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Abstract
The aim of this study was to determine which environmental variables are responsible for modern benthic chironomid 
distributions in a glacial setting. The chironomid communities from nine alpine lakes were assessed, and forty-three 
individual taxa were extracted and identified. Surface water temperature and nitrate were strongly and negatively cor-
related (−0.82, p = 0.007), suggesting that glacial meltwater (the driver that explains both surface water temperature 
(SWT) (°C) and nitrate (NO3 + NO2-N)) is the environmental variable that explains the most variance (15%). On average, 
lakes receiving glacial meltwater were 2.62 °C colder and contained 66% more NO3 + NO2-N than lakes only receiving 
meltwater from snow. The presence of taxa from the tribe Diamesinae indicates very cold input from running water, and 
these taxa may be used as a qualitative indicator species for the existence of glacial meltwater within a lake catchment. 
Heterotrissocladius, Diamesa spp., and Pseudodiamesa were present in the coldest lakes. Chironomus, Diplocladius, and 
Protanypus were assemblages found in cold lakes affiliated with the littoral zone or alpine streams. The modern benthic 
chironomid communities collected from the alpine of subalpine lakes of Rocky Mountain National Park, Colorado, rep-
resent a range of climatic and trophic influences and capture the transition from cold oligotrophic lakes to warmer and 
eutrophic conditions.
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1  Introduction

Globally, the remote lakes found at high elevations act 
as sentinels of change and are among the first bodies of 
water impacted by climate change [24]. As anthropogenic 
warming continues, the physical and chemical limnology 
of these lakes will change. As a result, the structure, func-
tion, and composition of aquatic ecosystems in subalpine 
and alpine settings will be significantly transformed [71]. 
Recent studies suggest that the range of invasive fish spe-
cies and invertebrates will expand due to their ability to 
move to higher elevation lakes via warmer creeks with sta-
ble environments [34]. This movement will impact natural 

communities that exist in alpine lakes by altering food web 
and predator/prey dynamics [34]. Increases in terrestrial 
vegetation related to the upslope movement of timber-
lines will supply higher amounts of dissolved organic 
carbon (DOC) to subalpine and alpine lakes, which will 
increase productivity and potentially affect the diversity 
of high lake ecosystems [44].

Many of the alpine lakes in the western USA receive cold 
meltwater emanating from small cirque and rock glaciers. 
These alpine environments are sensitive to regional cli-
matic change [16, 43]. Hall and Fagre [22] modeled glacial 
retreat for Glacier National Park and concluded that gla-
ciers would disappear from the landscape by 2030. Recent 
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work suggests that local topographic effects may buffer 
against regional warming and glacial extinction may be 
delayed by 50–250 years [5, 13, 20, 64]. Studies indicate 
that glacial meltwater affects alpine hydrology, chemistry, 
and the turbidity of high alpine lake water [74]. Tempera-
tures in the western USA have steadily increased over the 
past few decades and have amplified the rate at which 
glaciers and permafrost are melting in alpine areas [14]. 
The addition of this cold, silt-enriched water into alpine 
lakes will impact the timing of lake stratification [29], 
increase turbidity, decrease optical transparency [53], and 
alter the water chemistry [41] of these alpine lakes. Stud-
ies indicate that lakes receiving glacial meltwater have up 
to 200× more nitrogen than those lakes that only receive 
snowmelt [9, 47, 50, 74]. Atmospheric nitrogen has been 
accumulating on the surface of glaciers for decades. This 
nitrate is then added to lake system with the onset of gla-
cial retreat. The additional input of nitrogen to N-limited 
lakes promotes enhanced primary productivity, such as 
algal blooms [21, 73]. While many studies have endeav-
ored to elucidate the physical and geochemical changes 
within these systems, little work has addressed how biotic 
communities in alpine lakes will respond to the increased 
flux of glacial meltwater in the short term [74]. Limited 
studies have documented that diatom communities in 
many alpine lakes are shifting from large filamentous dia-
toms (i.e., Aulacoseira taxa) to Cyclotella spp. as a result 
of longer growing seasons, increased stratification, and 
decreased ice cover [12]. In addition, Fegel et al. [16] found 
changes in microbial communities due to the geochemi-
cal changes present in the headwaters emanating from 
rock glaciers and glaciers from the Cascade Mountains, the 
Sierra Nevada, and the Rocky Mountains of the western 
USA.

Chironomids, or midges, are some of the most abun-
dant insects found in freshwater ecosystems and are useful 
to study changes in temperature, pollution, and dynamic 
system changes [8, 17, 60, 79]. Midges occupy several 
trophic levels in aquatic ecosystems and therefore play 
a vital ecological role in lakes [60, 79]. However, the eco-
logical understanding of chironomid distribution is poorly 
understood [15].

A chironomid life cycle includes several stages that 
begins as an egg mass deposited on the surface of the 
water by an adult chironomid. As the eggs hatch, chirono-
mids erupt in their first larval state and mainly persist as 
benthos on the floor of the lake. In this state, the chirono-
mid has a maggot-like form and a chitinous head capsule 
that is shed three more times as individuals grow [60, 
79]. Eventually, the larval chironomid reaches the pupae 
stage and rises through the water column of the lake. This 
stage is abrupt and leads to metamorphosis from pupae 
to an adult fly that emerges from the lake [60, 79]. Thus, 

the survival of chironomid egg masses is largely influ-
enced by surface water temperature [72], the larval stage 
is influenced by bottom water temperature, and adult 
flies exist in environments dominated by air temperature 
[15]. Chironomids have been used as a biological proxy 
to model both surface water temperature [7, 61, 83] and 
air temperature [23, 26, 35, 38] based on the assumption 
that a strong relationship exists between surface water 
temperature and air temperature. Eggermont and Heiri 
[15] caution that multiple factors such as depth, thermal 
stratification, and glacial melt may impact the relationship 
between air and surface water temperatures. Understand-
ing the dichotomy between air and water temperatures in 
chironomid ecology is imperative for future chironomid-
based paleoclimate studies.

To date, the studies that have assessed the response of 
midges to glacial melt in alpine settings focus on montane 
streams [36, 37, 46, 69]. These studies indicate that cold 
water obligate chironomid communities are found in gla-
cial meltwaters; however, there remains a paucity of stud-
ies documenting the response of midges to glacial melt in 
lacustrine settings. Information extracted from lake sedi-
ment can be used to develop baseline limnological infor-
mation against which future changes can be compared 
[76]. This research is vital due to the very narrow window 
of time that is left for studies that examine glacial retreat 
due to the projected demise of alpine glaciers, especially 
those present in the western USA [73].

2 � Study area

The Colorado Rocky Mountains possess the most south-
ern-reaching alpine glaciers currently still active in the 
USA. While many areas present in the Northern and Central 
Rocky Mountains have shown pronounced ablation rates 
for alpine glaciers [2, 49], the behavior of glaciers in the 
Southern Rocky Mountains is quite different and the rate 
of glacial retreat is much slower in this region relative to 
regions to the north, such as Glacier National Park [27, 55, 
65, 66], and makes the Front Range a critical location for 
monitoring glacier change [27].

Rocky Mountain National Park (RMNP) is in the northern 
portion of the Front Range and is home to 30 glaciers [27]. 
The glaciers in RMNP straddle an elevational range that 
includes regional timberline (3500 m Above Sea Level or 
ASL) and lies between 3416 and 4068 m ASL. Most glaciers 
are found on the eastern side of the Continental Divide 
and occupy north- to east-facing cirques [39]. Snow accu-
mulation is frequently redistributed into these cirques by 
strong westerly winds and avalanching [27, 54, 86]. The 
local topographic shading evident on the eastern side 
of the Continental Divide also has strong control over 
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ablation rates and may account for the highly irregular 
ablation-altitude gradients evident in the Front Range 
[27, 54].

Comparing the chironomid assemblages found in 
fives lakes located in glacial basins to four lakes in snow 
basins (with variations in elevation, geology, and vegeta-
tion controlled for) enabled an assessment of the relative 
role meltwater plays in shaping chironomid communities 
found in the alpine lakes located in RMNP. Lakes associated 

with glacial ice bodies were selected based on Fountain 
et al. [18] and the National Geographic Rocky Mountain 
National Park topographic map (#200). All lakes were 
found in areas that consisted of igneous Proterozoic dior-
ites and granites that intrude into ancestral metamorphic 
Proterozoic biotite gneisses, migmatites, and schists [33].

The collection of ten short lacustrine sediment cores 
occurred during the late summers of 2015 and 2016 
(Fig. 1). Study sites were chosen to be at the approximate 

Fig. 1   Base map for study sites in Rocky Mountain National Park, Colorado
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elevation with similar vegetation and geology. Cony (CNY) 
and Pipit (PIP) lakes were the highest elevations and 
were sampled at 3509 and 3479 m ASL, respectively (see 
Table 1). These lakes are located in rocky cirques above 
timberline adjacent to the continental divide. Cony Lake 
receives glacial melt from an unnamed glacier, whereas 
Pipit only receives melt from annual snowfall. Hutcheson 
Lake (HCH) (3413  m ASL) receives glacial input from 
Cony Lake, which lies immediately above the catchment. 
Grasses that are typical of alpine-tundra surround the lake. 
The snowmelt-fed Falcon Lake (FAL) lies at 3371 m ASL 
and is located in a small rocky cirque with small patches 
of krummholz. Box (BOX) and Eagle (EGL) Lakes lie at 3274 
and 3298 m ASL, respectively, and are located at timber-
line. Eagle Lake receives glacial meltwater from Moomaw 
Glacier, whereas Box Lake only receives annual snowmelt.

The remaining lakes all lie below timberline and are in 
subalpine forest predominately composed of Pseudotsuga 
menziesii (Douglas fir) and Picea engelmannii (Engelmann 
spruce). Black (BLK) Lake, located at 3237 m ASL, is the 
deepest lake sampled at 21.2 m and receives glacial melt. 
BLK also has steep scree slopes SSW and S of the lake. 
Thunder (THD) Lake lies at 3225 m ASL and is on a much 
gentler slope than BLK. The lake is surrounded by forest 
almost to the edge of the lake and only receives annual 
snowmelt. Odessa (ODS) and Spruce (SPR) Lakes were the 
lowest in elevation of the sampled lakes. ODS (3051 m ASL) 
receives glacial input from three unnamed glaciers located 
higher in the catchment. Spruce Lake (2947 m ASL) was 
unlike any other lake sampled. It was only 1 m deep and 
had tall grasses throughout the entire bed of the lake. It 
also contained no chironomid subfossil remains and thus 
was eliminated from the analysis.

3 � Materials and methods

3.1 � Field methods

The sediment cores were collected from the approximate 
center of the study lakes using a gravity corer, deployed 
from a small, two-person inflatable raft that allows recov-
ery of lake surface sediment with minimum disturbance 
of the mud-water interface. The cores were typically 20 cm 
long and represented approximately 150 years of deposi-
tion. Observations regarding the stratigraphy and color of 
each core were recorded in a field notebook. Each core was 
sectioned into 0.25-cm intervals and placed into Whirl-
paks®. A Yellow Springs Instrument (YSI®) Professional Plus 
was used to collect a suite of limnological variables, such 
as temperature, pH, and specific conductivity. Water sam-
ples were collected from the center of each lake and sub-
mitted to the Center for Applied Isotope Studies (CAIS) at 

the University of Georgia for analysis of analytes for nitro-
gen, phosphorus, chlorophyll α (chl a), as well as nutrients 
for chloride and sulfate. The cores were transported to the 
Environmental Change Lab at the University of Georgia in 
coolers after the end of each field season. Total carbon (%) 
of dry bulk sediment was analyzed using EA-IRMS at CAIS. 
Distance (m) is the measured distance from the lake to the 
terminus of the glacier in the lake catchment. The glacial 
index (GI) is a measure of environmental harshness and is 
an index of glacial influence following Jacobsen and Dan-
gles [32]. The GI was calculated as GI = 

√

area

distance+
√

area
 (for area 

> 0). The glacial coverage in the catchment (GCC) was also 
calculated [31]. The area of each catchment as well as 
those for each glacier was determined using the GLIMS 
Glacier Database in ArcGIS [67]. Forty environmental vari-
ables were collected in total (Table 2). Physical variables 
included elevation, lake depth, Secchi disk depth, mean 
July air temperature, surface water temperature, bottom 
water temperature, the GI, GCC, and the distance from the 
glacier. Geochemistry variables that were sampled include 
pH, specific conductivity, dissolved oxygen, dissolved 
organic carbon, dissolved inorganic carbon, total phos-
phorus as PO4-P, and NO3-N + NO2-N among others 
(Table 2). However, an additional 26 elements collected 
from lake water were below detection and removed from 
the analysis.

3.2 � Laboratory

Chironomid extraction procedures followed the protocol 
established by Walker [84]. Bulk sediment samples were 
soaked in an 8% KOH solution and heated to 40 °C for a 
minimum of 30 min. The solution was then sieved through 
a 95-μm grade mesh screen using distilled water to elimi-
nate any remaining KOH residue. The material remain-
ing on the screen was transferred into a beaker with dis-
tilled water. The resulting residue was then poured into a 
Bogorov counting tray and sorted using a stereoscope at 
40X. The sub-fossil chironomid head capsules extracted 
from the residue were permanently mounted on glass 
slides using Entellan®. This process was repeated until a 
minimum of 50 head capsules was recovered from each 
sample following the advice of Heiri and Lotter [25]. A 
Nikon Eclipse E100 (×100) microscope was used for tax-
onomic determination of the midge remains. The taxo-
nomic keys by Brooks et al. [8] and Andersen et al. [1] were 
instrumental in the identification of midge taxa.

A total of 542.5 head capsules were collected and 
counted from the top 0.50 cm of sediment of each lake to 
assess the modern distribution of chironomid communi-
ties (mean = 60.28, maximum = 88, minimum = 43.5). Forty-
three taxa were identified from the modern sediment. 
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Table 1   Limnological variables sampled for nine alpine lakes in Rocky Mountain National Park, Colorado

 Variables that are bolded were not used in analysis

Pipit Lake Cony Lake Box Lake Eagle Lake Thunder Lake Black Lake Falcon Lake Hutcheson Lake Odessa Lake

Lake code PIP CNY BOX EGL THD BLK FAL HCH ODS

Elevation (m asl) 3479 3509 3274 3298 3225 3237 3371 3413 3051

Depth (m) 10.4 16.8 11 10.15 7.05 21.2 8.1 3.1 5.95

Secchi disk depth (m) 3.6 3.5 2.2 7.4 2.2 6.4 3.5 2.3 3.3

Mean July air tem-
perature (°C)

11.29 11.13 12.42 12.29 12.69 13.12 11.89 11.66 13.65

Surface water tem-
perature (°C)

9.2 8.2 13.9 10.9 13.1 10.9 9.2 10 10.5

Bottom water tem-
perature (°C)

8.1 5.1 6.2 6 8.5 4.2 8.2 9.3 9.1

Glacial index (GI) 0.00 0.85 0.00 0.52 0.00 0.56 0.00 0.45 0.65

Glacial coverage in 
catchment (GCC)

0 18.18 0 8.74 0 3.16 0 4.37 5.43

Distance (m) 0 0.5 0 1.34 0 1.31 0 1.74 1.74

pH 8.61 7.3 7.17 7.3 8.76 8.23 7.92 7.88 8.11

Specific conductivity 0.011 0.017 0.011 0.01 0.014 0.009 0.01 0.02 0.012

Dissolved oxygen 
(DO) (mg/L)

7.7 2.72 3.7 3.16 2.85 2.45 3.49 2.92 4.21

Dissolved organic 
carbon (DOC) 
(ppm)

2.578 1 1.52 0.92 1.04 1.08 1.07 2.04 0.93

Dissolved inorganic 
carbon (DIC) (ppm)

1.764 1.86 1.64 1.4 1.58 1.34 1.06 2.19 0.87

Total phosphorous as 
PO4-P (ppb)

8.99 46.81 20.19 19.09 52.08 43.85 21.73 17.85 29.2

NO3-N + NO2-N(ppm) 0.274 0.164 0.003 0.139 0.059 0.156 0.175 0.108 0.143

Active chlorophyll-α 
(ug/L)

0.8 1.5 1.7 0.2 5.8 0.6 1.5 2.2 4

Boron (B) 0 0.02 0 0.02 0.01 0.02 0.05 0 0

Calcium (Ca) 1.152 1.382 0.948 1.055 1.093 0.787 1.217 1.963 1.051

Magnesium (Mg) 0.153 0.09 0.13 0.12 0.11 0.06 0.08 0.17 0.13

Sodium (Na) 0.429 0 0.2 0.6 0.3 0.2 0.2 0.2 0.5

Phosphorus (P) 0.083 0.03 0.05 0.04 0 0 0 0.04 0.04

Silica (Si) 1.274 0.533 0.967 1.735 1.046 0.671 1.191 1.054 1.673

Arsenic (As) 0.024 0.002 0.013 0 0.008 0 0.01 0.012 0

Selenium (Se) 0 0.018 0 0.019 0.011 0.021 0.004 0 0.033

Trophic level Oligotrophic Mesotrophic Mesotrophic Mesotrophic Eutrophic Mesotrophic Mesotrophic Mesotrophic Mesotrophic

Aluminum (Al) 0 0 0 0 0 0 0 0 0

Barium (Ba) 0 0 0 0 0 0 0 0 0

Cobalt (Co) 0 0 0 0 0 0 0 0 0

Copper (Cu) 0 0 0 0 0 0 0 0 0

Potassium (K) 0 0 0 0 0 0 0 0 0

Manganese (Mn) 0 0 0 0 0 0 0 0 0

Strontium (Sr) 0 0 0 0 0 0 0 0 0

Cesium (Ce) 0 0 0 0 0 0 0 0 0

Conductivity (µS/cm) 8.4 11.6 9 7 10.6 6.5 6.8 14.3 8.3

Dissolved oxygen (%) 99.3 35 43.4 41.8 39.4 32.2 45.9 39.1 53.4

Phosphate (PO4-P) 
(ppb)

1.82 2.54 1.23 5.87 1.87 6.13 4.5 7.15 1.75

Total dissolved phos-
phorus as PO4-P 
(ppb)

12.18 27.06 24.33 26.19 24.04 17.99 17.56 35.12 25.79

Total nitrogen as 
NO3-N (ppm)

0.317 0.481 0.139 0.212 0.103 0.196 0.186 0.136 0.474

Nitrite (NO2-N) (ppb) n/a 1.48 0.58 1.31 1.29 0.62 1.32 2.58 1.49

Ammonium (NH4-N) 
(ppb)

0 137.9 23.35 65.77 56.34 17.07 50.1 315.99 2.16
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However, if less than 2% of a particular taxon was repre-
sented and they were present in fewer than 2 lakes, they 
were removed from statistical analyses following Quin-
lan and Smol [62]. Thus 30 taxa were used in analysis. 
Spruce Lake contained zero chironomid remains and was 
removed from the analysis.

3.3 � Data analysis

Detrended canonical analysis (DCA) is an indirect ordina-
tion technique that is useful in the exploration of taxa data 
collected from the lacustrine sediment. Chironomid taxa 
possess the highest abundances in environments that 
maximize their preferred habitats. Abundances begin to 
decline or disappear as they become farther removed from 
their preferred environment. Due to these characteristics, 
ecological data typically possess “a modal relationship 
to their ecological gradients” [28]. DCA assumes that the 
data have a unimodal distribution. The chironomid assem-
blage data followed a Poisson distribution and satisfied 
this assumption. The data were square-root transformed 
to shorten the distribution and to make the data homo-
scedastic. The effect of rare taxa was down-weighted to 
dampen their effects on the ordination. DCA is used to 
determine whether a linear, e.g., redundancy analysis 
(RDA), or unimodal, e.g., canonical correspondence anal-
ysis (CCA), model should be used to understand which 
environmental variables explain the most variance in the 
distribution of chironomid communities [77]. The length 
of the first DCA axis was 2.48, and RDA was chosen as the 
appropriate model to assess the relationship between chi-
ronomids and environmental variables.

Redundancy analysis (RDA) was used to assess which 
environmental variable explains the most variance in spe-
cies distribution [78, 88].

RDA is used to extract and summarize variation in the 
chironomid taxa data that can be explained by environ-
mental variables [88]. RDA models were developed using 
forward selection combined with Monte Carlo permuta-
tion tests (p < 0.05, 999 permutations) in order to identify 
the environmental variables that most likely explained 
the distribution of modern chironomid communities. 
This method, combined with permutations, was used to 

determine the statistical significance (p < 0.05) of each 
environmental variable, as well as demonstrating the 
amount of variance that each variable accounted for [6, 
77]. Forty environmental variables were collected. Physi-
cal variables included elevation, lake depth. However, 26 
elements collected from lake water were below detection 
and removed from the analysis. Variables that covaried, 
such as dissolved oxygen (%) and dissolved oxygen (mg/L), 
were examined, and only one representative variable was 
used. Twenty-five remaining environmental variables were 
assessed for linearity, and specific conductivity, lake depth, 
and Secchi disk depth were log-transformed to ensure that 
homoscedasticity assumptions were met (Table 1). All sta-
tistical analyses were performed using the open-source 
platform R (version 3.6.1) (R Development Core Team [63], 
http://​www.R-​proje​ct.​org). DCA and RDA were imple-
mented in the vegan package [51].

4 � Results and discussion

4.1 � Water chemistry

In general, the lakes sampled were relatively deep, and 
all were over 5 m with the exception of Hutcheson Lake 
(3.1  m). Lake depths ranged from 3.1 to 21.2  m deep, 
with an average of 10.42 m. The surface temperature for 
lake water was variable and ranged from 8.2 to 13.9 °C. 
This wide range in surface water temperature (SWT) is of 
note as these lakes are not found on a particularly long 
elevational gradient (458 m). All lakes were open basins 
and received input from alpine streams as well as having 
outlet streams. The temperature profiles for the shallow-
est lakes that received glacial meltwater (i.e., Odessa and 
Hutcheson Lakes) showed no sign of thermal stratifica-
tion and only varied by ≤ 1.4 °C. Pipit and Falcon Lakes 
were deeper (10.4 m and 8 m, respectively) but only had 
temperature profiles that varied by 1 °C from the surface 
water to the bottom of the lake. These lakes are fed only 
by annual snowmelt. Cony, Eagle, Box, Black, and Thunder 
Lakes all possessed temperature profiles indicative of ther-
mal stratification with an epilimnion thickness of 6–8 m.

The trophic class of each lake was evaluated follow-
ing Carlson’s Trophic State Index [11]. The Carlson Index 
uses three independent variables of aquatic biomass that 
includes Secchi depth (SD), total phosphorus (TP) from 
the epilimnion, and chlorophyll α (Chl) (Table 2). However, 
Horne and Goldman [30] warn that trophic classifications 
are idealized concepts and that real-world examples are 
more varied. For this study, lakes were classified if two of 
the three variables fell within range of a specific trophic 
level. The results indicate that only Pipit Lake may be con-
sidered oligotrophic (Tables 1 and 2). Total P was below 

Table 2   Carlson’s trophic-level index

(Chl = chlorophyll-α, P = phosphorus, SD = Secchi disk depth (m))

Chl P SD Trophic class

0.0–2.6 0.0–12.0  > 8.0–4.0 Oligotrophic
2.6–20.0 12.0–24.0 4.0–2. 0 Mesotrophic
20.0–56.0 24.0–96.0 2.0–0.5 Eutrophic
56.0–155.0 +  96.0–384.0 +  0.5– < 0.25 Hypereutrophic

http://www.R-project.org
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the upper threshold of 12.0 ppb at 8.8 ppb, and very lit-
tle active Chl (0.8) was present in the sampled lake water. 
The only eutrophic lake sampled was Thunder Lake. TP was 
high at 52.08 ppb, and the SD was 2.2 m. The remaining 
seven lakes are classed as mesotrophic, which are typically 
lakes with an intermediate level of productivity [30].

4.2 � Chironomids

Chironomus spp. was the dominant taxa present and com-
prised 24.3% of the total chironomids recovered from all 
lakes (Fig. 2). Chironomus is eurythermic and is known as 
a “blood worm” as it emits a red color due to the hemo-
globin it produces [56]. It is mostly found in the profun-
dal zone (i.e., the deepest zone) of lakes and can tolerate 
low levels of oxygen and or short periods of anoxia for 
this reason [8, 85]. It is opportunistic and is often found in 
lakes undergoing environmental change as it is an early 
colonizer [8]. Corynocera oliveri type was the second most 
abundant taxa (10.9%). This taxon is typically found in the 
muddy substrate of cold lakes [1, 8]. Porinchu and Cwy-
nar [57] documented the presence of these insects with 
regard to timberline in Siberia. They found that C. oliveri 
was found typically in the colder lakes located above tim-
berline. While this is true of the assemblages collected 

from Pipit, Hutcheson, Eagle, and Box Lakes, C. oliveri had 
higher relative abundances from lakes below timberline 
(Thunder Lake and Odessa Lake). Heterotrissocladius spp. 
(6.9%) is a very common taxon in all lakes collected and is 
typically found in the profundal of cold oligotrophic lakes 
that are well-oxygenated [1, 8, 80]. Procladius (3.7%) was 
also one of the most prevalent taxa. However, the rela-
tive abundance of Procladius is very high in Pipit Lake and 
much lower in every other lake. Procladius is very common 
in lakes that are classified as mesotrophic and eutrophic 
and is typically associated with the profundal zone [8]. 
Sergentia (3.52%) is typically found in relatively deep, 
mesotrophic lakes. This taxon is found in all sampled lakes 
except for Cony and Eagle Lakes. The presence of both 
Chironomus and Sergentia indicates early colonization is 
occurring, and a transition from an oligotrophic state to a 
mesotrophic trophic state is in progress.

The presence of taxa from the tribe Diamesinae (includ-
ing Diamesa spp., Pseudodiamesa, and Protanypus) is of 
particular interest in that the remains of these taxa are 
extremely rare in lake sediment and poorly studied [8, 
56, 82]. Recent studies of chironomids in alpine streams 
find that the presence of Diamesinae increases with 
the closer proximity to the terminus of melting glaciers 
[36]. Larocque et al. [35] found that “Pseudodiamesa and 

Fig. 2   Relative abundance curves for the modern chironomid 
assemblages. The taxa are arranged by subfamilies: blue: Ortho-
cladinae; red: Chironominae; green: Subtribe Tanytarsini; yellow: 

Tanypodinae; purple: Diamesinae. They are arranged with the high-
est elevation lake at the top and the lowest elevation lake at the 
bottom of the y-axis
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Diamesa were most abundant in alpine-tundra lakes above 
timberline, characterized by cold climatic conditions and 
low sedimentary organic content” in Swedish lakes. Pro-
tanypus has also been found in high elevation lakes in 
Canada and is associated with deep and cold lakes [35, 80]. 
However, these taxa have not been identified in previous 
work done on modern chironomid distribution in the con-
tinental western USA [23, 58, 59, 61, 68]. Porinchu et al. [59] 
did find Pseudodiamesa in sediment collected from Cali-
fornia from the interval corresponding to ages between 
14,800 and 13,700 cal yr BP. No modern assemblages were 
comparable at that time, and the authors suggested that 
the presence of Pseudodiamesa indicated that the glacial 
meltwater was responsible for their deposition [59]. The 
presence and relative abundances of Diamesinae present 
in sediment collected from Rocky Mountain National Park 
suggest that this tribe may be used as a qualitative indi-
cator of glacial meltwater and may assist historical recon-
structions that use chironomids as a biological proxy for 
temperature.

DCA showed a strong relationship between glacial lakes 
and lakes only receiving melt from annual snowfall (Fig. 3). 
The first DCA axis possesses taxa associated with the 
colder lakes typical of glacial input in the negative range 
of DCA axis 1. Taxa affiliated with warmer temperatures are 
located to the right of the axis and are positive. DCA axis 2 
represents the presence or absence of macrophytes in the 
system. Positive values are indicative of taxa typically affili-
ated with the presence of macrophytes (i.e., Psectrocladius, 
Paratanytarsus, Cladotanytarsus, and Tanytarsus). Negative 
values are affiliated with taxa that are typically found in the 
littoral zone of lakes or even small running streams such 
as Eukiefferiella, Diplocladius, Limnophyes, and Cricotopus/
Orthocladius. The top left quadrant of Fig. 3 contains some 
of the coldest stenotherms that have been noted in the 
literature. According to Brooks et al. [8], Abiskomyia only 
occurs in the coldest lakes of the arctic. Heterotrissocla-
dius, Diamesa spp., and Pseudodiamesa are also noted as 
the coldest stenotherms present in assemblages [59, 83]. 
Cony and Black Lakes are the only lakes that contain this 

Fig. 3   Detrended correspondence analysis biplot indicating the relationship between taxa, or assemblages, and corresponding lakes. Lakes 
in blue are fed by glacial meltwater. Lakes in red are fed by melt emanating from the annual accumulation of snow
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assemblage. The taxa found in the bottom left quadrant 
are still indicative of cold water but are also affiliated with 
running water from streams or taxa more likely to be found 
in the littoral zone of lakes. Diplocladius, Limnophyes, Euki-
efferiella, and Smittia are all uncommon in lake sediment 
and indicative of cold running water entering into the lake 
system. Surprisingly, two lakes that were thought to be 
only fed by year-of-snow, fall within this ordination space. 
Falcon Lake strongly falls within this zone. This lake was 
located in a rocky cirque and contained large snowfields 
that may mirror the action of glacially fed lakes. An uniden-
tified rock glacier may also be feeding meltwater into this 
lake. Thunder Lake barely falls within this ordination space 
and may be indicative of a transitional lake. However, it 
may also suggest that this lake is receiving cold meltwater 
from somewhere higher in its catchment.

4.3 � Relationship between environmental variables 
and chironomid communities

RDA was used to assess which environmental variable 
explains the most variance in species distribution [77] 
(Table  3, Fig.  4). Only 2 of the 26 environmental vari-
ables were statistically significant with two others being 
close; SWT (p = 0.037), NO3 + NO2-N (p = 0.049), boron (B) 
(p = 0.053), and %C  (p = 0.057). The first axis of the RDA, 
consisting of SWT, boron, and %C, was identified as sta-
tistically significant (p = 0.022). Surface water temperature 
explained the majority of the variance present within the 
data (7.5%), followed by NO3 + NO2-N (7.5%), B (7.4%), and 
%C (7.1%). The first RDA axis explained 9.8% in the varia-
tion of the distribution of chironomid taxa and was the 
only axis that was statistically significant (p = 0.019).

Relationships between statistically significant variables 
were explored using Pearson’s correlation coefficient. Only 
SWT and NO3 + NO2-N were strongly and negatively cor-
related (r = −0.82, p = 0.007), and glacial meltwater is the 
driver that explains the relationship between the two 
variables. For this study, NO3 + NO2-N was removed from 
the analysis as the correlation is too strong. However, this 
trend is well-documented in the western USA [9, 50, 73]. 
The story of atmospheric deposition of nitrogen in the 
western USA is a complicated one. While nitrogen has 
been collecting on glaciers for decades due to urbaniza-
tion, fossil fuel consumption, and agriculture, biological 
activity is also active and contributes to this very compli-
cated nitrogen story [16]. In addition, nitrogen-caused bio-
logical effects are related to contemporary atmospheric 
deposition to the east of the continental divide in Rocky 
Mountain National Park [87]. Elevated air temperatures in 
the latter part of the twentieth and into the twenty-first 
century have caused glaciers to recede, which has also 
introduced nitrogen into these systems [4]. Slemmons 

et al. [75] found that glacially fed lakes in the Rocky Moun-
tains are 47 times higher in nitrogen than in snow-fed 
lakes. The Loch Vale Watershed is a long-term research 
site in Rocky Mountain National Park. Regional data col-
lected from the Loch Vale Watershed site indicate that 
nitrate concentrations in alpine streams have increased 
by 50% since 2000 [4]. While SWT was the variable used 
in the analysis, this variable represents glacial meltwater 
contribution. The surface water temperatures of glacially 
fed lakes were ~2.62 °C colder than their paired lakes that 
only receive year-of-snow meltwater. The average differ-
ence in nitrogen was 66% higher in glacial lakes. While 
the relationship between atmospheric nitrogen deposition 
and algal communities is established [74, 75], this is the 
first study to find a relationship between atmospherically 
deposited nitrogen and chironomids.

The relationship between chironomid communities 
and temperature is well established but poorly under-
stood. Brundin (1949) noted cold stenotherms such as 

Table 3   Forward selection of variables with Monte Carlo permuta-
tions (n = 999)

The model selected is in bold font

Df Variance F Pr (> F)

SWT + B + %C 3 18.51 1.52 0.022*
SWT 1 7.50 1.68 0.037*
NO3-N + NO2-N 1 7.45 1.67 0.049*
B 1 7.35 1.64 0.053
%C 1 7.12 1.58 0.057
Depth 1 5.75 1.22 0.240
Elevation 1 5.63 1.19 0.242
Secchi 1 4.93 1.02 0.328
Mg 1 5.26 1.10 0.360
Distance 1 5.26 1.10 0.349
Chl a 1 5.11 1.06 0.369
MJAT 1 5.23 1.09 0.372
Si 1 5.07 1.05 0.398
DIC (ppm) 1 4.70 0.97 0.467
BWT 1 4.75 0.98 0.483
P 1 4.66 0.96 0.525
Se 1 4.63 0.95 0.512
As 1 4.52 0.92 0.522
DOC (ppm) 1 4.41 0.90 0.557
pH 1 4.43 0.90 0.568
Total P as PO4 (ppb) 1 4.46 0.91 0.581
DO (mg/L) 1 4.33 0.88 0.583
GCC​ 1 4.16 0.84 0.640
GI 1 3.95 0.79 0.738
Na 1 3.90 0.78 0.750
Sp cond 1 3.06 0.60 0.931
Ca 1 2.74 0.53 0.989
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Heterotrissocladius spp. and Sergentia coracina present in 
late glacial sediment [60]. Quantitative paleotemperature 
reconstruction of SWTs was first performed by Walker 
et al. [81] on sediment collected from eastern Canada in 
the early 1990s. Air temperature models followed soon 
after. Lotter et  al. [38] reconstructed air temperatures 
from a core collected from the Swiss Alps in the late 1990s 
[38]. However, the findings from this study indicate that 
SWT (i.e., glacial melt) is the environmental variable most 
responsible for the distribution of modern chironomid 
communities, whereas Mean July Air Temperature (MJAT) 
was not significant (p = 0.372). This finding illustrates that 
applying inference models to solely model air temperature 
may not always be appropriate when developing tempera-
ture reconstructions for fossil records as SWT and air tem-
perature do not always covary. A need for a more in-depth 
understanding of how different temperatures affect the 
different lifecycles of chironomids is necessary to address 
future chironomid work. The results of this study suggest 
that active glacial activity present within a catchment will 
directly influence the chironomid communities present on 
the benthos. Future studies should acknowledge whether 
the lake under investigation is/or has ever been influenced 
by glacial meltwater. If the presence and/or absence is not 
known for the history of the lake, the presence of taxa from 
the tribe Diamesinae may act as qualitative indicator spe-
cies downcore. Diamesinae may also indicate the presence 
of cold, flowing water into the system and would indicate 
that temperature reconstructions will produce colder con-
ditions for SWT than were present for air temperature.

Initially, the relationship between boron and glacial 
activity was explored as a possible explanation for the 
distribution of boron in these lakes. However, the correla-
tion between SWT and boron (r = −0.36, p-value = 0.345) 
as well as NO3 + NO2-N and boron (r = 0.22, p-value = 0.566) 
was not statistically significant. Furthermore, two glacial 
lakes had boron levels below detection (Hutcheson and 
Odessa Lakes), and two snow-fed lakes have varying levels 
(Falcon Lake (0.05 ppm) and Thunder Lake (0.01 ppm)). The 
levels of boron are very low (0.00–0.05 ppm) and mirror 
minimum to median values for naturally occurring boron 
in surface water collected in British Columbia, Canada 
(0.01 ppm and 0.07 ppm, respectively) [48]. On average, 
levels of boron in US freshwater are about 0.10 ppm [10]. 
Maier and Knight [40] investigated the role of toxicity of 
waterborne sodium tetraborate on Chironomus decorus 
and found that growth rates were affected at 20  mg 
B/L, and acute toxicity occurred after 48 h at a level of 
1376 mg B/L. However, the authors caution that aquatic 
macrophytes are much more susceptible to boron than 
macroinvertebrates and thus food dynamics for chirono-
mids are more likely to be affected, which may explain the 
relationship between modern chironomid communities 
and the presence of boron in RMNP [40]. Other studies 
indicate higher uptake of boron in filamentous algae than 
chironomids [70]. Future research is needed to address 
these relationships in a more in-depth manner.

The presence of boron in lake water and its impacts on 
chironomid communities is poorly understood, and no 
studies currently exist that investigate this relationship 

Fig. 4   Redundancy analysis biplot depicting the relationship between surface water temperature (°C), %  carbon, boron, and chironomid 
taxa from the study sites
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to the author’s knowledge. While boron may be a natural 
byproduct derived from weathering processes on sedi-
mentary bedrock such as shales and coal deposits [3, 48], 
the bedrock of all lakes sampled for this study is igneous 
diorites and granites interspersed with biotite gneisses 
and schists. However, boron may be used as an inorganic 
tracer of anthropogenic activity [3]. Boron is known as an 
indicator of wastewater and is a byproduct of nonchlorine 
bleach. The third pathway of boron deposition may result 
from the fly ash particles created from coal-fired power 
plants [3, 48]. Due to the remoteness and elevation of the 
sample sites, this scenario is the most likely explanation 
for the presence of boron in high alpine lake water. The 
coal-fired Valmont Generating Station was located down 
the valley in the Boulder Creek Watershed from 1924 to 
2017 and may be a possible source for the boron present 
in these systems. Trace amounts of boron could potentially 
be uplifted into the mountains by winds controlled by the 
summer monsoon. Additionally, the dominant westerly 
winds could be carrying boron derived from fertilizers to 
the west of the study site. Further research is needed to 
resolve the source of boron in this area.

Carbon (%C) collected from bulk sediment is often used 
to understand the organic matter content within a lake 
[45]. Higher levels of organic carbon indicate that the lake 
is more productive, and larger sources of available food for 
chironomid larvae [19]. Many studies have found a strong 
statistical relationship between organic carbon and chi-
ronomids in Fennoscandia [52], Sweden [35], northwest-
ern Canada [85], and New England of the USA [19]. Wilson 
and Gajewksi [85] argue that the large gradient of organic 
carbon collected for these studies captures a wide array 
(3–87%) that partially explain the distribution of chirono-
mid communities in northern British Columbia and south-
western Yukon. The authors argue that other chironomid 
workers, such as Walker et al. [81], did not capture as full a 
gradient and were less likely to see this relationship. Our 
study only captures a gradient from 5.3 to 13.4%, and yet 
%C  is an important environmental variable for under-
standing the modern distribution of chironomid com-
munities in the alpine lakes of Rocky Mountain National 
Park. However, it should be noted that organic carbon 
content of bulk sediment is created from the interaction 
of primary productivity, allochthonous carbon, wind and 
wave action, sediment availability, distance from shore, 
light penetration, and nutrient availability [42, 85]. For this 
reason, chironomid workers have been cautious in their 
interpretation of the relative importance of organic car-
bon as it is often highly correlated with depth and surface 
water temperature [38, 52, 85]. The relationship between 
surface water temperature and %C is correlated in this 
study (r = 0.66, p = 0.055). However, this relationship is not 
strong enough to warrant removing it from analysis as the 

statistical probability that the relationship between SWT 
and %C occurred by chance is more likely than the rela-
tionship evident between SWT and NO3 + NO2-N.

5 � Conclusion

The findings of this study indicate that glacial retreat is 
impacting the chironomid communities in the high eleva-
tion lakes located along the continental divide of the Col-
orado Rocky Mountains. Surface water temperature and 
NO3 + NO2-N were extremely and strongly negatively cor-
related, indicating that glacial retreat is responsible for the 
greatest amount of explained variance (14.95%) from the 
model. Furthermore, limnological measures and the high 
presence of Chironomus and Sergentia suggest that early 
colonization of formerly oligotrophic to mesotrophic con-
ditions is currently underway. However, cold stenotherms, 
such as Heterotrissocladius, are still present in high relative 
abundances suggesting these lakes are still affiliated with 
extremely cold conditions. The presence of taxa from the 
tribe Diamesinae (Diamesa, Pseudodiamesa, and Protany-
pus) are present in high numbers relative to the previous 
chironomid lacustrine studies and may indicate extremely 
cold and running water entering the lakes. These taxa may 
be useful as qualitative indicators of meltwater and may be 
useful for downcore paleotemperature chironomid-based 
reconstructions.

The findings from this study indicate that the high ele-
vation lakes located in the remote lands of Rocky Moun-
tain National Park are undergoing changes in trophic state, 
while a few are still maintaining the conditions that have 
been evident within these systems since the Pinedale gla-
ciation. Almost all lakes in this study are no longer oligo-
trophic and are becoming more productive. The presence 
of boron in some lakes is also concerning as their pres-
ence indicates that anthropogenic activities are shaping 
these remote alpine ecosystems. This understanding will 
enable land managers for Rocky Mountain National Park 
to understand the current situation of water quality within 
the park.

The results from this study also inform our understand-
ing of the processes that occur during the transition from 
glacial to interglacial stages in sediment. Many lakes 
that are studied for paleoclimatology are often found 
in remote locations and were formed by glacial activity. 
This study indicates that future work should endeavor to 
understand the glacial history within the lake catchment 
to refine midge-based temperature reconstructions. The 
presence of Diamesinae may suggest that warmer air tem-
peratures were occurring as surface water temperatures 
were decreasing. Future research should explore the pos-
sibilities of combining reconstructions of surface water 



Vol:.(1234567890)

Research Article	 SN Applied Sciences           (2021) 3:855  | https://doi.org/10.1007/s42452-021-04835-7

temperatures and air temperatures as drivers change 
within the system. The author suggests that the study sites 
presented here should be sampled after 2025 to record 
how these lakes have changed in the ten years since the 
study was undertaken. In addition, future paleoecologi-
cal work should explore sediment that represents glacial 
retreat, such as those that followed the Pleistocene-Hol-
ocene transition.
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