated using the rule-based method, 
and the number of erroneously generated cable models 
increases due to this model combination. As a result, the 
accuracy of the models generated from the combination 
of methods falls below that of those generated from the 
machine-learning method as a whole.

5.2 � Viewer image

Figure 8 shows optical images of three areas of an out-
door structure obtained from a camera mounted on the 
MMS, point-cloud data obtained from a laser measuring 
instrument, and 3D models (Areas 1, 2, and 3) modeled 

Table 1   Performance of two methods and the combination of the 
two

Mg Ng
(Precision (%))

Nmg
(Recall (%))

Machine-learning method 659 816 (80.76) 786 (83.84)
Rule-based method 561 1316 (42.63) 786 (71.37)
Combination of two models 641 1191 (53.82) 786 (81.55)

Fig. 8   Traversed area in captured images, point cloud, and 3D cable model
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with the machine-learning method. Area 1 is a suburban 
area where relatively long cables of 70 m or more are 
installed and has been accurately modeled. Area 2 is a 
bridge area and a point cloud of cables parallel to the 
bridge side is acquired to show cable modeling. Area 
3 shows the modeling in which several cables are laid 
between utility poles in an urban area. These cable mod-
els are represented as digital data as given in Table 2. By 
extracting 3D space information from the digital data of 
a cable model, the length and slack of the cable, ground 
height to the road surface, degree of inclusion of the 
point cloud, and coordinates of the start/end points can 
be determined. The start/end point information is based 
on the 9th plane rectangular coordinate system in Japan. 
In particular, if the ground height is low, it may obstruct 

high-altitude vehicles such as aerial vehicles, possibly 
causing accidents.

Figure 9 shows the display when the user selects the 
cable model. By selecting a cable model, the ground 
height between the target cable and ground (yellow line) 
is displayed, the height of the relevant part can be deter-
mined quantitatively, and the safety of the cable can be 
confirmed. This is achieved using a digitized model.

6 � Conclusion

We presented the results of a quantitative evaluation of 
the 3D modeling accuracy of cable models generated 
from clustered point clouds based on a machine-learning 

Table 2   Summary of configuration data for 3D cable models

Long-span cable in suburban area
(Area 1)

Cables laid bridge side
(Area 2)

Cables laid in urban area (Area 3)

Cable name Wire_734_653_735_174 Wire_00007 Wire_00005
Cable length (m) 101.402 75.015 11.751
Ground height (m) 4.416 2.331 4.941
Start point information
(x, y, z) (m)

− 8780.59527435, 36,058.6166585, 
10.67835901

35,166.22950903 
63,719.96301979, 
7.93316969

− 10,469.84601228, 30,750.71856782, 
9.02509713

End point information
(x, y, z) (m)

− 8738.47555743, 36,150.704602, 
9.92722881

35,180.13388047, 
63,646.49893655, 
9.72085866

− 10,459.84863012, 30,745.37029633, 
11.82488818

Degree of inclusion of 
point cloud (%)

100 99.73 100

Fig. 9   Display when user selects cable model
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method, rule-base method, and a combination of both, 
using precision, which indicates the correctness of the 
model, and recall, which indicates the completeness of 
the model. The short-cable models included erroneously 
generated models, and when the threshold was limited 
to 2 m or longer, the highest recall and precision levels 
were obtained from that particular model generated from 
the machine-learning method, i.e., 83.84% and 80.76%, 
respectively. From the above results, we clarified the accu-
racy of the cable model between utility poles in detail.

For future work, the focus should be on modeling the 
section of a cable where the point cloud is missing. An 
example of an incomplete cable model generated from 
machine-learning or rule-based methods is a thin cable 
that connects the main cable to a house. This is because 
the cable is so thin that it is difficult to train a laser on it 
and obtain point clouds. Some cables are hidden behind 
trees. In such cases, a satisfactory point cloud cannot be 
obtained. Software improvements are needed to allow 
modeling without obtaining point clouds. Interpolation 
technology using deep learning such as AI is expected to 
contribute significantly to such improvements.
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