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Abstract 
The utilization of bio-based technology for energy has piqued researchers’ curiosity around the world. As a result, bioethanol 
fermentation has been a hot topic of research for many scientists since it uses less energy and chemicals, produces fewer 
harmful by-products and emissions, and has environmentally favorable applications. The modeling and simulations of one-
dimensional product and substrate inhibitions for sorghum, maize, and cassava extracts are discussed in this paper. Because 
it provides an edge over other methodologies, mechanistic modeling techniques are used. Models of substrate and product 
inhibitions in one dimension (1-D) are constructed. These 1-D models are then confirmed using parameter estimates before 
being employed in the work’s simulations. For each dynamic model constructed, model fitness coefficients (α) are calculated. 
For the product, the exponential inhibition model, sorghum extract data has the best model fitness coefficient (α = 0.4088), 
for product sudden stop inhibition model and cassava extract data gives the best model fitness coefficient ( � = 0.4417) for 
product exponential model. The projected yield increases for substrate exponential inhibition with sorghum extract data, 
substrate linear inhibition with maize extract data, and substrate linear inhibition with cassava extract data are 74%, 27%, 
and 25%, respectively. This unique framework has offered the industry a wide choice of kinetics models to choose from to 
alleviate inhibitions in fermentation systems and maximize yield and productivity in the bioethanol fermentation process.

Article Highlights 

•	 The modeling of inhibitions namely linear, sudden stop, 
and exponential in batch fermentation processes are 
presented in this article.

•	 Model fitness coefficient analysis showed the product 
as a primary inhibitor and substrate as a secondary 
inhibitor during the process

•	 The cassava and maize processes described linear inhi-
bition model and sorghum fermentation showed expo-
nential product inhibition model.
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1  Introduction

For both industrial and domestic consumption, the 
global economy is heavily reliant on energy sources. 
Despite this reliance, there is a growing global interest 
in using bio-based technologies for energy generation 
because fossil fuel supplies are finite and their extraction 
results in high greenhouse gas emissions, according to 
Vohra et al. [1]. Because it is recognized as an efficient 
and sustainable alternative in the provision of a con-
siderable amount of energy that helps sustain energy 
supply to our society, bioenergy, which is eco-friendly, 
is steadily and widely adopted in the energy business, 
according to Choi et  al. [2]. Bioethanol fermentation 
has piqued researchers’ interest among the various bio-
energy generation techniques since it consumes less 
energy during the fermentation process, produces less 
harmful by-products and emissions, and its uses are 
environmentally favorable, Pulidindi et al. [3]. Bioethanol 
fermentation is a rapidly increasing application that has 
been researched by researchers in the food and bever-
age sectors Marshal et al. [4]. Other applications include 
medicine, cosmetics, and pharmaceuticals for antiseptic, 
disinfection, and antidote, Harde et al. [4], Pulidindi et al. 
[3]. Bioethanol fermentation for the manufacture of the 
first-generation, second-generation, and third-genera-
tion biofuels using simple sugars, starch, lignocellulosic, 
and seaweed has recently become the focus of research 
Chisti [5]. The project fosters reduced rivalry for fossil 
fuel deposits and arable land, which are scarce. Since 
it has been demonstrated that 0.3934 kg of galactose 
can be produced from 1 kg of seaweed (Eucheuma), and 
1.18 kg of seaweed can be obtained from one square 
meter of annual cultivation, seaweed has been inves-
tigated as a natural resource with the potential to be 
developed as a raw material for bioethanol Goh et al. [6], 
however, due to the impact of inhibitors on the substrate 
in the form of toxic chemicals and the limited ability of 
bacteria to ferment galactose, fermentation approaches 
for the manufacture of bioethanol from seaweed are 
still inefficient Alriksson [7]. The fermenter is the most 
important element in the bioethanol fermentation pro-
cess, and appropriate environmental conditions are 
necessary to generate the desired output Alford [8]. The 
utilization of bioreactors for commercial-scale produc-
tion often comes with operational issues, such as deal-
ing with inhibitors Asiedu et al. [9], Han [10]. This has a 
detrimental impact on bioethanol yield and productiv-
ity. Several techniques have been employed to reduce 
substrate inhibitions in bioreactors during bioethanol 
fermentation. Genetic approaches, which require spe-
cialized laboratory procedures, are blind to complex 

research such as metabolic pathways which are difficult 
to comprehend Palsson et al. [11], Brenner [12]. Due to 
the vast amount of data involved, statistical design of 
experiments, which is limited by dimensional space due 
to the cost and time of numerous experimental rounds, 
has been the problem of local optima and low-speed 
computing sequences Schoneberger et  al. [13], Boer 
et al. [14]. Mechanistic modeling of biochemical kinet-
ics is a conceptual problem-solving approach Yu et al. 
[16]. This method uses quick simulation sequences that 
can be used for global optimization problems Ming et al. 
[15]. An important accomplishment in improving the 
efficiency of bioethanol fermentation, which translates 
to greater yield and productivity, is obtaining a more 
dependable and robust technique for reducing the prob-
lems of inhibitions. Although research on mathemati-
cal modeling and simulation to describe substrate and 
product inhibitions in fermenters has been conducted, 
it should be noted that not all degrees of freedom of 
the problem are considered at the same time. Abunde 
et al. [16], for example, modeled one-dimensional prod-
uct inhibition in sorghum and maize. Asiedu et al. [9] 
looked at a two-dimensional product and substrate 
inhibition for cassava in another investigation. Thus, for 
sorghum, maize, and cassava extracts, this research pro-
posed a general modeling technique for 1D product and 
substrate inhibitions. Mechanistic modeling techniques 
were used in the study, which has an advantage over 
other methodologies Harmelen et al. [19]. The research 
was divided into two sections: Mathematical modeling 
was used to generate one-dimensional substrate and 
product inhibition models through a combination of 
the Monod equation and inhibition models to generate 
inhibition patterns. These models were then validated 
using data generated from some breweries in Ghana. The 
paper is therefore arranged as follows:

The Abstract Comprises a motivation statement, objec-
tives of the work, materials and methods used, results 
obtained after the analysis, conclusion, and key findings 
of the work. Section 1 consists of an introduction and a 
brief literature review, importance of the work, problem 
statement, controversies if any, justification or unique 
solution, objective, and method of the study. Section 2 
describes the approaches and methods. The relevant theo-
retical development behind the modeling of the types of 
inhibitions that occur during fermentation is extensively 
reviewed. Section  3 described parameter estimations 
determination of the derived inhibition models. In Sect. 4, 
a generalized framework for modeling one dimension 
product and one dimension substrate inhibitions models 
was formulated. The fermenter dynamic models derived 
were fitted to Monod kinetics and all constants were 
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determined. In Sect. 5 the calculations of the model fitness 
coefficient were determined to ascertain the robustness 
of the models used in the work. Section 6 discusses the 
visualization effect and increase in yield. In Sect. 7 of the 
work, a control strategy for the types of inhibitions studied 
was proposed. Section 8 discusses the results of the study 
and the presentation of the main findings of the work. Sec-
tion 9 thus concludes this research study through remark-
able comments along with future useful works.

2 � Theoretical developments

2.1 � Substrate and product inhibitions modeling

The effect of inhibitions modeling on the specific growth 
rate of ethanologenic bacteria is shown in Fig. 1a and b. 
The specific growth rate increases as the substrate con-
centration increase until the optimum specific growth 
rate is reached at a particular concentration. As shown 
in Fig. 1a, the specific growth rate begins to decline at 
this concentration. This is due to the fermentable sugars 
exerting significant osmotic pressure on the ethanolo-
genic bacteria. Increased product concentration does 
not appear to boost the specific growth rate. Any rise in 
product concentration (inhibitory concentration) in the 
fermenter results in a decreased specific growth rate as 
shown in Fig. 1b. The alcoholic stress on the yeast cells 
causes the drop in specific growth rate. In bioreactors, 
inhibition can be defined as a material that harms yeast 

cells without killing them, however, if the inhibitory sub-
stance causes cell death, it is classified as a toxic sub-
stance Kristensen [17], Kaparuju [18].

The kinetics of cell growth is heavily influenced by the 
cell’s physiology, nutritional requirements, and sensitiv-
ity to external circumstances, Basso et al. [19]. The yeast 
strains employed during the fermentation process are 
(a) Ale yeasts, (b) Lager yeasts, and (c) Wild yeasts. As a 
result of environmental variables, product and substrate 
inhibitions, the yeast cells stated have varied proper-
ties. It is shown that the nature of fermentable sugars 
obtained from different carbohydrate sources differs, 
in terms of their growth kinetics and hence response 
pattern to inhibitions of a given microorganism. In this 
study, three types of inhibition patterns will be consid-
ered: linear, exponential, and sudden stop, as shown in 
Fig. 2.

According to research to the inhibition of substrate 
and product on microbial cells is based on very similar 
effects and is tightly linked, Stambaugh [20]. The three 
inhibition patterns given in Table 1 describe how fer-
mentation yeasts respond to inhibition. The mathemati-
cal formulas for the three inhibition patterns for both 
substrate and product are shown in Table 1.

Onset of inhibi�on with increase in product concentra�on

Onset of inhibi�on with increase in substrate concentra�ona

b

Fig. 1   a The Onset of substrate inhibition, b The Onset of product 
inhibition

Fig. 2   Patterns of substrate and product inhibitions on microbial 
growth

Table 1   Mathematical expressions for Substrate and Product inhi-
bitions patterns  Source Abunde, Asiedu et al. [18]

SN Inhibition patterns Mathematical expressions

Substrate Product

1 Linear (1 − K
iS
S) (1 − K

iP
P)

2 Sudden stop
(

1 −
S

Smax

) (

1 −
P

Pmax

)

3 Exponential exp
(

−K
iS
S
)

exp(−K
iP
P)
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2.2 � Geometries of one‑dimensional inhibition

The Monod function, Eq. (1), is commonly used to model 
microorganisms’ growth rate. For this investigation, Monod 
[21] was used.

where �m is the maximum specific growth rate (hr−1) and 
KS is the Monod constant (g/L).

The effects of substrate and product inhibitions on 
cell growth are assumed to be one-dimensional, with cell 
growth reduction attributed to either substrate or product 
inhibition. Modifying Eq. (1) above with the three possible 
inhibition patterns for substrate and product models yielded 
one-dimensional substrate, inhibition models. Modifying 
the Monod growth function with the three possible prod-
uct inhibition patterns yielded one-dimensional product, 
inhibition models.

Figure 3 shows how these developments were made by 
non-convoluted recombination of the substrate or product 
with the inhibitory patterns.

The derived one-dimensional models-substrate inhibi-
tions- are presented by Eqs. (2), (3), and (4)

(1)� = �m

S

Ks + S

(2)μ(S) =
�maxS

Ks + S
(1 − KisS)

(3)μ(S) =
�maxS

Ks + S
e−Kis S

where Kisand
(

Smax

)−1
 (Table  2) are the initial values of 

inhibitor’s concentration that does not bring about the 
incidence of toxicity in the fermenter.

On the other hand, the one-dimensional product inhibi-
tion models are presented by Eqs. (5), (6), and (7)

Hinshelwood– Dagley [22]

Aiba and Shoda [23]

Ghose and Tyagi [24]where Kisand
(

Pmax

)−1
 are final val-

ues of the inhibitor’s concentration that does not bring 
about the incidence of toxicity in the fermenter.

The list of model parameters to be determined is pre-
sented in Table 2.

2.3 � Models that describe the fermentation process 
dynamically

The biochemical processes explain the fermenter’s bio-
logical and chemical reactions. It is taken into accounts 
the mathematical advances that depict the biochemical 
activities that occur in the fermenter. The following three 
different inhibition models are considered in this scheme 
Bastin and Dochain [28]

a)	 The reaction is assumed a pure chemical reaction and 
no biomass is involved:

(4)μ(S) =
�maxS

Ks + S

(

1 −
S

Kis

)

(5)μ(S, P) =
�maxS

Ks + S
(1 − KipP)

(6)μ(S, P) =
�maxS

Ks + S
e−KipP

(7)μ(S, P) =
�maxS

Ks + S

(

1 −
P

Kip

)

(8)S1 + S2 +…+ Sn → P1 + P2 +…+ PmFig. 3   Modifying Monod growth function with three possible inhi-
bition patterns

Table 2   List of model 
parameters

SN Parameter Description Units

1 μmax Maximum specific growth rate h
−1

2 Kis Substrate inhibition coefficient on cell growth g∕l

3 Kip Product inhibition coefficient on cell growth g∕l

4 Ks Substrate saturation (Monod) constant for cell growth g∕l

5 YPS Yield coefficient of product based on substrate utilization g∕g

6 YXS Yield coefficient of cell-based on substrate utilization g∕g

7 Gs The specific rate of substrate consumption for cell growth g∕(g.h)

8 Ms The specific rate of substrate consumption for cell maintenance g∕(g.h)
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	   The biomass (X) is assumed to be used by the 
enzyme associated with the reaction since is not iso-
lated from the yeast:

b)	 The reaction is associated with the growth of microor-
ganisms which therefore makes biomass a product is 
given below:

c)	 The production of ethanol by yeast is a result of the 
yeast consuming sugars as an energy source for cell 
growth. This process thus results in Eq. 10(b).

The production of ethanol by yeast is a result of the yeast 
consuming sugars as an energy source for cell growth. This 
process thus results in Eq. 10(b).

The species conservation equations for the batch ethanol 
fermentation process can be presented as follows: Eqs. (11) 
to (13).

Biomass mass balance in the fermenter ( X)

Product mass balance in the fermenter (P)

Substrate mass balance in the fermenter (S)

Where YPS = YXS × YPX.

2.4 � Estimation of parameters

Factors to consider when estimating parameters:
The fermenter model was developed using several con-

siderations to analyze the process data. This entails calcu-
lating the model parameters using industrial process data 
and then assessing the feed stock’s quality using statistical 
methodologies. The analysis employed to process data for 
the fermentation of Sorghum, Maize, and Cassava Extracts, 
and the criterion used to fit the model is shown in Eq. (14)

(9)S1 + S2 +…+ Sn →
X P1 + P2 +…+ Pm

(10a)S1 + S2 +…+ Sn →
X P1 + P2 +…+ Pm + X

(10b)S →
X P + X

(11)
dX

dt
= rX = �X

(12)
dP

dt
= rP = YPX�X

(13)
dS

dt
= rS = −

1

YXS
rX −

1

YPS
rP −MsX

(14)S(k) =

n
∑

i=1

[

yi − ŷ
(

ti , k
)]T

Wi

[

yi − ŷ
(

ti , k
)]

where yi is a two-dimensional vector of response values at 
a time ti and Wi are 3 × 3 weight matrices for each obser-
vation point i  . ŷ

(

ti , k
)

 is the predicted response value at 
a time ti and its relation to the bioreactor model solution 
is given by Eq. (15). Equation (16) represents the three-
dimensional solutions of the bioreactor model used for 
the fermentation.

where

and

C represents a 2 × 3 matrix indicating the state variables 
that were measured.

The model equations were numerically integrated using 
the Runge–Kutta 4-5th order method, which was imple-
mented by the ode45 procedure, and the minimization 
issue was addressed using the interior point algorithm of 
the fmincon routine, using the Matlab optimization toolbox.

2.5 � Assessing quality of parameter estimates

A linearization approach was used to examine the param-
eter estimates’ variability. Equation (16) was used to calculate 
the noise variance of the parameter estimations, and Eq. (17) 
was used to approximate the covariance matrix (17)

The standard error of the parameter estimates ( s
𝛽i

 ) is 
given by Eq. (18). The correlation matrix is computed using 
Eq. (19) and the coefficients of variation.

were obtained by using Eq. (20).

(15)ŷ
(

ti , k
)

= C .x
(

ti , k
)

+ 𝜀

(16)x
(

ti , k
)

= [X (t), P(t), S(t)]T

C =

(

0 1 0

0 0 1

)

(17)𝜎
2 =

1

n − p

n
∑

i=1

(

yi − ŷ
(

ti , k
))2

(18)cov(k) = 2Ĥ−1
𝜎
2

(19)s ̂ki
=

√

diag
(

cov
(

̂k
))

(20)corr
�

̂k
�

=
covi,j

√

covi,i
√

covi,j
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By inputting the process data, the software performed 
an automated fitting for 19 models and ranks them in 
order of best fit using both numerical and graphical 
approaches. The numerical approach resides in the com-
putation of a parameter referred to as alpha (α); the model 
fitness coefficient (Eq. 21), which takes into account four 
statistical coefficients for its computation. These coeffi-
cients, which included, the coefficient of determination 
( R2 ), adjusted coefficient of determination ( R2Adj ), root 
mean square error ( RMSE ) and the reduced chi-square ( �2 ) 
were major validation criteria for model selection. The cri-
teria for a good quality fit is that R2 , and R2Adj values are 
high while RMSE and �2 are low, Hahn [25], Huang [26], 
Cameron [27].

If models have a similar correlation coefficient, models 
with the lowest values are deemed appropriate to rep-
resent a specific data set. The contours that describe the 
correlation between the model parameters are examined 
using the graphical technique.

3 � Dynamic models

A generic framework for modeling one-dimensional 
product and substrate inhibitions was developed from 
sorghum, maize, and cassava extracts data. Because of its 
great accuracy for pure cultures and simple substrates, the 
Monod model was chosen as the foundation for modeling 
the inhibitions, Contois [28]. More so, the Monod model 
is very suitable for homogenous cultures with similar 
characteristics Boekhorst et al. [29] and cannot compe-
tently describe the degradation of a complex substrate 
such as urban waste Pfeffer [30]. Within the context of 
one dimension inhibition modeling, product or substrate 
inhibitions were appropriate to our study. Three (3) inhi-
bition patterns, namely linear, exponential, and sudden 
halt, were evaluated, as well as three sets of data from 
three different substrates, namely sorghum, maize, and 
cassava. In total, 19 fermenter bioreactor models were 
developed and validated using parameter estimation for 
their respective kinetic constants, model fitting of their 
respective substrate use, and product formation curves 
concerning process data. Model fitting for substrate sud-
den stop inhibition using cassava extract data and product 
sudden stop inhibition using sorghum extract data did not 
converge, hence they were removed from the study. For 

(21)
CV =

√

diag
(

cov
(

̂k
))

̂ki

(21)α = χ2 + RMSE +
(

1 − R2Adj
)

+
(

1 − R2
)

best-performing models selection, the quality of param-
eters estimated was tested using a linearization to produce 
the model fitness coefficient (α). (Eq. 21).

3.1 � Fermenter dynamic models fitting with monod 
kinetics

Figure 4 shows the process data for sorghum, maize, and 
cassava extracts after fitting the Monod-based dynamic 
model. Table 3 shows the estimated kinetic constants and 
statistical validation parameters used to test the fitting 
quality, revealing that the sorghum extract (Fig. 4a) has a 
very high R2 (0.9947) and a low RMSE (0.0923). R2 is high 
(0.870) for maize extract (Fig. 4b), and, X2 (77.239) remains 
high as well.

Similarly, the cassava extract (Fig. 4c) has a high value of 
R2. (0.7736) and a moderate value of, X2 (20.9467).

3.2 � One‑dimensional substrate inhibition

Model fitting of a one-dimensional substrate linear inhibi-
tion dynamic model with data from sorghum, maize, and 
cassava extracts is shown in Fig. 5. Table 4 shows the cal-
culated kinetic constants and statistical validation values 
for evaluating the quality of model fitting. With sorghum 
extract data (Fig. 5a), the one-dimensional substrate linear 
inhibition dynamic model has a very low R2 (0.3110) value 
and a very high X2 (576.5204) value.  With maize extract 
data (Fig. 5b), the linear inhibition dynamic model has a 
very low value of R2 (-0.621) and a very high value of X2 
(1880.440).  The R2 value of the same inhibition dynamic 
model fitted to cassava extract data (Fig. 5c) is very low R2 
(-1.3895), whereas the value of X2 is very high. 

With data from sorghum, maize, and cassava extracts, 
Fig. 6 shows a model fitting of one-dimensional substrate 
exponential inhibition dynamics. Table 5 shows the esti-
mated kinetic constants as well as statistical validation 
results.

Model fitting of one-dimensional substrate exponential 
inhibition dynamics with sorghum extract data (Fig. 6a) 
shows a very high R2 (0.9945) value and a very low RMSE 
value (0.0956). The one-dimensional substrate exponen-
tial inhibition dynamics model fitting using maize extract 
data (Fig. 6b) has a high R2 (0.856) value and a very high X2 
value (117.238). The same inhibition dynamic model fitted 
to cassava extract data (Fig. 6c), has a moderate value of R2 
(0.7516) and a moderate value of �2 (25.0265).

Figure 7 illustrates the experimental data for sorghum, 
and maize extracts with a model fitting of one-dimensional 
substrate sudden halt inhibition dynamics. The computed 
kinetic constants and statistical validation parameters are 
listed in Table 6. The model fitting of one-dimensional 
substrate sudden stop inhibition dynamics with sorghum 
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extract data (Fig. 7a) has a very low,R2 (0.3110) and a very 
high X2 (576.5204). Model fitting of the same abrupt halt 
inhibition dynamics with maize extract data (Fig. 7b), on 
the other hand, shows a very low value of R2 (-1.055) and 
a very high value of X2 (1869.142).

3.3 � One‑dimensional product inhibition

With data from sorghum, maize, and cassava extracts, 
Fig. 8 shows the model fitting of product linear inhibi-
tion dynamics. Table 7 shows the calculated statistical 

validation results and predicted kinetic constants. Model 
fitting of product linear inhibition dynamics with sorghum 
(Fig. 8a) revealed a high R2 (0.9944) value and a low RMSE 
value (0.0980). Model fitting of the product linear inhibi-
tion dynamics with maize extract data (Fig. 8b) exhibited a 
high R2 (0.9850) value. The same inhibitory dynamic model 
(Fig. 8c) obtained a very high R2 (0.9794) value when fitted 
to cassava extract data.

With data from sorghum, maize, and cassava extracts, 
Fig. 9 displays a model fitting of an exponential inhibi-
tion dynamic model. Table 8 shows the estimated kinetic 

a

c

b

Fig. 4   Model fitting using Monod kinetics without inhibition for fermentation of Sorghum (a), Maize (b), and Cassava (c) extracts

Table 3   Estimation of kinetic 
constants and statistical 
validation for Monod model

Models Parameter estimates Statistical validations

�
max

K
s

Y
PX

Y
XS

M
s

K
iS

RMSE �
2 R2

Batch 1: Sorghum extracts
Monod 0.0608 49.999 19.2230 0.0301 0.0100 5.0058 0.0923 0.5430 0.9947
Batch 2: Maize extracts
Monod 0.044 50.000 50.000 0.010 0.010 5.001 1.334 77.239 0.870
Batch 3: Cassava extracts
Monod 0.0358 50.0000 50.0000 0.0105 0.0100 4.9999 1.1826 20.9467 0.7736
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constants and statistical validation parameters that were 
utilized to fit the model. The exponential inhibition 
dynamic model showed a very high R2 value (0.9967) and 
a very low RMSE value when fitted to sorghum extract 
data (Fig. 9a) (0.0565).  The R2 (0.8530) value of a model 
fitting the same product exponential inhibition dynam-
ics with maize extract data (Fig. 9b) was extremely high.  
The same product exponential inhibition dynamic model 

was fitted to cassava extract data (Fig. 9c), yielding a 
high R2 value (0.9845) and a low RMSE (0.0812). 

Model fitting for the product sudden stop inhibition 
model with data from maize and cassava extracts is shown 
in Figure 10. Table 9 shows the calculated kinetic constants 
and statistical factors used to assess the fitting quality. 
Model fitting of the sudden stop inhibition model with 
cassava extract data (figure 10a) yielded a high R2 value 

b

c

a

Fig. 5   Model fitting using one-dimensional substrate linear inhibition kinetics for fermentation of sorghum (a), Maize (b), and Cassava (c) 
extracts

Table 4   Estimation of kinetic 
constants and statistical 
validations for linear inhibition 
model

Model Parameter estimates Statistical validation

�
max

K
s

Y
PX

Y
XS

M
s

K
iS

RMSE �
2 R2

Batch 1: Sorghum extracts
Linear 0.0010 0.0100 0.0100 9.9926 0.6789 1.2927 11.9689 576.5204 0.3110
Batch 2: Maize extracts
Linear 0.001 0.000 0.000 0.006 14.698 4.688 16.613 1880.440 -0.621
Batch 3: Cassava extracts
Linear 399.48 12.4839 176.955 -1.3895 -1.8490 0.3926 12.4839 176.9551 -1.3895
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(0.9874) and a low RMSE value (0.0661).  Model fitting of 
the same model with maize extract data (figure 10b) also 
produced a good R2 value (0.980).  

4 � Calculation of model fitness coefficient

The model fitness coefficients for the models included in 
the study were determined (Table 10) and dynamic models 
that best represented each set of process data were chosen. 

Sorghum extract data were best represented by a product 
exponential inhibition model (α = 0.4088), maize extract 
data by a product abrupt stop inhibition model (α = 0.6725), 
and cassava extract data by a product exponential model 
(α = 0.4417).

a

c

b

Fig. 6   Model fitting using one-dimensional substrate exponential inhibition kinetics for fermentation of sorghum (a), Maize (b), and Cas-
sava (c) extracts

Table 5   Estimation of kinetic 
constants and statistical 
validations for exponential 
inhibition model

Model Non-linear system estimation parameters values Statistical validation 
parameters values

�
max

K
s

Y
PX

Y
XS

M
s

K
iS

RMSE �
2 R2

Batch 1: Sorghum extracts
Exponential 0.0512 49.998 27.4032 0.0209 0.0100 0.0100 0.0956 0.5586 0.9945
Batch 2: Maize extracts
Exponential 0.049 50.000 50.000 0.010 0.010 0.010 1.471 117.238 0.856
Batch 3: Cassava extracts
Exponential 0.0387 50.0000 50.0000 0.0104 0.0100 0.0100 1.2976 25.0265 0.7516
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5 � Visualizing inhibition effect and increase 
in yield

The effect of inhibition was visualized by displaying a 
visual representation of the substrate exponential inhi-
bition model, the substrate linear inhibition model with 
the Monod model, as shown in this section. The effect 
of inhibition of the one-dimensional inhibition model 
that best described each substrate data; sorghum, maize, 
and cassava were simulated by plotting an inhibition 
curve and a no inhibition curve (Monod Model) on one 
graph as a graphical visualization of the two curves. The 
inhibition curve reveals overall substrate exhaustion. 
Figure  11a depicts a competitive inhibition. The No 
inhibition profile estimates a 20-h total substrate con-
version time, which is significantly less than the inhibi-
tion curve’s prediction (160 h). The sorghum extract was 
entirely exhausted within the stipulated time of sub-
strate used for both models, resulting in a 74 percent 
increase in yield.

5.1 � Exponential product inhibition effect 
with sorghum extract

The characteristics of sorghum extract data in Fig. 11b 
demonstrated a competitive inhibition since the inhibition 
curve reached a maximum concentration during product 
synthesis. The inhibition profile estimates a maximum 
product generation period of (180 h), whereas the No inhi-
bition curve predicts a much shorter time (20 h).

5.2 � Product substrate inhibition effect with maize 
extract:

The computed parameters of maize extract data in 
Fig. 12a depict a noncompetitive inhibition caused by 
incomplete substrate conversion. The No inhibition 
profile projected a 40-h total substrate conversion time, 
which is significantly less than the 180-h duration antici-
pated by the inhibition curve. The maize extract was not 

a b

Fig. 7   Model fitting using one-dimensional substrate sudden-stop inhibition kinetics for fermentation of sorghum (a), Maize (b) extracts

Table 6   Estimation of kinetic 
constants and statistical 
validations for substrate 
sudden stop inhibition

Model Non-linear system estimation parameters values Statistical validation param-
eters values

�
max

K
s

Y
PX

Y
XS

M
s

K
iS

RMSE �
2 R2

Batch 1: Sorghum extracts
Sudden stop 0.0010 0.0100 0.0100 9.9985 0.6789 0.7736 11.9689 576.5204 0.3110
Batch 2: Maize extracts
Sudden stop 0.000 51.546 28.653 0.388 0.590 9.991 21.057 1869.142 -1.055
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depleted within the stipulated time of substrate used 
for both models, resulting in a projected yield increase 
of 27%.

The inhibition profile did not reach the maximum 
concentration in the product production, Fig. 12b, the 
estimated parameters of maize extract data, revealed 
a noncompetitive inhibition. When compared to the 
period indicated by the No inhibition curve, the inhibi-
tion profile revealed a much longer product production 
time (180 h).

5.3 � Linear product inhibition effect with cassava 
extract

The inhibition profile achieved an incomplete substrate 
depletion, the predicted parameters of cassava extract 
data reflect a noncompetitive inhibition in Fig. 13a. The 
No inhibition profile, as expected, produced a com-
plete substrate exhaustion time of 20 h, which is sig-
nificantly less than the time predicted by the inhibition 

c

a b

Fig. 8   Model fitting using one-dimensional product linear inhibition kinetics for fermentation of sorghum (a), Maize (b), and Cassava (c) 
extracts

Table 7   Estimation of kinetic 
constants and statistical 
validations for product linear 
inhibition

Model Parameter estimates Statistical characteristics

�
max

K
s

Y
PX

Y
XS

M
s

K
ip

RMSE �
2 R2

Batch 1: Sorghum Extracts
Linear 0.0399 21.7613 18.3845 0.0334 0.0290 0.0411 0.0980 0.5787 0.9944
Batch 2: Maize Extracts
Linear 0.237 48.026 12.235 0.050 0.010 0.134 0.153 1.252 0.9850
Batch 3: Cassava Extracts
Linear 0.0726 6.4911 15.8288 0.0385 0.0106 0.1411 0.1077 0.5442 0.9794
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curve (180 h). The extract, on the other hand, was not 
exhausted, and the calculated increase in yield was 25%.

The estimated parameters of cassava extract data dem-
onstrated a noncompetitive inhibition in Fig. 13b. The 
inhibitory profile did not reach the maximal product for-
mation concentration. In comparison to the much shorter 
anticipated time of the No inhibition curve, the inhibition 
profile revealed a much longer product production period 
of 180 h.

6 � Control strategy for types of inhibitions

Control strategies that were proposed with the view to mini-
mize inhibition are shown in Table 11 below:

a b

c

Fig. 9   Model fitting using one-dimensional product exponential inhibition kinetics for fermentation of sorghum (a), Maize (b), and Cassava 
(c) extracts

Table 8   Estimation of kinetic 
constants and statistical 
validations for product 
exponential inhibition

Model Parameter estimates Statistical characteristics

�
max

K
s

Y
PX

Y
XS

M
s

K
iP

RMSE �
2 R2

Batch 1: Sorghum extracts
Exponential 0.1639 22.3715 4.0096 0.1697 0.0105 0.1623 0.0565 0.3490 0.9967
Batch 2: Maize extracts
Exponential 2.273 47.611 31.257 0.025 0.085 0.865 1.508 9.580 0.8530
Batch 3: Cassava extracts
Exponential 0.5966 17.8171 15.3383 0.0398 0.0104 0.6179 0.0812 0.5949 0.9845
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7 � Discussions

To ensure large outputs of ethanol at the end of the fermen-
tation, commercial ethanol batch fermentation requires a 
high concentration of substrate, typically between 18 and 
22 percent (w/w) reducing sugars. Cell recycling has always 
been a concern for titters of ethanol up to 23 percent (v/v), 
and the fermentation duration is hampered, Basso et al. [19], 
Nogueira et al. [31] since yeast viability is vital to enable recy-
cling. The occurrence of toxicity during ethanol fermenta-
tion renders the bioreactor useless since microbial cells are 

significantly impeded to the point where they can die in 
large numbers. Nonetheless, by investigating and under-
standing the roots of the inhibitory models, it is possible to 
pre-set substrate and product levels to avoid toxicity in the 
fermenter (Eqs. 2 to 7). Because the initial substrate concen-
tration is between 18 and 22 percent (w/w) in total reduc-
ing sugar, a model fitness coefficient (α) of 0.045 or below is 
strongly recommended as the substrate inhibition constant 
to minimize toxicity for linear substrate inhibition. A model 
fitness coefficient (α) of 0.346 or lower is strongly advised to 
avoid toxicity for exponential substrate inhibition. Because 

Fig. 10   Model fitting using one-dimensional product sudden stop inhibition kinetics for fermentation of (a), Maize (b), and Cassava extracts

Table 9   Estimation of kinetic 
constants and statistical 
validations for product sudden 
stop inhibition

Model Parameter estimates Statistical characteristics

�
max

K
s

Y
PX

Y
XS

M
s

K
iP

MSE �
2 R2

Batch 2: Maize Extracts
Sudden stop 0.130 40.627 25.046 0.023 0.010 7.802 0.206 1.610 0.980
Batch 3: Cassava Extracts
Sudden stop 0.1152 33.9245 32.8362 0.0178 0.0100 7.3787 0.0661 0.3630 0.9874

Table 10   Calculated model 
fitness coefficient ( � ) of 
determination value for 
both substrate and product 
inhibition models

Model Substrate 
Inhibition � 
value

Product 
Inhibition � 
value

Substrate 
Inhibition � 
value

Product 
Inhibition � 
value

Substrate 
Inhibition � 
value

Product 
Inhibition � 
value

Sorghum extract Maize extracts Cassava extracts

Monod 0.6406 0.6585 78.703 79.129 22.3557 22.698
Linear 589.1783 0.6823 1898.674 11.235 191.8285 0.6916
Exponential 0.6597 0.4088 118.853 1.836 26.5725 0.4417
Sudden stop 589.1783 1.42 1892.254 0.6725 – –
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product titters can reach 23 percent (v/v), a model fitness 
coefficient (α) of 0.043 or below is strongly recommended 
as the product inhibition constant to minimize toxicity for a 
linear product inhibition. Because product titters can reach 

23 percent (v/v), a model fitness coefficient (α) of 0.346 as 
the product inhibition constant is strongly recommended 
to avoid toxicity for an exponential product inhibition. It’s 
worth noting that the linear inhibition pattern and the sud-
den stop inhibition pattern both produced equal model 
fitness coefficient results, implying that they’re identical. 
Their physical meaning, on the other hand, differs, because 
a fermentation process with a linear pattern is expected 
to degrade slowly but surely towards toxicity, resulting in 
catastrophic cell death. The specific rate of microbial growth 
is reduced to zero as a result of this, a fermentation with a 
sudden stop pattern, on the other hand, is likely to swiftly 
degrade into toxicity, with a large number of microbial cells 
dying. In this instance, the specific rate of microbial growth 
is rapidly reduced to zero. The point here is that the linear 
inhibition pattern is considerably more dangerous to the 
process than the sudden stop inhibition pattern. The com-
mon denominator is that if allowed to, the process will stop 
with an excess of the substrate due to microorganisms’ dis-
interest to continue converting the substrate into ethanol as 
a product. As a result, including both patterns at the same 
time for parameter estimation and model simulation is time-
intensive unless their physical meanings are well understood 
and incorporated into the models. The findings of this study 
were found to agree with prior findings by other researchers, 
such as Chen and McDonald [32]. The relevance of the rate 
constant, Ki., which originates from the substrate or prod-
uct inhibition during ethanol fermentation cannot be over-
stated because it serves a dual role. The beginning substrate 

Fig. 11   a The plot of exponential product inhibition: competitive 
inhibition with sorghum, b The plot of exponential product inhibi-
tion effect with sorghum extract estimated parameters

Fig. 12   (a) The plot of product substrate inhibition effect with 
maize extract estimated parameters, b The plot of linear product 
inhibition effect with maize extract estimated parameters

Fig. 13   a The plot of linear product inhibition effect with cassava 
extract estimated parameters, b The plot of linear product inhibi-
tion effect with cassava extract estimated parameters
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concentration and the desired product concentration at the 
end of the fermentation, the model can be utilized to control 
inhibition. Secondly, the rate constant, Ki., has the feature 
of being temperature-dependent. It can thus be modified 
using the Arrhenius equation to optimize the fermenter for 
the best temperature profile Petrou et al. [33].

8 � Conclusion

The study was prompted by the fact that the existing 
global economy relies heavily on fossil fuels for energy 
to efficiently power both industrial and home operations. 
While fossil fuel supplies are finite, and their exploita-
tion over time exacerbates the negative impacts of high 
greenhouse gas emissions, bioethanol is slowly but stead-
ily becoming more widely used in the energy business to 
help preserve our society’s energy supply. This research 
has provided unique contributions that have yet to be 
implemented in the biochemical process sector. This study 
demonstrated that a combination of mechanical transla-
tions of fermentation inhibitions into the physical environ-
ment of an industrial fermentation process via mathemati-
cal models resulted in both qualitative and quantitative 
interpretation of the results. The goal of this project was 
to create a framework for one-dimensional substrate and 
product inhibition to better understand how sorghum, 
maize, and cassava extracts behaved during the fermenta-
tion process. Two inhibition geometries for Substrate and 
Product were created, and by changing the Monod equa-
tion, a total of six (6) one-dimensional inhibition equations 
were generated.

The use of a non-convoluted recombination process 
incorporating the Monod equation, two inhibitors, and 
three inhibition patterns made this achievable. For a 
system of three states involving Substrate, Product, and 
Biomass, stoichiometric biochemical reaction schemes 
within the fermenter was established, as well as a system 
of dynamic equations for a batch ethanol fermentation 
process. This showed a material balance that described 
the fermentation processes using first-order differen-
tial and algebraic equations. Models of the fermenter’s 
behavior and parameters about the feedstock were 
built with the help of the construction of the fermenter. 
This allowed data to be extracted on the quality of each 

feedstock (sorghum, maize, or cassava). The values of the 
statistical model fitness coefficients were used to deter-
mine the best performing dynamic model for each feed-
stock, and the best fitting model with the lowest value 
of the model fitness coefficient was chosen for each 
feedstock. In summary, Product Exponential inhibition 
emerged as the best one-dimensional inhibition mod-
els that best-described sorghum data (α = 0.0859), Prod-
uct Linear and Product Sudden stop inhibitions equally 
appeared as the best performed one-dimensional inhi-
bition models that best-described maize extract data 
(α = 2.3786 and α = 2.3786 respectively) and Product Lin-
ear and Product Sudden stop inhibitions equally came 
out as the best one-dimensional inhibition models that 
described cassava extract data (α = 2.0628 and.

α = 2.0628 respectively). Competitive inhibition was 
seen in sorghum, while non-competitive inhibition was 
observed in maize and cassava. The most appropriate 
control approach necessary to decrease inhibition was 
qualitatively examined in terms of control strategies. The 
study provided a library of one-dimensional inhibitory 
kinetics models that are very dependable in the mitiga-
tion of inhibitions for ethanol fermentation, it has the 
potential to improve fermenter design. It has cleared the 
path for newer fermentation technology improvements.
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