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Abstract
The paper presents an investigation of the accuracy of surrogate models for systems with uncertainties, where the 
uncertain parameters are represented by fuzzy numbers. Since the underlying fuzzy arithmetic using �-level optimisa-
tion requires a large number of system evaluations, the use of numerically expensive systems becomes prohibitive with 
a higher number of fuzzy parameters. However, this problem can be overcome by employing less expensive surrogate 
models, where the accuracy of the surrogate depends strongly on the choice of the sampling points. In order to find a 
sufficiently accurate surrogate model with as few as possible sampling points, the influence of various sampling strate-
gies on the accuracy of the fuzzy evaluation is investigated. As well suited for fuzzy systems, the newly developed Fuzzy 
Oriented Sampling Shift method is presented and compared with established sampling strategies. For the surrogate 
models radial basis functions and a Kriging model are employed. As test cases, the Branin and the Camelback function 
with fuzzy parameters are used, which demonstrate the varying accuracy for different sampling strategies. A more appli-
cation oriented example of a finite element simulation of a deep drawing process is given in the end.

Keywords Surrogate modelling · Fuzzy numbers · Kriging · DACE · Radial basis function · Uncertainty

1 Introduction

Today, computer-aided simulations play an important role 
in the design and control of manufacturing processes [1]. 
But while simulations are reproducible, real processes are 
subject to fluctuations for example due to varying opera-
tion conditions, batch variations etc. Therefore it is nec-
essary to capture these uncertainties in a realistic virtual 
process model.

Uncertainties can be differentiated between epistemic 
and aleatoric ones [2]. Aleatoric uncertainties are stochas-
tic deviations, which can be described by well established 
methods like Monte-Carlo simulations and shall not be dis-
cussed further here. In contrast, epistemic uncertainties 
are uncertainties that exist due to missing information and 

at least theoretically, they can be reduced by additional 
knowledge or additional effort. Since epistemic uncer-
tainties can be minimised, for instance by better meas-
urement methods, a description by convex fuzzy sets (e.g. 
fuzzy numbers) seems appropriate. The �-value of the 
fuzzy membership function can then be interpreted as a 
cost indicator, such that a higher �-value correlates to the 
higher costs associated with the corresponding reduction 
of the uncertainty.

A typical task in engineering is the evaluation of the 
robustness of a process with regard to parameter devia-
tions (e.g. batch variations). A robust process will accept 
a broader variation of input parameters with only mini-
mal influence on the output, such reducing the costs 
for accurately controlling the input parameters. Such an 
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investigation is usually done by process simulation, where 
for mechanical engineering problems often finite element 
models with millions of degrees of freedom are employed. 
Since these models are numerically very expensive, their 
use in a fuzzy-framework becomes prohibitive.

Typical examples from the engineering field are expen-
sive finite-element process simulations with computation 
times in the range of hours, as exemplified in [3] for a cold 
forging process with about 400,000 elements. In such a 
simulation many uncertain parameters can be defined, so 
that a dimension of 2–20 parameters seems to be com-
mon. The limiting factor here is the computation time, 
which allows a experimental design with a single-digit 
or maximum two-digit number of sampling points, inde-
pendent of the dimension.

Therefore model order reduction methods or surro-
gate models are necessary to obtain results at accept-
able costs. Model order reduction reduces the number 
of degrees of freedom by projection of the system onto 
a lower dimensional subspace. Surrogate models on the 
other hand just interpolate the input-output behaviour 
based on a (hopefully small) number of sampling points 
as a response surface, which can be queried at very low 
costs. While a reduced order model retains the underlying 
physics of the full model and can probably even be used 
for extrapolation, it requires access to the full model and 
the construction of an appropriate reduction at least for a 
nonlinear model is difficult. Here, a surrogate model has 
the advantage of just needing the evaluation of the system 
at some sampling points, which allows for example the use 
of commercial black-box FE-packages or the incorporation 
of sampling points from other sources like experimental 
data. However, this comes at the price that extrapolation 
outside of the sampling range is extremely dangerous.

A lot of applicable methods to construct such surrogate 
models exists, see e.g. [4–8]. Today, machine learning is 
predominantly used [9] and these tools (e.g. neural net-
works) show their great strength when big data is involved 
and there is enough data to learn from or to train with. 
However, the focus of the present study lies on sampling 
plans based on (very) small data, where the number of 
interpolation points has to be reduced as much as pos-
sible, because the complex systems allow only a one to 
low two-digit number of evaluations, regardless of the 
dimension.

This necessesitates the use of more traditional response 
surfaces methods like radial basis functions or Kriging 
models, which are discussed for instance in [10–12].

Investigations of sampling points strategies or sam-
pling points optimization, such as those performed in 
[13–15], can keep the number of sampling points to a 
minimum. In these methods, the goal is to maintain global 
accuracy in the parameter space and to ensure that the 

parameter space is mapped as effectively as possible. In 
[15] for instance additional sampling points are generated 
depending on the surrogate model results. Differentiating 
from this, in the method presented here, the properties of 
the results are to be taken into account in the form of fuzzy 
uncertainties. Thus, the sampling plan is optimized for a 
parameter space described by fuzzy uncertainties, which 
is new for sampling plans.

The organisation of the paper is as follows: Sect.  2 reca-
pitulates some basics of uncertainty analysis using fuzzy 
numbers. Section 3 introduces the relevant methods of 
surrogate modelling, which are used in the following. 
Section 4 shortly discusses two commonly used sampling 
strategies, full factorial design and Latin hypercube sam-
pling, and presents the Fuzzy Oriented Sampling Shift 
(FOSS) in 4.3 as an optimized variant of the Latin hyper-
cube sampling for fuzzy arithmetic applications. Section 5 
compares the accuracy of two different surrogate models 
using different sampling designs when applied to two test 
functions. Section 6 applies the FOSS strategy to the finite 
element simulation of a deep drawing process with uncer-
tain parameters. Section 7 finally summarizes the results.

2  Fuzzy numbers

Fuzzy sets were introduced by Zadeh [16] as an extension 
of the classical set. Each value of the set is assigned a mem-
bership value � , that defines its grade of membership in 
the set. For the membership function � , � = 1 applies if 
a value is x ∈ X  and � = 0 , if x ∉ X  . In the classical set, 
� ∈ [0;1] , but for a fuzzy set instead, � ∈ [0, 1] is generally 
valid [17]. The classical set X is then a special case of the 
fuzzy set X̃ .

A fuzzy number p̃i is a special form of a fuzzy set, where 
the core, defined as

is not an interval but a single value. A fuzzy number is a 
convex fuzzy set, because each interval X (j) with the mem-
bership function �j is a closed interval,

as shown in Fig. 1. Moreover for all left-hand limits a(j) and 
all right-hand limits b(j):

These intervals are called �-cuts, which define a crisp inter-
val X (j) with a fixed membership function �j , a left-hand 
limit a(j) , and a right-hand limit b(j) . A special type of often 
used fuzzy number is the triangular fuzzy number or linear 
fuzzy number, which is defined by a linear membership 

(1)core(p̃i) = {x ∈ X̃ |𝜇 = 1} ,

(2)X (j) = [aj , bj] ,

(3)a(j−1) ≤ a(j) ≤ a(j+1) and b(j−1) ≥ b(j) ≥ b(j+1).
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function. In the following the notation of [17] for triangular 
fuzzy numbers

is used.
The �-cuts are commonly used for numerical calcula-

tions, because the fuzzy-arithmetic is thus reduced to 
interval-arithmetic [17]. This standard fuzzy arithmetic 
with decomposed fuzzy numbers, which will be employed 
also here, requires a huge number of system evaluations. 
Assuming a decomposition into m + 1 �-cuts, an addi-
tion of two fuzzy numbers for instance results already in 
2 ∗ m + 1 arithmetic operations, since the limits a(j)

1
 and a(j)

2
 , 

respectively b(j)
1

 and b(j)
2

 , must be considered separately for 
each �-cut j = 0,… ,m − 1 , where at j = m only a single 
operation for the core values is necessary. For functions 
in general, the minimum as well as the maximum result at 
an �-cut, which represent the limits of the resulting fuzzy 
number, does not have to correspond to the operations on 
the limits a(j)

i
 , respectively b(j)

i
 . Thus, there exist two optimi-

sation problems, which have to be solved for each �-cuts 
m, leading to a very high number of function evaluations 
[17, 19]. Other approaches to fuzzy arithmetic instead of 
�-level decomposition are also possible, see for example 
[20], but do not significantly reduce the number of neces-
sary function evaluations. So the use of an inexpensive sur-
rogate model is mandatory for most applications involving 
engineering systems but the simplest.

3  Surrogate models

As mentioned above, uncertainty analysis using fuzzy num-
bers requires many system evaluations. If the evaluation of 
the underlying system f (�) is expensive, only a few such eval-
uations can be done in a reasonable time or at reasonable 
costs. For this reason the full system has to be replaced by a 

(4)p̃ = tfn(core(p̃), a(𝜇 = 0), b(𝜇 = 0))

cheaper surrogate model ̂f (�) , where the surrogate model is 
regarded as an approximation of the full system,

To construct such a surrogate model, the system f (�) is 
evaluated at n sampling points

where each vector �i = {x1, x2,… , xk}
T , 1 ≤ i ≤ n consists 

of k entries, corresponding to k input parameters of the 
system.

For the surrogate model ̂f (�i) different approaches 
exist, see for example [21]. In the following examples a 
surrogate based on radial basis functions (RBF) [5] and a 
Kriging based surrogate called Design Analysis of Com-
puter Experiments (DACE) [22] are employed. Both the RBF 
and the DACE are interpolating approaches, whereby the 
relationship

applies at the sampling points �i . Other approaches like 
regressions could also be used. However, it should be 
pointed out that neural networks are deliberately not 
applied here, since the training of a neural networks 
requires a larger amount of data and the focus is here on 
“small data” and not on “big data”.

3.1  Radial basis functions

The ansatz for the surrogate based on radial basis func-
tions is given by

where �� is the ith sampling point from (6) [5]. The param-
eters �i represent weighting factors, which have a linear 
influence on the basis functions. The basis functions �(r) , 

(5)̂f (�) ≈ f (�) .

(6)� = [�1, �2,… , �n]
T ,

(7)̂f (�i) = f (�i)

(8)̂f (�) =

n�
i=1

𝜌i𝜓(‖� − ��‖) ,

Fig. 1  Fuzzy number p̃i with 
�-cuts according to [18], (a) 
general (b) triangular
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which are evaluated at the Euclidean distances r between 
the sampling points �i and the input vector � , can map dif-
ferent approach functions [21]. Out of a large number of 
possibilities to chose the basis functions, only one function 
is selected, a simple cubic trial function

which has the advantage that no further parameters are 
introduced which would have to be optimised.

3.2  DACE functions

The other surrogate model used here is the DACE model. It is 
an interpolation model, which based on the Kriging model 
developed by Krige [7] and is applied via the Matlab toolbox 
from [22, 23]. As shown in [23], it combines a random process 
z(�) (also called stochastic process) and a regression model 
�(�) with the regression parameters � and results in

The regression model describes a deterministic response 
surface and the random process describes the deviation 
of the function value to this surface. The regression model 
�T�(�) is constructed as a linear combination of m selected 
functions �j . For the linear model used here, m = k + 1 (k 
corresponds to the number of input parameters) results in 
a first order polynomial with the components

For the random process, it is assumed that the deviation 
of the sampling points from the constant response surface 
results in an average of 0 and that a covariance between 
z(�) and z(��) in the form

exists, where �2 is the process variance and R the correla-
tion model. For an exponential correlation, the approach 
results in

(9)�(r) = r3 ,

(10)̂f (�) = �T�(�) + z(�) =

m∑
j=1

𝛽j𝜙j(�) + z(�) .

(11)�1(�) = 1, �2(�) = x1, … , �m(�) = xk .

(12)E[z(�)z(��)] = �
2R(�, ��, �)

whereby the norm can be selected by the parameter p and 
thus allows further variations of the model. It is limited 
here to the Euclidean norm ( p = 2).

The equations of the surrogate models (8)–(13) apply to 
the cases ̂f (�) ∈ ℝ . An extension ℝ → ℝ

q is possible without 
any problems. For further details see [10, 23].

4  Sampling plans

For the approximation using surrogate models, the sampling 
points required in (6) can be generated by different sampling 
strategies also called design of experiments. Depending on 
the structure of such a design of experiments, the number 
of sampling points is not freely selectable. However, a useful 
comparison of the sampling strategies can only be made if 
the number of sampling points is identical. Therefore, only 
designs are considered in which the number of sampling 
points is identical. These are the full-factorial design (FFD), 
the Latin hypercube sampling (LHS) and the here newly 
introduced fuzzy oriented sampling shift (FOSS).

4.1  Full‑factorial design

The simple and well known full-factorial design is a popular 
method to build a design of experiments. The range of each 
parameter xj , 1 ≤ j ≤ k is sampled by ns,j points and the 
sampling points �i are obtained by using all combinations 
forming a regular k-dimensional grid as shown in Fig. 2 (left) 
for the case k = 2 and ns,1 = ns,2 = 3 . If all parameters are 
sampled using the same number of points ns,j = ns , the total 
number of sampling points nFFD is given by

In a fuzzy framework, the samples of a fuzzy parameter p̃i 
should contain at least the minimum and the maximum 
of p̃i at � = 0 . Further points in between increase both the 

(13)

R(�, ��, �) =

k∏
j=1

Rj(�j , xi,j − xj) =

k∏
j=1

exp(−�j|xi,j − xj|p) ,

(14)nFFD = ns
k .

Fig. 2  Examples for full-
factorial design (left) and Latin 
hypercube sampling (right)
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accuracy, but the full-factorial design quickly becomes 
large and expensive due to its exponential dependence 
on the number of parameters.

4.2  Latin hypercube sampling

In contrast to the FFD, Latin hypercube sampling (LHS) [24] 
is a random sampling strategy. The parameter space ℝk for 
n sampling points is divided for each input parameter k 
into n equal non-overlapping intervals. A sampling point 
is then randomly generated in each interval and dimen-
sion with uniform stochastic distribution, see the exam-
ple in Fig. 2. Its advantages as compared to other random 
sampling strategies are discussed in [24] and the LHS has 
become one of the most popular methods for the design 
of experiments. Since the number of sampling points n in 
a LHS desing is freely selectable, LHS designs can be easily 
compared to FFD by choosing equal numbers of sampling 
points.

4.3  Fuzzy oriented sampling shift (FOSS)

The accuracy of surrogate models can be distinguished in 
global and local accuracy and a lot of investigations deal 
with adding sampling points to improve either global or 
local accuracy, for instance [25, 26]. However, keeping the 
number of sampling points fixed, the placement of the 
sampling points determines the global and local accuracy, 
where these two goals are competing, since an improve-
ment of global and local accuracy cannot be achieved 
simultaneously. Both FFD and LHS are designed to max-
imise global accuracy by distributing the sampling points 
more or less evenly over the whole parameter space, but 
this is not always optimal.

As already stated in the introduction, fuzzy numbers 
describe reducible epistemic uncertainties. However, the 
uncertainty reduction comes usually with an increase 
in costs or effort. The �-value of membership can then 
be interpreted as a cost indicator for the uncertainty 
reduction [27]. It seems natural that the accuracy should 
increase in the high cost regime, i.e. at high �-values, while 
some accuracy could be sacrified in the low cost regime, 
i.e. at low �-values. The sampling points of the surrogate 
model should therefore be arranged in such a way that 
the local accuracy of the results increases when the input 
value approaches the core value, while the global accu-
racy in the entire parameter space is maintained as far as 
possible.

The global error increases if the design space for the 
sampling points is significantly smaller than the possible 
parameter space and thus many evaluations represent 

an extrapolation and not an interpolation [28]. Therefore, 
enough sampling points should lie near the edges of the 
parameter space in order to cover the entire parameter 
space. However, the majority of the sampling points are 
to be generated near the core value in order to achieve 
a higher accuracy in higher �-cuts.

Based on this rationale, the Fuzzy Oriented Sampling 
Shift (FOSS) is presented here as an extension of the LHS. 
The idea is to shift the uniformly distributed sampling 
points generated by a LHS. To achieve the desired bal-
ance of local and global accuracy as discussed above, 
points lying at the edge of the design space are not or 
only slightly shifted in the direction of the core value, 
while points lying further inward are shifted more 
strongly towards the core value. This is achieved by using 
a standardised weighting. The procedure is explained 
below: 

1. First n − 1 sampling points �i are generated by LHS. The 
parameter space is taken as the maximum uncertainty 
range at � = 0 . The set of sampling points is then col-
lected into a matrix as defined in (6) and can be repre-
sented as 

 The ith column vector of � denoted as �i

 spans the sampled uncer tainty range of 
the fuzzy parameter p̃i  at � = 0 ,  such that 
pi,j ∈ [ai(� = 0), bi(� = 0)] for ai , bi from (4).

2. Denoting the distances of the sample values in �i from 
the respective core value as 

 which can be written more compact as 

 and the maximum norm as 

 We introduce a normalised signed shift by 

(15)� =

⎡⎢⎢⎢⎣

�T
1

�T
2

⋮

�T
n−1

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

x1,1 x1,2 ⋯ x1,k
x2,1 x2,2 ⋯ x2,k
⋮ ⋮ ⋱ ⋮

xn−1,1 xn−1,2 ⋯ xn−1,k

⎤⎥⎥⎥⎦

(16)�i =

⎡⎢⎢⎢⎣

x1,i
x2,i
⋮

xn−1,i

⎤⎥⎥⎥⎦

(17)di,j = pi,j − core(p̃i) = xj,i − core(p̃i),

(18)�i = �i − �core(p̃i), with � ∶=

⎡⎢⎢⎣

1

⋮

1

⎤⎥⎥⎦

(19)
‖�i‖max = max(�pi,1 − core(p̃i)�,… , �pi,n−1 − core(p̃i)�) .
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 where elementwise operation is presumed as follow: 

 This shift is then used to obtain the new FOSS sam-
pling values as 

 where a power nwFOSS > 1 moves the sampling val-
ues closer to the core value, while a power nwFOSS < 1 
moves them towards the edges.

  This scheme is shown in Fig. 3 for a nwFOSS > 1 The 
asteriks correspond to the sampling plan according to 
the LHS method for n − 1 points. The dotted lines show 
the shifted sampling points obtained by (22).

3. To complete the FOSS method for a n-point sampling 
strategy, the n-th point is set to the core value of each 
input parameter by 

Figure 3 shows the shift effects of the FOSS method 
compared to the LHS. The points located close to the 
edge of the parameter space hardly shift towards the 
center. Centrally located points are shifted more towards 
the center. The points staying close to the edge should 
avoid extrapolation as far as possible, while the points 
shifted more towards the center should increase the 
local accuracy exactly there. The uniform distribution of 

(20)�i = sgn(�i)

� ��i�
‖�i‖max

�nwFOSS

,

(21)

gi,j = sgn(pi,j − core(p̃i))⋅( |pi,j − core(p̃i)|
max(|pi,1 − core(p̃i)|,… , |pi,n−1 − core(p̃i)|)

)nwFOSS

.

(22)�i,FOSS = � ⋅ core(p̃i) + ‖�i‖max �i ,

(23)
�T
n
=
[
xn,1 xn,2 ⋯ xn,k

]

=
[
core(p̃1) core(p̃2) ⋯ core(p̃k)

]
.

the LHS transitions into a �-cut optimization depending 
on the exponent nwFOSS from (20), which allows to better 
represent the fuzzy uncertainties.

The implementation in the programming code is mostly 
possible by simple matrix operations. For this purpose, the 
code implemented in Matlab is shown in Fig. 4.

5  Application to test problems

By means of two test problems the advantages and disad-
vantages of the three presented sampling methods shall 
be shown.

As a first test problem, a fuzzy Branin function (Fig. 5 
left)

with x̃1 = tfn(2.5,−5, 10) and x̃2 = tfn(7.5, 0, 15) is used. 
The second test problem is a fuzzy Camelback func-
tion (Fig. 5 right)

with x̃1 = tfn(0,−2, 2) and x̃2 = tfn(0,−1, 1) . For each func-
tion, 100 sampling plans for the LHS and FOSS are used 
for analysis.

The root mean squared error

is used to compare the accuracy of the surrogate models 
to the full models. If the evaluation points are distributed 
globally, this is also a global error measure. In the case 
of the discretised fuzzy number being used, the RMSE is 
calculated for each �-cut. A uniform grid of s = 10 × 10 is 
placed on each �-cut, which has the boundaries of the �
-cuts as vertices. Since the RMSE is an absolute error meas-
ure, the true range of values of the respective function 
must be taken into account, when comparing results.

5.1  Dependency of the FOSS method on n
wFOSS

First, the functions (24) and (25) are used to investigate 
the FOSS strategy. The influence of the power nwFOSS intro-
duced in (20) on the accuracy is examined for the DACE 
and the RBF surrogates with 4, 9, and 16 sampling points, 
respectively. A distinction is made between the global 
accuracy, which refers to the full parameter space at � = 0 , 

(24)

f (x̃1, x̃2) =
(
x̃2 −

5.1

4𝜋2
x̃2
1
+

5

𝜋

x̃1 − 6
)2

+ 10
(
1 −

1

8𝜋

)
cos(x̃1) + 10

(25)

f (x̃1, x̃2) =

(
4 − 2.1x̃2

1
+

x̃4
1

3

)
x̃2
1
+ x̃1x̃2 + (−4 + 4x̃2

2
)x̃2

2

(26)RMSE =

�∑s

l=1
(̂fj − fj)

2

s

Fig. 3  Scheme of the FOSS method based on a LHS for n − 1 points, 
whereby the asterisks belong to the LHS method and the crosses 
to the FOSS method. The cross in the center is the additional core 
value in contrast to the LHS method
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and the �-cut accuracy, which includes the reduction of 
the parameter space with increasing �-values.

The main focus is on qualitative comparison. Since the 
RMSE is an absolute error measure, the error values must 
be seen in relation to the function value range, which is for 
the Branin function (24) in � ≈ [0;220] and for the Camel-
back function (25) in � ≈ [−1;6].

5.1.1  Global accuracy

Figures 6 and 7 show for different numbers of sampling 
points, the global error for nwFOSS ∈ [0.2, 4] for the Branin 
function.

The 5 lines are given by the “Five-number summa-
ries”, which are calculated from 100 different sampling 
designs and consist of the minimum value, the lower 
quartile, the median value, the upper quartile and the 
maximum value. In the Figs. 6 and 7 the maximum RMSE 
values at four sampling points (left) are so high that they 
are not visible in the displayed area. The curves behave 
similarly to the median curves. However, they reach 
approximately the 6-fold values. Considering the curves 
of the 3rd quartile, it becomes obvious that such high 
values are extreme outliers. The more sampling points 
are used, the smaller is the scatter in the values.

Fig. 4  Coding of the FOSS 
method in the environment of 
MATLAB

function [p_FOSS] = FOSS(param,numofIniPoi,nwFOSS)
% Initial points for the Fuzzy Oriented Sampling Shift
% param: array with core value, left bound, right bound
% numofIniPoi: number of Initial Points
% nwFoss: exponent of the FOSS method
% example: [p_FOSS] = FOSS([2.5 -5 10;7.5 0 15],9,2)

% Step1: create a lhs with n-1 points
X = lhsdesign(numofIniPoi-1,length(param(:,1)));
X_core = param(:,1)’;
weighting = abs(param(:,2)-param(:,1));
range = param(:,3)-param(:,2);
weighting = weighting./range;
for i=1:length(param(:,1))

p(:,i) = (X(:,i)-weighting(i,1))*range(i,1)+X_core(1,i);
end

% Step2: shift the lhs (FOSS method)
d = p-X_core; % eq(18)
d_max = max(abs(d)); % eq(19)
g = sign(d).*(abs(d)./d_max).^nwFOSS; % eq(20)
p_FOSS = X_core+g.*d_max; % eq(22)

% Step3: add the core values
p_FOSS(end+1,:) = X_core; % eq(23)

end

Fig. 5  Branin function(left) and 
Camelback function(right) in 
the given limits as testfunc-
tions
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As expected, the global accuracy increases with an 
increasing number of sampling points and also the vari-
ance between the sampling designs reduces with the 
number of sampling points.

The figures show that higher values of nwFOSS have a 
negative effect on the global accuracy. The minimum of 
the RMSE lies in a range 0.2 < nwFOSS < 1 . Obviously, a 
slight shift towards the edges is beneficial here. This effect 
increases with an increasing number of sampling points. 
But min

sampling points→∞
(nwFOSS) → 0 does not hold, since a too 

small power finally overweighs the edge area and the 
global error increases again.

Figures 8 and 9 show the equivalent results for the 
Camelback function. Beside the different value range, 
there are hardly any qualitative differences to the Branin 
function, so the statements made above are also valid 
here. Also for the Camelback function the best global 
accuracy is achieved with 0.2 < nwFOSS < 1 . However, as 
discussed in the introduction, for fuzzy systems the global 
accuracy may not be the optimal criterion, but an increas-
ing accuracy for higher �-values can be desirable at the 
expense of global accuracy, which was the rationale for 
developing the FOSS method.
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Fig. 6  Branin function: Curves of the RMSE of 100 FOSS sampling plans as a function of the FOSS exponent nwFOSS for the DACE model with 4 
(left), 9 (center), and 16 (right) sampling points
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Fig. 7  Branin function: Curves of the RMSE of 100 FOSS sampling plans as a function of the FOSS exponent nwFOSS for the RBF model with 4 
(left), 9 (center), and 16 (right) sampling points
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Fig. 8  Camelback function: Curves of the RMSE of 100 FOSS sampling plans as a function of the FOSS exponent nwFOSS for the DACE model 
with 4 (left), 9 (center), and 16 (right) sampling points
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5.1.2  ̨ ‑Cut accuracy

As in the previous section, the RBF and the DACE model 
with 100 sampling designs are used for the approxima-
tion of the Branin function and the Camelback function. 
Figures 10 and 11 show the average RMSE over the 100 
sampling designs evaluated at different �-cuts for varying 
nwFOSS.

For the designs with 9 and even more pronounced 
with 16 sampling points the desired effect of the FOSS 

can be seen. A shift towards the core value ( nwFOSS > 1 ) 
increases—as intended—the accuracy for higher �-values, 
while sacrificing accuracy at lower �-values. A shift towards 
the edges ( nwFOSS < 1 ) has the inverse effect. The choice of 
the surrogate model, RBF or DACE, has no influence.

With only 4 sampling points, this observation cannot 
be made. The reason is that with such a low number of 
sampling points, the influence of each individual sam-
pling point is very high and bad designs have a significant 
influence, which overlay the effect of the FOSS. Obviously, 
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Fig. 9  Camelback function: Curves of the RMSE of 100 FOSS sampling plans as a function of the FOSS exponent nwFOSS for the RBF model 
with 4 (left), 9 (center), and 16 (right) sampling points

Fig. 10  Branin function: Average RMSE over the �-cuts of the result space for the DACE model with 100 underlying FOSS sampling plans 
with 4 (left), 9 (center), and 16 (right) sampling points

Fig. 11  Branin function: Average RMSE over the �-cuts of the result space for the RBF model with 100 underlying FOSS sampling plans with 
4 (left), 9 (center), and 16 (right) sampling points
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results based on such a small number of sampling points 
have to be treated with caution.

As Figs. 12 and 13 show, the results for the Camelback 
function are similar.

5.2  Comparison of different sampling strategies

The accuracy of surrogates obtained from a FOSS design 
(with nwFOSS = 2 ) is assessed by comparison to LHS and 
FFD designs with the same number of points, as discussed 
in Sect. 4. The discussion is presented separately for the 
RBF and the DACE surrogate.

5.2.1  Comparison for RBF

Table 1 shows the global RMSE for RBF surrogates of the 
two test problems using FFD, LHS and FOSS designs. For 
the stochastic LHS and FOSS designs the RMSE is obtained 
as the average over 100 sampling plans and the variance 
is also given. Again, one has to bear in mind that the abso-
lute values of the two test functions vary significantly, such 
that only a qualitative comparison between the two test 
function can be made.

As expected, the table clearly shows that the error 
decreases with an increasing number of sampling points. 
An exception is the RMSE of the Camelback function with 
9 sampling points and FFD. Here the form of the function 
plays a decisive role, since the chart can be represented 
in simplified form as a “U” and with 9 FFD sampling points 
this shape is well matched. The variance also decreases 
with an increasing number of sampling points. But, as can 
be seen for the Branin function, it can assume very high 
values despite the averaging over 100 sampling plans.

Overall, the FFD performs significantly better with an 
increasing number of sampling points. This is also due to 
the functions themselves. Since the largest values of the 
functions are located in the border area and the border 
is strongly weighted in an FFD (4SP → 100%, 9SP → 89%, 
16SP → 75%), this method performs better. The FOSS loses 
global accuracy compared to the LHS, due to the shift.

However, the picture changes if the error is evaluated at 
different �-cuts. In the following only the Branin function 
is used to show the advantages and disadvantages of the 
FOSS method over the other two sampling strategies. The 
results for the Camelback function are again comparable 
and are not shown.

Fig. 12  Camelback function: Average RMSE over the �-cuts of the result space for the DACE model with 100 underlying FOSS sampling 
plans with 4 (left), 9 (center), and 16 (right) sampling points

Fig. 13  Camelback function: Average RMSE over the �-cuts of the result space for the RBF model with 100 underlying FOSS sampling plans 
with 4 (left), 9 (center), and 16 (right) sampling points
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Figure 14 shows again the average RMSE over 100 LHS 
and FOSS designs compared to a FFD result, but now for �
-cuts of the fuzzy result. It should be kept in mind that the 
range of values is also restricted by the limits of the �-cuts. 
Thus, a lower RMSE in a higher �-cut does not necessarily 
mean a better accuracy, if at the same time the function 
value range is significantly smaller.

If the three sampling strategies are analysed separately, 
large differences become apparent. The FFD with only four 
vertex points has a slightly increasing RMSE over all �-cuts 
as the membership function value increases. With nine 
sampling points, one of them describes the core value of 
the input variables and the error decreases in the higher �
-cuts as the interval approaches this core value. However, 
this only applies if the fuzzy numbers are symmetric. With 
16 interpolation points, the center is no longer part of the 
sampling design. Instead, the sampling points are located 
near the limit values of the input parameter of the �-cuts 
� = 0 respectively � = 0.6 . This is shown by lower RMSE in 
these �-cuts. The FFD cannot achieve the accuracy of the 
other two methods in higher �-cuts, if there is no sampling 

point at the core value. For the evaluation with four sam-
pling points, even the lowest �-cuts give worse results.

The LHS method shows a strong increase of the RMSE 
at 4 sampling points for lower membership functions. 
The behavior is similar at nine as well as at 16 sampling 
points. The error in the higher �-cuts are approximately 
the same, here the method does not ensure that sam-
pling points are close to the core value at � = 1 . Obvi-
ously, it is a disadvantage if there is no sampling point 
at the core value. However, the error is highest at � = 0 , 
because these are mainly extrapolations and have a 
much lower accuracy than interpolations [28]. This effect 
is also seen with 16 sampling points, although the LHS 
coves the parameter space uniformly.

The FOSS method has the lowest error in the higher 
�-cuts. However, as the � decreases, this error increases 
much more than the other two sampling strategies.

Figure 15 shows the maximum RMSE out of the 100 
sampling designs instead of the average error. Here, the 
LHS method shows an extreme increase of the RMSE at 
4 sampling points for lower membership functions. This 
is due to a very unfavorable sampling plan. Considering 
all three graphs in Fig. 15, it can be noted that only the 

Table 1  Average RMSE for a 
RBF surrogate based on FFD, 
LHS and FOSS with 4, 9 and 16 
sampling points(SP)

Test problem RMSE

4 SP 9 SP 16 SP

Mean Var Mean Var Mean Var

Branin
FFD 85.15 – 32.38 – 15.04 –
LHS 70.89 2640 39 139 25.2 39
FOSS 71.56 330 51.99 96 36.46 104
Camelback
FFD 2.54 – 0.67 – 0.77 –
LHS 1.44 0.37 0.99 0.02 0.95 0.01
FOSS 1.83 0.34 1.12 0.06 0.96 0.02
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Fig. 14  Branin function: average RMSE on �-cuts for a RBF surrogate with 4 (left), 9 (center), and 16 (right) sampling points
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FOSS method keeps the error low in the higher �-cuts, 
which is mostly due to the fact that the core value is 
explicitly set as a sampling point.

5.2.2  Results for DACE

In the following section the analysis is repeated for a 
DACE surrogate instead of the RBF surrogate. For the 
DACE a linear regression model and an exponential cor-
relation model are used, see Sect. 3.

Table 2 shows again the average RMSE and the vari-
ance based on 100 stochastic sampling plans for the LHS 
and FOSS compared to a FFD plan with equal number 
of sampling points. The mean values and the variances 
show the same behavior as for the RBF. However, the 
DACE converges more slowly than the RBF when the 
sampling points are increased and the results for all 
sampling strategies are worse than the respective RBF 
results. In this case, the RBF approach is obviously the 
better choice.

The avarage and maximum �-cut RMSE in Figs. 16 and 
17 behave also similar to the RBF model. Only the high 
error values for the FOSS method at four sampling points 

is to be emphasised. But such negative outliers could also 
be found for the RBF surrogate with LHS. Nevertheless, 
although the RMSE here is many times higher in the lower 
�-cuts, it is still lower in the higher �-cuts. The shift ensures 
that the higher �-cuts are more accurate despite very large 
errors in the overall model.

6  Mechanical example: plastic deformation 
with unloading

The application of the FOSS method to an engineering 
problem is demonstrated by an example taken from the 
Abaqus tutorial “Simple plastic deformation with unload-
ing” of Simuleon [29]. It shows the plastic deformation of 
a simple beam, which can be seen also as a simple deep 
drawing process with springback. The process is simulated 
using the Abaqus FEA software [30].

6.1  Model system

Figure 18 shows the simulation setup of the deforma-
tion process. The punch presses centrally on the beam, 
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Fig. 15  Branin function: maximum RMSE on �-cuts for a RBF surrogate with 4 (left), 9 (center), and 16 (right) sampling points

Table 2  Average RMSE for a 
DACE surrogate based on FFD, 
LHS and FOSS with 4, 9 and 16 
sampling points (SP)

Test problem RMSE

4 SP 9 SP 16 SP

Mean Var Mean Var Mean Var

Branin
FFD 85.13 – 40.68 – 26.45 –
LHS 71.59 174 53.23 91 45.56 117
FOSS 82.69 1403 53.23 52 59.29 80
Camelback
FFD 2.54 – 0.91 – 0.98 –
LHS 1.85 2.08 1.29 0.03 1.06 0.02
FOSS 2.69 0.79 1.53 0.04 1.30 0.02
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while the beam sits on both ends on the drawing matrix. 
All three parts are modelled using an isotropic elas-
tic material model for steel. Young’s modulus is set at 
E = 2.1 × 105 Nmm−2 and the Poisson ratio at � = 0.3 . The 
initial yield stress of the beam is set to �y,0 = 300 Nmm−2 
with isotropic hardening such that a yield stress of 
�y,0.05 = 310 Nmm−2 is reached at an equivalent plas-
tic strain of �peqv = 0.05 . The beam, with dimensions 

100 mm × 10 mm × 10 mm , is meshed with 2 mm edge 
length hexahedrons, and the two remaining parts with 
3 mm edge length hexahedrons. This results in a total of 
1836 nodes and 1250 linear hexahedral elements of type 
C3D8R. The punch is given a displacement of uP = 35mm 
in the negative y-direction using displacement edge 
constraints. After loading, the punch is returned to its 
original position. Due to symmetry, only one half is 
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Fig. 16  Branin function: average RMSE on �-cuts for a DACE surrogate with 4 (left), 9 (center), and 16 (right) sampling points
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Fig. 17  Branin function: maximum RMSE on �-cuts for a DACE surrogate with 4 (left), 9 (center), and 16 (right) sampling points

Fig. 18  Deep drawing process 
in Abaqus
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calculated in the simulation and the right-hand edge is 
fixed in the z-direction, as shown in Fig. 18.

However, the focus is not on the exact representation 
of a deep drawing process, but on an uncertainty analysis 
by means of parameter variation. In order to ensure some 
complexity, four parameters are considered as uncertain, 

1. the friction coefficient � = 0.1 ± 0.05,
2. the displacement boundary condition of the punch 

uP = 35 ± 0.01mm,
3. the initial yield stress �y,0 = 300 ± 2

N

mm2
,

4. and the yield stress at 0.05 plastic strain 
�y,0.05 = 310 ± 2

N

mm2
.

The four uncertain parameters are modelled as triangular 
fuzzy numbers as described in Sect. 2. As result variable 
the maximum deformation of the beam in y-direction after 
relief of the punch is chosen.

Two DACE models using 16 sampling points each are 
constructed, one based on a LHS and the other based on 
the FOSS (with nwFOSS = 2).

6.2  Evaluation of the maximum displacement

The resulting fuzzy output for the two surrogate models 
are shown in Fig. 19. For a nonlinear problem with trian-
gular inputs, the output fuzzy numbers are not necessarily 
triangular again. This can be observed also here, where the 
effect is stronger for the FOSS based surrogate.

To evaluate the error, the RMSE is calculated for a sin-
gle �-cut at � = 0.8 . For this purpose, the full model is 
evaluated at 256 points from a FFD over the correspond-
ing parameter range. The resulting RMSE is 0.0059 for the 
FOSS and 0.01 for the LHS design. To see the influence of 
the stochastic placement of the sampling points in the LHS 
and FOSS, the evaluations are repeated with two other 
sampling plans, resulting in a RMSE of 0.006 for the FOSS 
and 0.0069 for the LHS. Even if just two evaluations per 

sampling strategy are too few for a quantitative compar-
sion, both simulations show a superior behavior of the 
FOSS.

At this �-cut, the displacement deviations due to param-
eter uncertainty are about 0.07 mm and the error due to the 
surrogate modelling is in the range 0.005–0.01 mm. With a 
total displacement of about 35.1 mm the modelling error 
does correspond to about 0.01–0.03%, which is definitely a 
very good result for a surrogate model. However, when con-
sidering the relation between parameter uncertainty and 
modelling error, the sampling strategy makes a significant 
difference. The FOSS method gives a deviation of

while the LHS method gives

Especially in higher �-cuts, where the parameter uncer-
tainty is smaller, the modelling error dominates.

7  Conclusion

Surrogate models are necessary when many evaluations of 
an expensive full model are required. However, the accu-
racy of a surrogate model depends stronly on the num-
ber and placement of the underlying sampling points, i.e. 
the so called design of experiments. Typical applications 
are optimization problems or systems with uncertain 
parameters. For example, the description of epistemic 
uncertainties using fuzzy numbers necessitates many sys-
tem evaluations either to solve the corresponding �-cut 
optimizations or to provide enough evaluations for pure 
sampling based approaches. While most common design 
of experiments try to achieve an equal accuracy over the 
whole parameter space, this may not be suitable in a fuzzy 
context. Here the interpretation of fuzzy numbers makes 
a higher accuracy close to the core values desirable. This 
is adressed here by introducing the Fuzzy Oriented Sam-
pling Shift (FOSS), which is a Latin hypercube based design 
of experiments modified for use in a fuzzy arithmetical 
context. The FOSS method is optimized to achieve higher 
accuracy at higher �-cuts, while maintaining sufficient 
accuracy over the whole parameter space. This ability is 
demonstrated for two test functions. A superior perfor-
mance compared to standard Latin hypercube and full 
factorial designs with equal number of sampling points is 
achieved for higher �-cuts as intended, albeit at the price 
of some accuracy loss in the lower �-cuts. Similar results 
are obtained for an application example, where LHS and 

(27)
0.005

0.07
× 100 = 7%,

(28)
0.01

0.07
× 100 = 14%.

Fig. 19  Maximum fuzzy displacement for DACE models with LHS 
and FOSS method
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FOSS designs give similar results, but the FOSS performs 
better at higher �-cuts.

The FOSS method is therefore recommended when 
there is an uncertain, expensive system which cannot be 
described statistically and nonetheless a higher weight-
ing with decreasing uncertainty is to be achieved. The 
uncertainty was described here by means of fuzzy num-
bers. The extension to general fuzzy quantities (e.g. fuzzy 
intervals) can be part of further research work. Another 
aspect is a more detailed investigation of the influence 
of the used surrogate model, which was limited here 
to two models. The focus should remain on small data, 
otherwise the advantages of the FOSS method are lost.
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