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Abstract
In this paper, the effects of Dufour and thermal diffusion and on unsteady MHD (magnetohydrodynamic) free convec-
tion and mass transfer flow through an infinite vertical permeable sheet have been investigated numerically. The non-
dimensional governing equations are solved numerically by using the superposition method with the help of “Tec plot” 
software. The numerical solution regarding the non-dimensional velocity, temperature, and concentration variables 
against the non-dimensional coordinate variable has been carried out for various values of pertinent numbers and param-
eters like the suction parameter 

(

v
0

)

 , Prandtl number 
(

Pr

)

 , magnetic parameter (M) , Dufour number 
(

Df

)

 , Soret number 
(

S
0

)

 , Schmidt number 
(

Sc

)

 , and for constant values of modified local Grashof number 
(

G
m

)

 and local Grashof number 
(

Gr

)

.The velocity field decreases for increasing the suction parameter which is focusing on the common fact that the usual 
suction parameter stabilizing the effect on the boundary layer growth. The thermal boundary layer thickness becomes 
thinner for rising values of the Dufour and Soret numbers. The skin friction enhances for uplifting values of Soret number 
and Dufour number but reduces for moving suction parameter, Magnetic force number, Prandtl number, and Schmidt 
number. The heat transfer rate increases for increasing the suction parameter, Dufour number, Prandtl number, and Soret 
number. The mass transfer rate increases for enhancing the values of suction parameter, Magnetic force number, Soret 
number, and Prandtl number but decreases for Dufour number and Schmidt number.
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List of symbols
u	� Velocity component along the x-axis, ms−1

MHD	� Magnetohydrodynamic
J 	� Density of current
Tw 	� Wall temperature, k−1

C	�  Fluid concentration, kg m−3

C∞ 	� Free stream concentration
U0(t) 	� Uniform surface velocity
g 	� Acceleration due to gravity, ms−2

� 	� Volumetric expansion coefficient with 
temperature

k 	� Thermal conductivity
Cp 	� Specific heat at constant pressure
kT 	� Thermal diffusion ratio
� 	� Similarity parameter
Gr 	� Local Grashof number
M 	� Magnetic parameter
Df  	� Dufour number
Sc 	� Schmidt number
� 	� Local skin friction coefficient
Sh 	� Sherwood number
� 	� Dimensionless temperature
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v 	� Velocity component along the y-axis, ms−1

B 	� Uniform magnetic field, Am−1

T  	� Temperature of fluid, k−1

T∞ 	� Free stream temperature
Cw 	� Wall concentration, kg m−3

� 	� Fluid density, kg m−3

v(t) 	� Suction velocity
� 	� Kinematic viscosity, m−2 s−1

�∗ 	� Volumetric expansion coefficient with 
concentration

Cs 	� Concentration susceptibility
Tm 	� Fluid mean temperature
Dm 	� Mass diffusivity coefficient
v0 	� Suction and blowing
Gm 	� Modified local Grashof number
Pr 	� Prandtl number
S0 	� Soret number
t	� Time, s
Nu 	� Nusselt number
f ′ 	� Dimensionless velocity
� 	� Dimensionless concentration

1  Introduction

Magnetohydrodynamic (MHD) fluid flow through a porous 
medium has many significant roles in pure science, engi-
neering, technological, and biomedical fields such as MHD 
power generators, MHD accelerators, blood flow measure-
ments, electrolytes, ionized gases, traveling waves tubes, 
metal-working processes, propulsion units, and control 
fusion research. A porous medium is a substance that 
has pores. Numerous natural substances such as rocks, 
soil, wood, cork can be considered as porous media. The 
porous media is used in various science, engineering, and 
biomedical applications such as soil and rock mechanics, 
petroleum technology, the dying process, material science, 
human lungs, and small bold capillaries. Porous medium 
describes the two prompt properties, namely porosity and 
permeability. Porosity evaluates the amount of fluid tack-
led by the material, while permeability measures quanti-
tatively the ability of the porous medium to permit fluid 
flow. In boundary layer flow problems, MHD controls the 
force and heat exchanged by the surface. Srinivas and 
Muthuraj [1] debilitated the homotopy analysis method to 
find an approximate solution for the MHD flow of viscous 
incompressible fluid with thermal radiation and porosity 
effects. Raftari and Vajravelu [2] investigated the magne-
tohydrodynamic viscoelastic fluid characteristic through a 
wall. Heat transfer for micropolar fluid embedded in a per-
meable medium was explored by Xinhui et al. [3]. Kothan-
dapani and Prakash [4] have discussed the influence of 
chemical reactions, inclined magnetic fields, and thermal 

radiation over a vertical channel by using the method of 
homotopy perturbation. MHD flow over an exponentially 
stretching surface embedded by permeable medium with 
thermal radiation effect was elucidated by Sharma and 
Gupta [5]. Kumar et al. [6] examined the influences of a 
constant heat source on fractional exothermic reactions 
model with exponential, power, and Mittag–Leffler laws in 
a permeable medium. The boundary layer flow for viscous 
fluid over a flat sheet was evaluated by Sushila et al. [7].

In recent years, the analysis of Dufour and Soret effects 
has had great significance and attracted various scien-
tific researchers due to its applications in engineering, 
industry, and geosciences such as hydrology, petrology, 
turbine blades, foam combustion, and gas-particle tra-
jectories. The heat transfer and mass transfers caused by 
the concentration and the temperature gradient are said 
the Dufour effect and Soret effect, respectively. Soret and 
Dufour effects on steady MHD free convection and mass 
transfer flow through a semi-infinite vertical permeable 
sheet embedded in a permeable medium have been dis-
cussed by Alam and Rahman [8]. The transversely applied 
magnetic field effect on unsteady free convection and 
mass transport through an impulsively started infinite 
vertical permeable flat sheet in a permeable medium with 
Dufour and Soret effects has been explained by Alam and 
Rahman [9] (Fig. 1). The same problem in the case of MHD 
flow has been explained by Kafoussias and Williams [10]. 
They have completed their analytical studies by apply-
ing the Laplace transform method. The effect of thermal 
radiation and viscous dissipation on the two-dimensional 
MHD flow of viscoelastic Jeffrey fluid through the imper-
meable surface with heat generation/absorption effect 
has been discussed by Sharma and Gupta [11]. The effect 
of the chemical reaction and thermal radiation on three-
dimensional MHD viscous and incompressible flow in the 
presence of Dufour and Soret effects has been investi-
gated by Sharma and Bhaskar [12]. The two-dimensional 

Fig. 1   Physical model and coordinate system
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unsteady squeezing Casson fluid flow between permeable 
channels along with viscous dissipation, cross-diffusion, 
chemical reaction, and radiation effects has been analyzed 
by Bhaskar and Sharma [13, 14]. Bhaskar and Sharma [13, 
14] have investigated the effect of radiation and chemi-
cal reaction on the electrically conducting laminar flow 
incompressible mixed convective couple stress fluid, 
saturated past an upstanding passage in a permeable 
medium with Hall current, Joule heating, Dufour, and 
Soret effects. Nabil and Mahmoud [15] studied the effects 
of Dufour and Soret on the viscous fluid with mass and 
heat transfer flow past permeable medium on a shrinking 
plate. The effect of magnetic field and chemical reaction 
on unsteady free convection fluid flow through an infinite 
vertical permeable plate with thermal diffusion and diffu-
sion-thermo effects have been also studied by Srinivasa 
Raju [16]. Further, the numerical results for the effects of 
thermal diffusion and diffusion-thermo on an unsteady 
free convection flow through an infinite vertical sheet 
with transverse magnetic field with thermal radiation and 
heat source have been observed by Srinivasa Raju et al. 
[16]. Saeed et al. [17] have examined the effect of heat 
generation/absorption and Joule heating on the transmis-
sion of thermal energy over a stretching cylinder theoreti-
cally. Also, they have investigated the entropy generation 
rate for spinning flow systems. Arshad Khan et al. [18, 19] 
have discussed the thermal analysis for bioconvection of 
hybrid nanofluid flowing upon a thin horizontally movable 
needle. They have also studied the influence of Brownian 
motion and thermophoretic forces on the flow system of 
the famous Buongiorno’s model. More recently, using the 
hybrid nanoparticles containing silver and copper oxide, 
the efficiency to conduct the distribution of heat trans-
mission for fluid flow happens upon a thin-shaped hot 
needle with water as the base fluid has been studied by 
Arshad Khan et al. [18, 19]. The effect of thermal radiation 
on the multi slip conditions on the magnetohydrodynamic 
(MHD) mixed convection unsteady flow of micropolar 
nanofluids upon a shrinking/stretching plate with a heat 
source has been investigated by Abdal et al. [20]. Hussain 
et al. [21] have investigated the thermal radiation effect 
on the boundary layer flow and heat transfer aspects of 
a nanofluid on a permeable plate. Habib et al. [22] have 
considered a mathematical analysis for slip effects on MHD 
nanofluid in the presence of gyrotactic microorganisms 
and electromagnetic fields with thermal radiation and acti-
vation energy. The double-diffusion effects on free con-
vective flow over a vertical stretching surface embedded 
in a permeable medium with radiation, Dufour and Soret 
effects, and a homogeneous first-order chemical reaction 
was explained by Abdelraheem et al. [23]. A numerical 
model for the effects of Soret number, Dufour number, 
and variable viscosity on MHD mixed convection and mass 

transfer flow of an exponentially stretching vertical sur-
face embedded in a permeable medium was developed 
by Ahmed and Sibanda [24]. 

The main outcome of this present study is to consider 
the above problems through an infinite vertical perme-
able sheet keeping into account the effects of Dufour and 
thermal diffusion. The novelty of this work is increased 
further by considering the thermal radiation and chemi-
cal reaction with the Runge–Kutta Merson integration 
scheme which has not been discussed yet. Computa-
tions have been performed for the vast range of the non-
dimensional numbers/parameters like suction parameter, 
magnetic number, Dufour number, Prandtl number, Soret 
number, and Schmidt number are discussed graphically. 
In addition to the skin friction coefficient, heat and mass 
transfer properties have been discussed with the tabular 
representations.

2 � Governing equations

Let us consider an unsteady MHD free convection and 
mass transfer flow of the fluid of an electrically conduct-
ing viscous through an infinite vertical permeable sheet 
at y = 0 . We consider, the x-axis is along with the sheet 
in an upward direction and the plane of the sheet in the 
fluid is normal to the y-axis. Along the y-axis, the perme-
able sheet is assumed to be electrically non-conducting 
when a uniform magnetic field B is imposedon the sheet. 
The induced magnetic field is negligible for considering 
small enough flow magnetic Reynolds number compare 
with one of the researches [25]. Then the magnetic force 
lines are adjusted comparative to the fluid and 
B =

(

0, B0, 0
)

 .  The charge conservation equation 
∇ ⋅ J = 0 which gives us Jy = constant, where the density 
of current is J =

(

Jx , Jy , Jz
)

.The direction of propagation 
is considered only along the y-axis and does not have 
any variation along the y-axis and the derivative of Jy 
with respect to y, namely 

�Jy

�y
= 0 . Since the sheet is elec-

trically non-conducting, this constant is zero and hence 
Jy = 0 . The fluid is assumed to have constant properties 
except that the influence of the density variations with 
temperature and concentration, which are considered 
only in the body force term. Under the above assump-
tions, the physical variables are functions of y and t only.

The one-dimensional problem under the above 
assumptions and Boussinesq approximation can be put 
in the following form [Alam and Rahman [9]]:

The Continuity Equation:

(1)
�v

�y
= 0
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The Momentum Equation:

The Energy Equation:

The Concentration Equation:

The associate boundary conditions for the present prob-
lem are

where u and v  are the velocity components in the 
x − axis andy − axis , respectively. � is the fluid density, due 
to gravity g is the acceleration, � is the kinematic viscosity, 
�∗ is the expansion volumetric coefficient with concentra-
tion, the volumetric expansion coefficient with tempera-
ture is � , T  is the fluid temperature,Tw is the wall tempera-
ture and T∞ is the fluid temperature in the free stream, C is 
the fluid concentration, Cw is the wall concentration and 
C∞ is the fluid concentration in the free stream, the ther-
mal conductivity of the sheet is k , Cs is the concentration 
susceptibility, at constant pressure Cp is the specific heat, 
Tm is the mean temperature of the fluid, the thermal dif-
fusion ratio is kT , and Dm is the mass diffusivity coefficient.

Introducing a similarity parameter � as

where � is the length scale with time-dependent. The solu-
tion of Eq. (1) is considered in terms of this length scale as 
follows:

here at the sheet, the dimensionless normal velocity is v0 . 
If v0 > 0 represents suction and v0 < 0 represents blowing.

Upon introducing the following similarity variables

Applying Eqs. (7–9), Eqs. (1–4) are transformed into the 
non-dimensional coupled ordinary differential equations 
as follows:

(2)

�u

�t
+ v

�u

�y
= �

�2u

�y2
+ g�

(

T − T∞
)

+ g�∗
(

C − C∞
)

−
��B2

0
u

�

(3)
�T

�t
+ v

�T

�y
=

k

�Cp

�2T

�y2
+

DmkT

CsCp

�2C

�y2

(4)
�C

�t
+ v

�C

�y
= Dm

�2C

�y2
+

DmkT

Tm

�2T

�y2

(5)t > 0, u = U0(t), v = v(t), T = Tw,C = Cw aty = 0

(6)t > 0, u = 0, v = 0, T → T∞, C → C∞ aty → ∞

(7)� = �(t)

(8)v = v0
�

�

(9)� =
y

�
, f (�) =

u

U0

, �(�) =
T − T∞

Tw − T∞
, �(�) =

C − C∞

Cw − C∞

The transformed boundary conditions are as follows:

where Gr =
g�(Tw−T∞)�2

U0�
 is the local Grashof number, the 

modified local Grashof number is Gm =
g�∗(Cw−C∞)�2

U0�
 , Mag-

netic parameter is M =
��B2

0
�2

��
 , Prandtl number is Pr =

��Cp

k
 , 

Dufour number is Df =
DmkT(Cw−C∞)
CsCp�(Tw−T∞)

 , Soret number is 

S0 =
DmkT(Tw−T∞)
�Tm(Cw−C∞)

 , Schmidt number is Sc =
�

Dm

 and � = � +
v0

2

.
The flow parameters are the Nusselt number, the Sher-

wood number, and local Skin friction coefficient as follows:

3 � Numerical solution

The solutions of Eqs. (10, 11, and 12) with the boundary 
conditions (13–14) are obtained by using the superposition 
method (Na 1979). The boundary value problem reduces to 
an initial value problem by using this superposition method 
that can easily be integrated out by an initial value solver. 
Thus, to reduce Eqs. (10, 11, and 12) to an initial value prob-
lem the function (�) , �(�) and �(�) are, respectively, decom-
posed to

where � , � , and � are constants, the physical significance 
of which is obtained later. Now substituting Eqs. (16–18) in 
Eqs. (10–12) and then equating the different coefficients to 
zero we obtain the following differential equations.

(10)f �� + 2�f � + Gr� + Gm� −Mf = 0

(11)��� + 2�Pr�
� + PrDf�

�� = 0

(12)��� + 2�Sc�
� + ScS0�

�� = 0

(13)f = 1, � = 1,� = 1at� = 0

(14)f = 0, � = 0,� = 0at� → ∞

(15)Nu ∝ −��, Sh ∝ −��, � ∝ f �

(16)f (�) = f1(�) + �f2(�) + �f3(�) + �f4(�)

(17)�(�) = �1(�) + ��2(�) + ��3(�) + ��4(�)

(18)�(�) = �1(�) + ��2(�) + ��3(�) + ��4(�)

(19)f
��

1
+ 2�f

�

1
−Mf1 + Gr�1 + Gm�1 = 0

(20)f
��

2
+ 2�f

�

2
−Mf2 + Gr�2 + Gm�2 = 0
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The initial values of the decomposed functions 
f1(�), f2(�), f3(�), f4(�),… etc. are now obtained through 
the boundary conditions (13–14) as

Again as � → ∞ , applying the boundary conditions (13, 
14) in (16, 17, and 18) we get

In (16, 17, and 18) all the functional values are obtained 
as

(21)f
��

3
+ 2�f

�

3
−Mf3 + Gr�3 + Gm�3 = 0

(22)f
��

4
+ 2�f

�

4
−Mf4 + Gr�4 + Gm�4 = 0

(23)�
��

1
+ 2�Pr�

�

1
+ Df Pr�

��

1
= 0

(24)�
��

2
+ 2�Pr�

�

2
+ Df Pr�

��

2
= 0

(25)�
��

3
+ 2�Pr�

�

3
+ Df Pr�

��

3
= 0

(26)�
��

4
+ 2�Pr�

�

4
+ Df Pr�

��

4
= 0

(27)�
��

1
+ 2�Sc�

�

1
+ ScS0�

��

1
= 0

(28)�
��

2
+ 2�Sc�

�

2
+ ScS0�

��

2
= 0

(29)�
��

3
+ 2�Sc�

�

3
+ ScS0�

��

3
= 0

(30)�
��

4
+ 2�Sc�

�

4
+ ScS0�

��

4
= 0

(31)f1(�) = 1.0, f2(�) = 0, f3(�) = 0, f4(�) = 0

(32)�1(�) = 1.0, �2(�) = 0, �3(�) = 0, �4(�) = 0

(33)�1(�) = 1.0, �2(�) = 0, �3(�) = 0, �4(�) = 0

(34)

� = −
f1
(

�3�4 − �4�3

)

+ �1
(

f4�3 − f3�4

)

+ �1

(

f1�4 − f4�1
)

f2
(

�3�4 − �4�3

)

+ f1
(

f4�3 − f3�4

)

+ �1

(

f1�4 − f4�1
)

(35)

� = −
f1
(

�4�2 − �2�4

)

+ �1
(

f2�4 − f4�2

)

+ �1

(

�2f4 − �4f2
)

f2
(

�3�4 − �4�3

)

+ f1
(

f4�3 − f3�4

)

+ �1

(

f1�4 − f4�1
)

(36)

� = −
f1
(

�2�3 − �3�2

)

+ �1
(

f3�2 − f2�3

)

+ �1

(

�3f2 − �2f3
)

f2
(

�3�4 − �4�3

)

+ f1
(

f4�3 − f3�4

)

+ �1

(

f1�4 − f4�1
)

Then by setting the missing slopes.
�f (0)

��
,
��(0)

��
 and ��(0)

��
 as �f (0)

��
= � , ��(0)

��
= � and ��(0)

��
= �.

The initial conditions for the slopes of the decomposed 
functions are obtained easily. The well known Runge-Kutta 
Merson integration scheme has been used as an initial 
value solver to integrate the above mentioned Eqs. (10, 
11, and 12) and to obtain converged solutions which are 
presented graphically in Figs. 2, 3, and 4. The local values 
of the skin friction ( � ), Nusselt number ( Nu ), and Sherwood 
number ( Sh ) are proportional to −�f(0)∕�η , −�θ(0)∕�η and 
−�ϕ(0)∕�η , respectively. The numerical values of the skin 
friction, Nusselt number andSherwood number are sorted 
in Tables 1–3.  

4 � Results and discussions

An investigation for unsteady MHD free convection and 
mass transfer flow through an infinite vertical permeable 
sheet has been investigated to analyze the effect of Dufour 
and thermal diffusion. The resulting initial value problems 
involving the set of ordinary differential equations (ODE) 
(10, 11, and 12) including the boundary conditions (13–14) 
are solved numerically by applying the superposition 
method through “Tec plot 9.6” software. The effects of suc-
tion parameter 

(

v0
)

 , the Dufour number 
(

Df

)

 , the magnetic 
parameter (M) , the Prandtl number 

(

Pr
)

 , the Soret num-
ber 

(

S0
)

 , the Schmidt number 
(

Sc
)

 , and for constant values 
of local Grashof number 

(

Gr

)

 and modified local Grashof 
number 

(

Gm

)

 on velocity, temperature, and concentration 
distributions are plotted in Figs. (2, 3, and 4).The values 
0.71, 1.0, and 7.0 are considered for Pr (0.71 for air at 200 
and 1.0, 7.0 for water at 170). The values 0.22, 0.60, and 0.75 
are also considered for Sc(0.75 for Oxygen, 0.60 for vapor 
water, and 0.22 for Hydrogen). The other parameter values 
are, however, chosen arbitrarily.

4.1 � Velocity variation

Figure 2a–f demonstrates the variation of fluid velocity for 
various values of the suction parameter 

(

v0
)

,the magnetic 
parameter (M) , the Dufour number 

(

Df

)

 , the Soret number 

(37)
�f (�)

��
=

�f1(�)

��
+ �

�f2(�)

��
+ �

�f3(�)

��
+ �

�f4(�)

��

(38)
��(�)

��
=

��1(�)

��
+ �

��2(�)

��
+ �

��3(�)

��
+ �

��4(�)

��

(39)
��(�)

��
=

��1(�)

��
+ �

��2(�)

��
+ �

��3(�)

��
+ �

��4(�)

��
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Curve    
1 0.2 
2 0.5 
3 0.8

Curve           
1 0.71 
2 1.0 
3 7.0

(e) 

(c) Curve
1 1.0 
2 2.0 
3 3.0 

(d) 

Curve     
1 0.22 
2 0.60 
3 0.75 

(f) 

Curve     
1 0.5 
2 1.5 
3 2.5 

(a) (b)      Curve       M 
1 0.5 
2 1.0 
3 1.5 

Fig. 2   Velocity profiles for the variation of a v0 , b M, c Df  , d S0 , e Pr , and f Sc
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(

S0
)

 , the Prandtl number 
(

Pr
)

 and the Schmidt number 
(

Sc
)

.It can be concluded from Fig. 2a that the velocity profiles 
decrease monotonically with the increase in the suction 
parameter 

(

v0
)

 indicating the usual fact that suction sta-
bilizes the boundary layer growth. It is seen from Fig. 2b 
that the velocity of the fluid reduces for uplifting values 
of magnetic parameter (M) . A resistive type of force like 
a drag force is produced for increasing the values of the 
magnetic parameter, which name is Lorentz force. The 
nature of Lorentz force interrupts the force on the velocity 
which reduces its motion. Therefore, the velocity decreases 
with the increase in magnetic field parameter (M). Due 
to this physical phenomenon, the growing values for M 
decline axial velocity of the fluid. It is found from Fig. 2c 
that an increase in the Dufour number 

(

Df

)

 causes a rise 
in the velocity throughout the boundary layer. However, a 
distinct velocity overshoot exists near the plate, and there-
after the profile falls to zero at the edge of the boundary 

layer. It is observed from Fig. 2d that the thermal bound-
ary layer thickness becomes thinner for rising values of 
the Soret number. So that the velocity increases with an 
increase in the Soret number. It is noticed from Fig. 2e 
that with the increase in Prandtl number Pr , the velocity 
profile decreases. Prandtl number is the ratio of momen-
tum diffusivity to thermal diffusivity. An increase in Pr the 
fluid becomes more viscous and for a smaller value of Pr 
the momentum boundary layer thickness is increased 
which slows down the velocity of the fluid. With a rise in 
the Schmidt number 

(

Sc
)

 , the velocity profile reduction is 
shown in Fig. 2f. Physically, the Schmidt number represents 
the relative thickness of the momentum boundary layer 
and mass concentration boundary layer. Therefore, as Sc 
increase, the momentum boundary layer is increased due 
to an increase in the kinematic viscosity of the fluid, and 
consequently, the fluid velocity decreases significantly.

Curve      
1 0.5 
2 1.5 
3 2.5

Curve       
1 0.2 
2 0.5 
3 0.8 

Curve     
1 0.71 
2 1.0 
3 7.0 

Curve    
1 1.0 
2 2.0 
3 3.0 

(a) (b) 

(c) (d) 

Fig. 3   Temperature profile for the variation of a v0 , b Df  , c Pr , and d S0
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4.2 � Temperature variation

The temperature profile for varying values of the suction 
parameter 

(

v0
)

 , Dufour number 
(

Df

)

, Prandtl number 
(

Pr
)

 , 

and Soret number 
(

S0
)

 is displayed in Fig. 3a–d. It is noticed 
from Fig. 3a that the thickness of the thermal boundary 
layer reduces for uplifting values of the suction parameter 
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Fig. 4   Concentration profiles for the variation of a v0 , b Pr c S0, d Df  , and e Sc
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(

v0
)

 . As a result, the temperature decreases for rising the 
suction parameter. From Fig. 3 (b), it is observed that the 
thermal boundary layer thickness and the temperature 
distribution for uplifting the values Dufour number 

(

Df

)

 . 
Energy transfer takes place at a higher rate and, therefore, 
the temperature increases. It has been seen from Fig. 3c 
that the temperature decreases for enhancing the Prandtl 
number 

(

Pr
)

 . When the Prandtl number increases, then the 
thermal diffusivity of fluid particles reduces, and hence its 
temperature reduces. It is noticed from Fig. 3d that the 
temperature profile reduces with a rise in Soret number 
(

S0
)

 . With an increase in the values of Soret number the 
thermal boundary layer thickness decrease, and, thus the 
temperature reduces.

4.3 � Concentration variation

The effects of suction parameter 
(

v0
)

 , Prandtl number 
(

Pr
)

 , Soret number 
(

S0
)

 , Dufour number 
(

Df

)

 , and Schmidt 
number 

(

Sc
)

 on the concentration profiles are plotted in 
Figs. 4a–e. The concentration decreases for rising the val-
ues of the suction parameter 

(

v0
)

 is shown in Fig. 4a. Suck-
ing decelerated fluid particles through the permeable wall 
reduces the growth of the fluid boundary layer as well as 
thermal and concentration boundary layers. It is seen from 
Fig. 4b that the larger values of Prandtl number 

(

Pr
)

 causes 
a reduction in the fluid particle’s concentration. Therefore, 
the nanoparticles concentration profile decreases with 
increases in Pr . It is observed from Fig. 4c that the concen-
tration of the fluid increases for growing values of Soret 
number. In the Soret phenomenon, temperature gradient 
affected the concentration distribution. So, higher values 
of the Soret number result in higher convective flow and, 
hence, concentration increases. It is evident from Fig. 4d 
that concentration decreases with a rise in Dufour num-
ber. The temperature difference between the fluid and the 
wall decreases with an increment in Dufour number, caus-
ing more heat to be transferred to the fluid which affects 
the fluid’s viscosity. Hence, the concentration profile 

decreases. It is determined from Fig. 4e that the concen-
tration of fluid reduces for enhancing values of Schmidt 
number 

(

Sc
)

 . In fact, when Sc increases then molecular/
mass diffusivity of the fluid reduces that ultimately reduces 
the concentration of fluid particles.

4.4 � Skin friction, heat and concentration rate

The various values of skin friction, rate of heat transfer, and 
rate of nanoparticle concentration have been presented 
in Tables 1, 2, and 3 for different values of mentioned 
parameters. From Table 1, it is observed that the skin fric-
tion reduces for moving suction parameter, Magnetic 
force number, Prandtl number, and Schmidt number but 
increases for uplifting values of Soret number and Dufour 
number. The heat transfer rate increases for increasing the 
suction parameter, Dufour number, Prandtl number, and 
Soret number is shown in Table 2. It is seen from Table 3 
that the mass transfer rate increases for enhancing the 
values of the suction parameter, Magnetic force num-
ber, Soret number, and Prandtl number but decreases for 
Dufour number and Schmidt number.  

Table 1   Computed values for the local skin friction, rate of heat trans-
fer, and rate of mass transfer for different values of v

0
and Df  taking 

Gr = 10.0, G
m
= 5.0, M = 0.5, S

0
= 0.5, Pr = 0.71 and Sc = 0.6 as 

fixed

v0 Df � −�� −��

0.5 0.2 1.784958492 1.419837320 0.22187363
1.5 0.2 1.107044722 1.973658468 0.39512490
2.5 0.2 0.252584350 2.580813500 0.39738800
0.5 0.5 1.828867473 1.482323460 0.13702065
0.5 0.8 1.871626340 1.657527020  − 0.82259632

Table 2   Computed values for the local skin friction, rate of heat 
transfer, and rate of mass transfer for different values of M and S

0
 tak-

ing Gr = 10.0, G
m
= 5.0, v

0
= 0.5, Df = 0.5, Pr = 0.71 and Sc = 0.6 

as fixed

M S0 � −�� −��

0.5 1.0 1.784958492 1.4198373200 0.22187363
1.0 1.0 1.572174200 1.4198413397 0.22188526
1.5 1.0 1.371121700 1.4198464360 0.22190479
0.5 2.0 1.555121620 1.3539478400 0.78080973
0.5 3.0 2.028048486 1.4981375278 0.83033981

Table 3   Computed values for the local skin friction, rate of heat 
transfer, and rate of mass transfer for different values of Pr and Sc tak-
ing Gr = 10.0, G

m
= 5.0, v

0
= 0.5, Df = 0.5, M = 0.5 and S

0
= 2.0 

as fixed

Pr Sc � −�� −��

0.71 0.22 1.934421900 1.403163282 0.244711110
1.0 0.22 1.590006500 1.822974568 0.289813788
7.0 0.22 0.386611000 2.076471560 4.3426240450
0.71 0.60 1.784958492 1.419837320 0.2218736300
0.71 0.75 1.758096290 1.428434320 0.1710122012
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5 � Conclusions

A numerical investigation of unsteady MHD free convec-
tion and mass transfer flow through an infinite vertical per-
meable sheet has been performed under the Dufour and 
thermal diffusion effects. From the numerical simulations, 
the following conclusions may be drawn:

•	 The skin friction coefficient increases about 5% and 
14% due to increasing Dufour number (0.2–0.8) and 
Soret number (1.0–3.0), respectively. On the other 
hand, increasing the suction parameter (0.5–1.5), Mag-
netic force number (0.5–1.0), Prandtl number (0.71–
1.0), and Schmidt number (0.22–0.75) decreases the 
skin friction by 38%, 23%, 18% and 10%, respectively.

•	 Rising values of the suction parameter (0.5–1.5), Dufour 
number (0.2–0.8), Prandtl number (0.71–1.0), and 
Soret number (1.0–3.0) increases the heat transfer rate 
approximately 39%, 17%, 30%, and 6%, respectively.

•	 Rate of mass transfer increases about 78% and 18% 
for suction parameter (0.5–1.5) and Prandtl number 
(0.71–1.0), respectively, but decreases about 38% and 
30% for enhancing the Dufour number (0.2–0.5) and 
Schmidt number (0.22–0.75), respectively.

The outcome of this present research may be useful for 
paper production, suspensions, and coating, the technol-
ogy of heat exchangers, exploiting of materials processing, 
drying, water body evaporation at the surface, etc.
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