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Abstract
Atmospheric particulate matter (PM) is one of the major environmental concerns in Europe. A wide range of studies has 
proved the ecotoxic potential of atmospheric particles. PM exerts chemical stress on vegetation by its potentially toxic 
constituents; however, relatively few studies are available on assessing phytotoxic effects under laboratory conditions. 
In our study, aqueous extract of particulate matter was prepared and used for treatment. Experiment was following 
the procedure defined by the No. 227 OECD Guideline for the Testing of Chemicals: Terrestrial Plant Test. Tomato (Lyco-
persicon esculentum Mill.) plants were used; elucidated toxicity was assessed based on morphological and biochemical 
endpoints such as biomass, chlorophyll-a and chlorophyll-b, carotenoids, and protein content. Biomass reduction and 
protein content showed a clear dose–effect relationship; the biomass decreased in comparison with the control (100%) 
in all test groups (TG) at a steady rate (TG1: 87.73%; TG2: 71.77%; TG3: 67.01%; TG4: 63.63%). The tendency in protein 
concentrations compared to the control was TG1: 113.61%; TG2: 148.21% TG3: 160.52%; TG4: 157.31%. However, pigments 
showed a ‘Janus-faced’ effect: nutrient content of the sample caused slight increase at lower doses; actual toxicity became 
apparent only at higher doses (chlorophyll-a concentration decrease was 84.47% in TG4, chlorophyll-b was 77.17%, and 
finally, carotene showed 83.60% decrease in TG4).

Keywords  Aerosol ecotoxicity · Vegetative vigour test · Lycopersicon esculentum Mill. · Growth inhibition · 
Photosynthetic pigments · Protein

1  Introduction

Atmospheric particulate matter (PM) is a portion of air pol-
lution and one of the major environmental concerns in 
Europe [1]. According to the aerodynamic diameter, parti-
cles can be classified as PM10 (< 10 µm diameter) and fine 
aerosols (PM2.5 or PM1). Toxicity of these particles is deter-
mined by numerous factors including chemical composi-
tion and size. However, classification on physicochemical 
parameters might be rather difficult; therefore, the gen-
eral method to group PM is based on diameter such as 
coarse PM < 10 μm (PM10), fine PM < 2.5 μm (PM2.5), and 

ultrafine PM < 0.01 μm (PM0.1) [2]. While limit values exist 
for PM10 and PM2.5 fractions in Europe, the significance of 
ultrafine particles (≤ 0.1 μm, PM0.1) has increased as they 
pose higher environmental risk [3].

Plants are directly exposed to airborne pollutants, 
enduring a practically lifetime exposure. The deleterious 
effects of airborne PM on higher plants include morpho-
logical, physicochemical, and biochemical alterations [4]. 
Dry deposition of particles on leaves can negatively influ-
ence the first photochemical reactions via shading effect 
[5]. Physical damage also implies that particles can simply 
block stomata or alter optical absorption of the leaves [6]. 
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Resulting physiological responses involve impaired growth 
and photosynthesis, as well as altered transpiration [7].

Particulates might bind potentially phytotoxic com-
pounds which will affect plants by dry or wet deposition 
[8]. Atmospheric dry deposition occurs via gravitational 
settling; wet deposition is the washout of both vapour 
phase and particulate bound chemicals by precipitation 
[8]. Atmospheric wet deposition is considered a significant 
removal mechanism of particulate matter, polycyclic aro-
matic hydrocarbons (PAHs) [9], and metals [10].

PAHs are persistent and ubiquitous organic pollutants 
which are released into the environment mainly through 
anthropogenic sources such as vehicular exhaust, biomass 
burning, waste incineration, or residential heating [11]. 
Low molecular weight PAHs (consisting of 2–3 aromatic 
rings) usually migrate in the environment in the gaseous 
form while heavy molecular weight PAHs are transported 
by particles [12].

Major source of heavy metals is particulate debris 
thrown off from brakes. Maiorana et al. [13] found high 
concentration of potentially toxic heavy metals such as 
Al, Cr, Zn in experimentally produced brake debris; also, 
phytotoxicity of these samples was proved. Aquatic toxic-
ity of PM emission generated in different brake systems 
was also supported [14].

PM and PM-bound chemicals such as PAHs and heavy 
metals have been reported to cause oxidative stress in 
plants [15, 16]. Formation of reactive oxygen species (ROS) 
can trigger membrane and cell damages [17].

To scavenge excess ROS, plants have evolved an antioxi-
dant defence system including non-enzymatic and enzy-
matic pathways. Major antioxidant enzymes are ascorbate 
peroxidase (APX), catalase (CAT), peroxidase (POD), and 
superoxide dismutase (SOD) [18]. Jing et al. [19] reported 
that naphthalene exposure resulted in structural altera-
tions of CAT and SOD; also, it bound to the surface of these 
enzymes. Similar mechanisms were reported for phenan-
threne toxicity [15]. Increased levels of CAT and POD were 
found by Karmakar and Padhy [21] as indicator of stress 
triggered by PM-bound heavy metals. Increased gene 
expression of POD and CAT was found in tomato seedlings 
exposed to heavy metal stress [20].

ROS may also interfere with various sites of the photo-
synthetic electron transport chain, inhibiting the pigment 
synthesis process [21]. Decreased chlorophyll content can 
be experienced at sites with high air pollution level. Air 
pollutants may cause the degradation of chlorophyll mol-
ecule and reduce the efficiency of chloroplasts which in 
turn affect photosynthetic rate and finally reduce growth 
rate [22]. Heavy metal stress may also have an inhibitory 
effect on chlorophyll synthesis [23].

The No. 227 OECD Guideline (hereinafter referred to as 
‘Guideline’) was originally designed to test phytotoxicity 

of chemicals used in agriculture such as general chemi-
cals, biocides, and crop protection products [24, 25]. The 
Guideline was tested and adopted in order to mimic wet 
deposition and to investigate the effect of water-soluble 
components of PM [26].

The Guideline recommends the use of following end-
points: biomass, shoot length, and visual symptoms. 
Olszyk et al. [27] discuss that assessment of vegetative 
plant growth is generally overemphasized in plant test-
ing protocols.

Present study aimed at determining the phytotoxic 
effects of urban PM2.5 extract on higher plants using 
tomato (Lycopersicon esculentum Mill.) as test species. 
While the Guideline assesses phytotoxicity based on 
biomass/growth inhibition and visual symptoms, the 
main objective of this study was to evaluate if inclusion 
of additional endpoints can be feasible and provide new 
information. Taking into consideration that biochemical 
endpoints have proved overly sensitive in a wide range of 
reports (reviewed by Rai [28]), the following biochemical 
endpoints were selected: chlorophyll-a and chlorophyll-
b, carotenoids, and protein content. Dose–effect relation-
ships were also analysed to gain better insight into the 
ecological response of each parameter.

2 � Material and methods

2.1 � Sample collection and preparation

PM2.5 (particles with diameter of 2.5 µm) aerosol samples 
were provided by the Hungarian Air Quality Reference 
Centre. Samples were collected in Budapest (Hungary), 
covering a 2-week period (from 25 December 2016 to 06 
January 2017). Equipment used was a Digitel (DHA-80) 
high-volume sampler; samples were continuously col-
lected on Whatman QMA glass fibre filters with diameter 
of 150 mm. Filters were removed and replaced in every 
24 h and stored in a freezer at -20 C until use. The halves of 
each filter were used for extraction. They were cut in pieces 
and placed in beaker filled with 1000 mL high-purity water 
(Synergy® Water Purification System MilliQ 18.2 MΩ/
cm@25 °C). As such, a composite sample was produced 
[29]. Pieces were stirred in the beaker several times; then, 
the beaker was covered. Extraction took 24 h at room tem-
perature. The extract was filtered through 0.45-µm pore 
size filter (GN-6 membrane, 0.45 µm hydrophilic mixed cel-
lulose esters) and stored in conical tubes at -20 C until use.

Analytical determinations of PAHs and heavy metals were 
conducted in the Laboratory of the ELGOSCAR-2000 Envi-
ronmental Technology and Water Management Ltd. (accred-
ited by the /Hungarian/ National Accreditation Authority, 
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registration number NAH-1-1278/2015). Concentrations 
were reported in Kováts et al. [29].

2.2 � Ecotoxicity testing

The Guideline recommends several crop species for test-
ing (Annex 2). Tomato (Lycopersicon esculentum Mill.) was 
selected. This species is not only enlisted by the Guideline 
but has also proved sensitive in experimental studies where 
detrimental effects of selected PAHs were assessed (e.g. [30, 
31]). A widely cultivated, commercially available variety 
‘Roma’ was used [32]. Seeds were purchased from Garafarm 
Ltd.

Experiment was performed based on the protocol given 
in the Guideline. Cultivation of test plants and experimen-
tal conditions were described in our previous studies [29]. 
Treatment implied that plants were sprayed with the aero-
sol water extract using a CONXIN Q1P-CX01-380 portable 
electric paint spray gun. Treatments started when test plants 
reached the 4 true leaf stage. Four test groups were set 
which received treatments as follows:

Test group 1 (TG1): Treatment: Day 0
Test group 2 (TG2): Treatment: Day 0, Day 7
Test group 3 (TG3): Treatment: Day 0, Day 7, Day 14
Test group 3 (TG4): Treatment: Day 0, Day 7, Day 14, Day 
21

After exposure, the plants were cut above the cotyledon 
as close as possible to the planting medium and each indi-
vidual plant was measured using analytical balance (Kern 
ABJ 120-AM) to four decimal places. As such, biomass was 
reported as fresh weight.

Photosynthetic pigment content was determined by 
UV VIS method based on Bag et al. [33]. 0.2-g sample was 
taken from the leaf of each plant. These samples were 
measured using analytical balance (Kern ABJ 120-AM). Leaf 
segments were homogenized with 15 mL of 80% acetone 
(Fisher Chemicals, ≥ 99.8%, ACS). The homogenized sam-
ple mixture was centrifuged (3402 g, 10 min, Mistral 2000 
MSE). Absorbance was measured from the supernatant at 
440 nm, 645 nm, 663 nm, and 750 nm using UV–VIS Spec-
trophotometer (Metertech SP8001). Used equations are:

Chl a =
[

9.78 ∗ E663−0.99 ∗ E645]∗[V∕1000 ∗ W
]

Chl b =
[

21.4 ∗ E645−4.65 ∗ E663]∗[V∕1000 ∗ W
]

Car = [4.69 ∗ E440 − 0.268 ∗ (5.13 ∗ E663 + 20.41 ∗ E645]∗[V∕1000 ∗ W
]

where E: extinction values at wavelengths; V: final volume 
(25 mL); W = mass of sample (0.2 g).

Total protein content was determined based on the 
Lowry method, with slight modifications [34]. For deter-
mination, leaf samples taken from each individual plant 
were used again. Leaves were frozen and homogenized 
with ice cold mortar and pestle in phosphate buffer (pH7, 
solution was adjusted to final desired pH using 0.1 mmol/L 
HCl or NaOH). Composition of the buffer: 1L puffer: 2.913 g 
NaH2PO4* H2O and 7.744 g of Na2HPO4*7H2Og diluted in 
18.2 MΩ/cm@25 °C Milli-Q water, chemicals from VWR 
Chemicals) containing 100µL 1 mmol/L EDTA (Lach:ner), 
100µL 0.5 mmol/L Phenylmethylsulphonyl fluoride (PMSF, 
PanReach Applichem, ≥ 99%). Samples were centrifuged 
for 20 min at 12 300 g at 4 °C.

2.3 � Statistical analysis

The analyses were carried out using one way ANOVA in 
each case. Tukey HSD post hoc tests were performed to 
reveal pairwise differences. Statistical tests were made in 
R Statistical Environment [35].

3 � Results

3.1 � Growth rate

The biomass decreased comparing to the control (100%) 
in all test groups (TG1: 87.73%; TG2: 71.77%; TG3: 67.01%; 
TG4: 63.63%). Statistically significant difference was expe-
rienced between the number of treatments and the bio-
mass (ANOVA F = 35.65, p = 1.11*10–14). The biomass reduc-
tion could be detected after one treatment, but after the 
third treatment the difference was not significant (Tukey 
HSD: Control- TG1: p = 0.011; TG1-TG2: p = 0.0005; TG2-TG3: 
p = 0.0673; TG3-TG4 = 0.8851), the tendency is shown in 
Fig. 1.

3.2 � Chlorophyll and carotenoid levels

The tendency in chlorophyll-a content was in compari-
son with the control (100%): TG1: 115.27%; TG2: 128.59; 
TG3: 118.47%; TG4: 84.47%. Chlorophyll-a levels showed 
marginal nonsignificant differences (Fig. 2a) (chlorophyll-
a: ANOVA: F = 2.821, p = 0.0658). The changes in chloro-
phyll-b concentration were as follows: TG1: 127.38%; 
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142.62%; TG3: 127.92%; TG4: 77.17%. Significant differ-
ence was found between TG2 and TG4 chlorophyll-b con-
centrations (Fig. 2b) (ANOVA: F = 4.093, p = 0.0211, Tukey 
HSD: TG2-TG4: p = 0.02022). The amount of carotene was 
compared to the control (100%): TG1: 108.92%; TG2: 
111.44%; TG3: 107.63% and TG4: 83.60%. For carotenoid 
levels, some tendency is seen in Fig. 2c, but no statisti-
cally significant difference could be obtained (ANOVA: 
F = 2.246; p = 0.116).

Chlorophyll-a and chlorophyll-b ratio showed the 
following differences in comparison with the control 
(100%): TG1: 89.04% TG2: 88.56%; TG3: 91.38%; TG4: 
108.12% (Fig.  2d). Statistically significant difference 
could be experienced (ANOVA: F = 5.728, p = 0.00604). 
There were significant differences between TG2 and 
TG4 (Tukey HSD p = 0.01136), TG1 and TG4 (Tukey HSD 
p = 0.01364), and TG3 and TG4 (Tukey HSD p = 0.0422).

3.3 � Protein content

The changes in protein concentrations in comparison 
with the control were TG1: 113.61%; TG2: 148.21% TG3: 
160.52%; TG4: 157.31%. Protein concentrations show sig-
nificant response (ANOVA: F = 7.661 p = 0.0000678, Tukey 
HSD: control—TG2: p = 0.0065; control—TG3: p = 0.00036; 
control—TG4: p  = 0.00136; TG1–TG3: p  = 0.0136) 
(Fig.  3). Analysing the curve, it is an ‘all or nothing’ 
stressor–response relationship pattern, when gradual 
development of the ecotoxic effects can be expected in 

the range between the concentration causing minimum 
and the one causing significant toxic effect [36].

4 � Discussion

When PM phytotoxicity is assessed using multiple test 
endpoints, biomass reduction is the most sensitive 
measured effect in the vast majority of the studies [37]. 
Storch-Böhm et al. [38] evaluated the sensitivity of differ-
ent parameters when test plants were exposed to diesel 
engine exhaust. Biomass was more sensitive endpoint 
than biochemical markers; however, the authors dis-
cussed that it could be a late response.

Lower growth rate can be linked to the toxic effect 
of one or more pollutants being present in the extract. 
Daresta et al. [32] reported that exposure to atmospheric 
PAHs resulted in the reduced growth of tomato seedlings 
and increased ROS levels in plant cells. Pašková et al. [39] 
confirmed the negative effect of three PAHs and their 
N-heterocyclic derivates on the germination and growth of 
seedlings of mustard, barley, and common bean. Desalme 
et al. [40] also reported biomass decrease in clover follow-
ing treatment with another PAH, phenanthrene.

Decreased growth rate can be partially attributed to 
changes at different structural levels of the photosyn-
thetic apparatus [41]. In the experiment of Oguntimehin 
et al. [30], inhibition of photosynthetic carbon assimilation 
was reported when effect of fluoranthene was assessed on 
cherry tomato plants (Lycopersicon esculentum Mill).

During stress, plants suppress some life functions 
because their stress-signalling networks need energy 
for survive; one of these functions is the photosynthetic 
capacity. The increase in biomass depends on the quan-
tity of bound carbon dioxide during photosynthesis 
[42, 43]. Molecular biological studies demonstrated 
downregulation of photosynthetic gene expression by 
abiotic stress, and consequently, this regulation also 
decreases plant growth [44] We demonstrated that PAHs 
could reduce the biomass and the decrease in biomass 
was significantly higher with increasing the number of 
treatments; after the fourth treatment, the biomass com-
pared to the control was 63.63%.

The most common effect of air pollution is lower chlo-
rophyll (Chl) content, yellowing of the leaves, changes in 
the structure of chloroplast and thylakoid membrane; 
these changes can be associated with reducing or inhib-
iting the photosynthetic activity of the plant [45, 46]. The 
most sensitive part of photosynthetic apparatus is the 
PSII; the environmental stress can cause changes in its 
structure [47]. Jin et al. [48] reported that phenanthrene, 
a widely distributed PAH, inhibited photosystem II (PSII) 

Fig. 1   Biomass in the test groups (TG1, TG2, TG3, and TG4) and in 
the control (in the boxplot figure, the thick horizontal line gives 
the median of the k values, the lower and upper edges of the box 
represent the lower and upper quartiles, and the ends of the mous-
taches give the range of data without outliers)
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activity, also blocking photosynthetic electron transport. 
Under stress, chlorophyll pigments may undergo several 
photochemical reactions, e.g. oxidation, reduction, or 
reversible bleaching [49, 50].

Decrease in chlorophyll levels was found as response to 
foliar application of PAHs in most of the studies [51, 52]. 
Tomar and Jajoo [53] observed that FLT treatment eluci-
dated significant reduction in Chl a and Chl b and also a 
reduction in carotenoid levels.

In our experiment, significant decrease in pigment con-
tent could be seen only after the fourth treatment, 84.47% 
of the control value in case of Chl a and 77.17% in case 
of Chl b. Low concentrations (low number of treatments) 
rather elucidated a slight increase (Chl a: TG1: 115.27%, 
TG2: 128.59, TG3: 118.47%; Chl b: TG1: 127.38%, 142.62%, 

TG3: 127.92%). It should be stressed that the above-men-
tioned studies applied individual, definitely toxic PAHs 
while in our treatments a complex cocktail of chemicals 
was used in the form of an aerosol extract.

Similar phenomenon was found in our previous study 
[54] when seasonal pattern of rural particulate matter was 
investigated. It was explained by the nutrient content (N, 
S, and microelements) which might mask the toxic effect 
of the sample. Atmospheric aerosol particles and/or their 
aqueous extracts contain important plant nutrients in 
considerable amount, such as ammonium, nitrate, and 
sulphate [55] as well as Ca, Mg, and K [56].

Our findings are in line with previous findings of Tripathi 
and Gautam [57], as they reported that Mangifera indica 
leaves exposed to air pollution showed an increase (12.8%) 

Fig. 2   a Chlorophyll-a, b chlorophyll-b, c carotene content, d chlorophyll-a/chlorophyll-b ratio in the test groups (TG1, TG2, TG3, and TG4) 
and in the control
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in chlorophyll content. Increase in content of chlorophyll-
a, chlorophyll-b, total chlorophyll, and carotenoid in Albizia 
lebbeck and Callistemon citrinus was reported by Seyyed-
nejad et al. [58].

The chloroplast also contains carotenoids which are 
associated with the thylakoids [59]. Carotenoids are part of 
the non-enzymatic defence system; they can detoxify vari-
ous forms of ROS [60]. They play a particularly important 
role in keeping the integrity of the photosynthetic appa-
ratus. In study of MacDonald et al. [61], tomato seeds were 
treated with β-carotene; these plants had higher biomass, 
larger leaf surface and better photosynthetic activity.

Shen et al. [62] showed that carotenoids were amongst 
the most effective antioxidants under PAH pollution. The 
higher amount of accumulated carotenoids outside of 
the thyalkoids plays an essential role in the protection of 
cells, and they are important stress responses [63]. Our 
results showed that similar to the chlorophyll content, 
the amount of carotenoids was increased in TG1-TG3 
(TG1: 108.92%; in TG2: 111.44%; in TG3: 107.63%); only 
the fourth treatment resulted in lower concentration in 
comparison with the control (83.60%). High total carot-
enoid concentration is a well-recognized plant response 
to stress [64]. A similar pattern was obtained in a study of 
Deniz [65], showing that air pollution by a thermal power 
plant caused an increase in total carotenoid content. The 
low carotenoid values after the fourth treatment could be 
explained by Petrova et al. [66], stating that the resistance, 
adaptation of plants to high level of air pollution in the 
environment, can be characterized with the changes in 
photosynthetic pigment content.

In general, this ‘Janus-faced’ effect occurs in cases where 
the sample contains both nutrients and toxic compounds. 

Nutrients are supposed to mask the toxic effect at low 
concentrations [67]. In addition to higher plants, bacte-
ria showed similar concentration–response pattern when 
aqueous extracts of ash from forest fires were tested 
using the bioluminescence inhibition assay [68]. Analyti-
cal measurements demonstrated that important nutrients 
were present (Ca, S, Mg, K and Na), but also toxic PAHs. At 
low concentrations, higher bacterial activity (higher lumi-
nescence) was found, but at higher concentrations light 
emittance of the test bacteria decreased.

Chlorophyll a/b ratio is a sign of the functional pigment 
apparatus and light adjustment, and the total chlorophyll 
contents characterize the “greenness” in plants [69]. Our 
results demonstrated that chlorophyll a/b ratio was lower 
after the treatments than in the control, except for TG4. 
With leaf ageing, the decomposition of chlorophyll-a is 
faster than chlorophyll-b [70] that can be responsible for 
the lower chlorophyll a/b ratio after the treatments. This 
suggests that the phytotoxic effect of PAHs causes similar 
changes in pigment content than leaf ageing; chlorophyll 
a/b may be a sensitive parameter to indicate PAH stress 
[71].

The important influences of ROS have been reported in 
many studies [62]; it has control and regulation effect on 
plant life cycle [72]. ROS are produced under optimal con-
ditions but during stress the rate of production increases.

ROS levels and oxidative stress could be indicated with 
proteins; they are considered consistent indicators of the 
controlled modulation of changes in plants cells [73]. We 
found in this study that in stressed leaves the amount of 
protein was higher than in control plants (TG1: 113.61%; 
TG2: 148.21% TG3: 160.52%; TG4: 157.31%.); it could be 
an adaptive mechanism for plants’ resistance to PAHs. The 
higher amount could be explained by several reasons; 
probably the plants synthetize more proteins for replace 
the damaged proteins or the higher production of anti-
oxidant enzymes [74]. Detoxification-related and ROS 
scavenging protective proteins can also accumulate and 
they mitigate harmful effects of stress on cellular micro-
environment [75].

5 � Conclusions

Plants are exposed to an ever-increasing level of atmos-
pheric pollution. In order to study phytotoxic effects and 
to understand concentration—effect relationships under 
laboratory-controlled conditions, in our study Lycopersicon 
esculentum Mill. plants were exposed to aqueous extract of 
urban aerosol samples. The No. 227 OECD Guideline was 
adopted and modified, to include additional endpoints 
such as chlorophyll-a and chlorophyll-b, carotenoids, and 
protein levels.

Fig. 3   Protein content in the test groups (TG1, TG2, TG3, and TG4) 
and in the control
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Different endpoints showed different concentra-
tion–effect patterns. Biomass seems to reflect the actual 
toxic effect of the sample, as significant difference could 
be experienced already after the first treatment. This end-
point is already included in the Guideline and gives an 
easy-to measure indicator. An additional endpoint, protein 
content also showed appropriate sensitivity.

Considering photosynthetic pigments, the concentra-
tion–effect relationship observed was a typical ‘stimulative 
effect at low concentration, inhibition at higher concen-
tration’ pattern. This is a typical stressor–response pat-
tern occurring when the sample contains nutrients which 
might mask the toxic effect at low concentrations. The 
simultaneous application of different endpoints seems to 
give a complex characterization of the chemical mixture 
atmospheric particulates might carry.

The OECD Guideline was adopted to treat test plants 
with the aqueous extract of atmospheric PM. Following 
the protocol, clear concentration–effect responses could 
be gained which help to get deeper insight into the phy-
totoxicity mechanisms exerted by particulate air pollution.
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