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Abstract
Pure ZnO and Cr-doped ZnO nanoparticles have been synthesized via a facile chemical co-precipitation route and their 
structural, thermal characteristics were discussed systematically. In the experimental producer, the doping concentration 
has varied the range, 0.05–0.1 M, while calcined at 600 °C. The influence of Cr-doping on the physical characteristics of 
ZnO nanoparticles was investigated and addressed. As-prepared samples were analyzed via XRD, FTIR, TGA/DTA, BET, 
and ICP-MS. XRD analysis shows that ZnO and Cr doped ZnO nanoparticles with average particle sizes between 23 and 
39 nm were successfully developed with hexagonal wurtzite structure. The FTIR spectroscopy analysis confirms the exist-
ence of chromium in the doped ZnO nanoparticles and the formation of ZnO. The TGA/DTA analysis shows that Cr–ZnO 
nanoparticles are more thermally stable than ZnO nanoparticles. Moreover, the dopant concentration has been analyzed 
via ICP-MS and showed a good agreement with the expected chromium concentration. The BET surface area measure-
ment shows that 176.25 m2/g and 287.17 m2/g for un-doped ZnO, and 0.1 M Cr-doped ZnO nanoparticles, respectively. 
Hence, doping of Cr enhances the surface area and thermal stability. Thus, Cr–ZnO nanoparticles show good thermal 
stability, and high surface area, which is an excellent characteristices of nanomaterials.
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Graphic abstract 

Highlights

•	 Pure ZnO and Cr–ZnO nanoparticles have been synthesized using a facile and cost effective technique.
•	 The as prepared samples of pure ZnO and Cr–ZnO nanoparticles show wurtzite structure.
•	 Cr doped ZnO nanoparticles showed a higher surface area than that of un-doped ZnO nanoparticles.
•	 The synergetic effect of Cr and ZnO nanoparticles attributed to good thermal stability and high surface area.
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a corresponding cubic, cubic, and hexagonal structure, 
respectively. Among these structures, wurtzite is the most 
stable and thus most popular at ambient circumstances 
[16–18]. Hence, numerous efforts have been utilized in the 
preparation of ZnO nanoparticles with the variation in size 
and morphology [5, 19, 20]. Recent studies indicate that 
magnetic, optical, electrical, and structural characteristics 
of ZnO NPs can be managed by defect engineering of ZnO 
lattice [21]. Furthermore, we can adjust the characteristics 
of ZnO NPs for aspired utilization via managing structure, 
shape, and morphology [22, 23]. From different strategies 
doping of different materials in ZnO nanoparticles shows 
remarkable changes in its property [24, 25]. The doping of 
selective elements will change its electronic structure, and 
then affect the catalytic, optical, and structural characteris-
tics [26]. In terms of metal doping with different concentra-
tions, the structure, morphology, and optical properties of 
ZnO nanocrystals were studied. To change the bandgap, 
various techniques are utilized, among which the dop-
ing of transition metal ions is important [27, 28]. Hence, 

1  Introduction

Recently, nanoscale materials have revealed advanced 
occasions for several technological utilization [1–3]. 
Because of their unique, optical, catalytic, electrical, and 
magnetic characteristics and enhanced physical character-
istics such as thermal, or chemical and mechanical, metal 
oxide nanoparticles are widely employed for many appli-
cations like magnetic materials, cosmetics, batteries, phar-
maceuticals, catalysts, optical devices, protective coatings 
structured materials, and biomaterials [4–7]. Thus, the 
preparation of metal oxide semiconductors with different 
sizes and morphology has gained significant attention due 
to their excellent chemical stability and thermal property 
[8–11]. Among different nanomaterials, ZnO nanoparticles 
(NPs) have been extensively employed in many industrial 
sectors such as electro-optical devices, gas sensors, pho-
tocatalysts, antimicrobial agents, antibiotics, and electrode 
materials [12–15]. ZnO can be obtained in different crystal-
lized forms such as rock salt, zincblende, and wurtzite with 
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the doping of ZnO nanoparticles with transition metals, 
like Ag, Sb, Cr, Mn, Fe, P, In, Co, Li, Al, Ga, As, Sn, Mg, etc., 
have been observed to perform fine control of morphol-
ogy and size [29–31]. From the various transition metals, 
Ag ions have been taken as dopants, due to their simple 
link matrices, and high-corrosion resistance as well as their 
hardness [32–35]. Furthermore, among the various transi-
tion metals, Cr ions have been gained great attention as 
a dopant due to their Cr3+ radius, which is closer to that 
of Zn2+. Hence, Cr3+ can simply dope with the ZnO crystal 
lattice or replace the site of Zn2+ in ZnO [36]. The purpose 
of this study is to examine the impact of Cr doping in struc-
tural and thermal characteristics of ZnO NPs [37–39]. There 
are various methods for the development of ZnO and Cr 
doped ZnO like sol–gel method, chemical coprecipitation, 
microemulsion, thermal decomposition, spray pyrolysis, 
electrochemical deposition, and hydrothermal, solid-state 
reaction techniques have been utilized mostly [40–42]. 
Hence, cost-effective, low-temperature, fast, simple, and 
scalable synthesis methods are preferable for the prepara-
tion of NPs [43, 44]. Among these, a simple and low-cost 
chemical co-precipitation route has been selected for the 
synthesis of ZnO and Cr doped ZnO nanoparticles from 
zinc nitrate hexahydrate and chromium acetate tetrahy-
drate using sodium hydroxide as a precipitating agent 
[45, 46]. The advantages of the chemical co-precipitation 
technique from others for preparing nanoparticles are 
to obtain smaller particle size, pure particles, and better 
homogeneity [47–49]. In this work, the development of 
ZnO and Cr doped ZnO nanoparticles have been reported 
via a simple and low-cost route. Thus, the prepared prod-
ucts have been analyzed via XRD, FTIR, TGA/DTA, BET, and 
ICP-MS. In the analysis Cr, doped ZnO nanoparticles show 
better thermal stability and high surface area.

2 � Materials and methods

2.1 � Materials

In this work the chemicals utilized were analytical grade 
and used without further refinement. Zinc nitrate hexahy-
drate (Zn(NO3)2·6H2O), sodium hydroxide (NaOH), ethanol, 
and chromium nitrate tetrahydrate (Cr(NO3)2·4H2O) were 
obtained from Merck Limited, India. Deionized was used 
as a solvent.

2.2 � Preparation of ZnO and Cr‑doped ZnO

In this work, nanoparticles of pure and Cr doped ZnO with 
0.05, 0.075, and 0.1 M of Cr, have been prepared via co-pre-
cipitation approach using zinc nitrate hexahydrate, sodium 
hydroxide (NaOH) and chromium acetate tetrahydrate as 

precursor materials. For synthesis of Cr-doped ZnO NPs, 
2.5 g of zinc nitrate hexahydrate was dissolved in 80 ml 
deionized water and (0.05, 0.075, and 0.1  M) amount 
chromium acetate tetrahydrate dissolved in 100 ml was 
added to the above solution. 20 mL of 2 M NaOH solu-
tion was slowly added into the starting materials under 
vigorous stirring until pH of the solution become 12. The 
solution acquired was stirred for 2 h at 80 °C. The obtained 
product were filtered and washed for several times with 
deionized water and ethanol to remove the impurities. The 
as-prepared nanoparticles were dried in air at 100 °C for 
6 h. Finally, Annealing of the product was provided out at 
600 °C for 4 h. The samples were calcined at 600 °C for 4 h, 
due to energy from the heat would improve the vibration 
and diffusion of the atoms in the lattice, thereby crystal-
lizing the atoms. The experimental setup and additional 
explanations of the systems are shown in Fig. 1.

2.3 � Characterization

The thermal characteristics of as-prepared materials are 
analyzed by TGA and DTA. Structural properties of ZnO 
and Cr–ZnO nanoparticles was examined via XRD (SHI-
MADZU, MAXima_X XRD-7000) with Cu-Kα radiation in 
the theta-2theta angle range of 20° and 80°. The func-
tional groups and other impurities exist in of ZnO and 
Cr–ZnO nanoparticles have been analyzed via Fourier 
Transform Infrared spectroscopy (FTIR) (JASCO MODEL 
FT-IR 6660) in the wavelength range of 400–4000 cm−1. 
The Brunauer–Emmett–Teller (BET) technique was con-
ducted to estimate the total surface area of as-prepared 
nanomaterial using Quanta chrome Instruments version 
11.0. Inductively coupled plasma mass spectrometry (ICP-
MS, Agilent 7500A) was used to analyse the concentration 
of residual doping elements in the mixture at the end of 
the preparation. Before testing, a strong acid solution has 
been used to dissolve all samples.

3 � Results and discussion

3.1 � Structural analysis

The XRD patterns of pure ZnO and Cr doped ZnO nano-
particles are illustrated in Fig. 2. As shown in Fig. 2, all the 
diffraction peaks detected at 2θ values of 31.71°, 34.36°, 
36.18°, 47.46°, 56.56°, 62.76°, 67.88°, 69.03°, and 76.91° 
matched well to the (100), (002), (101), (102), (110), (103), 
(112), (201),and (202), planes, respectively, for hexagonal 
ZnO (JCPDS 01-076-0704). Thus, the peaks observed from 
ZnO nanoparticles are matched with the wurtzite struc-
ture [50, 51]. From the XRD analysis there are no diffraction 
peaks belonging to Cr species like Cr metal, and Cr oxides 
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in as prepared nanoparticles. The result shows that all Cr 
ions were perfectly incorporated into the lattice sites of the 
crystals, the products consist of pure phase, and no other 
impurities characteristic peaks are observed. The average 
crystallite size, D, of ZnO and Cr doped ZnO nanoparticles 
were calculated via the Scherrers equation [52, 53]:

where “K” is the Scherer constant, “λ” is the wavelength of the 
radiation sources, “β” is the full width at the half maximum 
intensity (FWHM) and “θ” is the peak position. Hence the 
average crystallites size of pure ZnO, 0.05 M Cr–ZnO, 0.07 M 
Cr–ZnO, and 0.1 M Cr–ZnO was 39 nm, 31 nm, 27 nm, 23 nm, 
respectively. When the doping concentration of chromium 
increases the average crystallite size (D) decreases, because 
of the distortion in the host ZnO lattice via Cr3+ ions. In addi-
tion, the strain formed in the samples because of Cr doping 
has been computed using following equation [53]:

where “ε” is strain and “θ” is the Bragg’s angle in degrees. 
Moreover, the dislocation density (δ) values of as-prepared 
samples were determined using the following equation, 
which is tabulated in Table 1 [53].

where “δ” is the dislocation density and “D” is the crystal-
lites size. The value of dislocation density was seen to be 

(1)D =
K�

�cos�

(2)Micro − strain(�) =
�cos�

4

(3)� = 1∕D2

increased as the dopant increases (Table 1). Therefore, the 
XRD spectra of pure and doped ZnO NPs shows that Cr3+ 
ions are exist within the lattice structure of ZnO via sub-
stituting certain Zn2+ ions from its lattice position without 
forming chromium-related oxide phases. Moreover, the 
radius of Zn2+ ion (0.74 A°) is different from the radius of 
Cr3+ ion (0.63 A°), and this variation in ion radius size will 
cause internal lattice strain within the lattice structure of 
Cr3+ ion doped ZnO NPs. The internal lattice micro-strain of 
the Cr3+ ion-doped ZnO nanoparticles is larger than that of 
the pure ZnO NPs. As the percentage of Cr3+ ion doping in 
the ZnO structure increases, they gradually increase.

3.2 � BET surface area analysis

The BET technique was conducted to estimate the total 
surface area of the as-prepared nanoparticles. The surface 
area of ZnO and Cr doped ZnO nanoparticles at different 
dopant concentration was estimated. The results concern-
ing BET surface area shows a dramatically change incre-
ment in surface area due to Cr-doping. The BET surface 
area measurement shows of un-doped ZnO and 0.1 M Cr-
doping ZnO nanoparticles are shown in Table 1. The BET 
surface area result shows that the prepared nanomaterials 
with high surface area. Thus, as approved by XRD analy-
sis, crystallite size diminishes; consequently, the surface 
area grows. Hence, improving the porosity of the surface 
increases the surface area of nanoparticles. Therefore, 
higher surface area formation in the doped nanoparticles 
may be accredited to the thermal decomposition of Cr 
species during calcination process [6, 54].

Fig. 1   Schematic illustration of Cr-doped ZnO nanoparticles synthesis by chemical co-precipitation route



Vol.:(0123456789)

SN Applied Sciences           (2021) 3:699  | https://doi.org/10.1007/s42452-021-04682-6	 Research Article

3.3 � Dopant concentration analysis

The amount of chromium incorporated into ZnO NPs ware 
analysed using inductively coupled plasma mass spectros-
copy (ICP-MS). We have prepared various Cr doped ZnO 
NPs samples to accurately measure the concentration 
of chromium. Table 2 shows the ICP-MS results of pure 
ZnO and Cr doped ZnO NPs. As shown in Table 2, there is 
a very good agreement among the expected chromium 
percentage using stoichiometry and the actual measured 
chromium concentration incorporated in the ZnO nano-
structures [55].

3.4 � Functional group analysis

FTIR spectra of ZnO and Cr–ZnO nanoparticles are illus-
trated in the Fig. 3. The broad absorption peak located 
around 3450 and 1643 cm−1 shows the stretching and 

bending vibration of O–H, which emerged from water mol-
ecule adsorbed on the surface of as-prepared materials. 
Additionally, the two strong bands at 1437 and 1076 cm−1 
in Cr-doped ZnO materials may assigned to the vibration 
of the Zn–Cr bonds, which shows the successful doping of 
Cr ion in ZnO nanoparticles. The Zn–O bond is correspond-
ing to the stretching frequency at 483 cm−1 for ZnO. More-
over, bands at 880 cm−1 may be the stretching vibration of 
Cr–O. Thus, Cr–O formation confirms the incorporation of 
the chromium atoms in the ZnO lattice. This shows that the 
observed shifts in FTIR spectra is because of the incorpora-
tion of chromium atoms in the ZnO lattice. FTIR spectra of 
pure ZnO and Cr doped ZnO nanoparticles investigated 
in this work are in excellent agreement with previously 
recorded values [56–58].

Fig. 2   XRD patterns for ZnO, 
and Cr doped ZnO nanopar-
ticles
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Table 1   XRD parameter and 
specific surface area values of 
un-doped ZnO and Cr-doped 
ZnO NPs

Nanomaterials Average crystalline 
size D (nm)

Micro-strain 
(10–4)

δ × 104 (nm−2) Specific 
surface area 
(m2/g)

ZnO 39 11.5 6.57 176.25
0.05 M Cr–ZnO 31 13.4 10.40 –
0.075 M Cr–ZnO 27 14.2 13.71 –
0.1 M Cr–ZnO 23 15.3 18.90 287.17



Vol:.(1234567890)

Research Article	 SN Applied Sciences           (2021) 3:699  | https://doi.org/10.1007/s42452-021-04682-6

3.5 � Thermal property analysis

The TGA/DTA analysis was conducted to study the ther-
mal stability of ZnO and Cr–ZnO nanoparticles. Figure 4 
illustrates the TGA/DTA curve of ZnO and Cr–ZnO nano-
particles, which was scanned at the rate of 15 °C/min in 
the range of 30–800 °C under air atmosphere. For pure 
ZnO nanoparticles, the first weight loss of 2.8% from 25 to 
174 °C is because of the evaporation of water molecules on 
the surface of ZnO nanoparticles. Then, the sample illus-
trates the second weight loss of 1.97% and a in the range 
of 174–311 °C, which attributed to the removal of organic 
components. The final weight loss of 3.63% in the range 
of 311–540 °C is the crystallization of as-prepared material 
during the heating process. The crossponding DTA peaks 
are observed at 345 °C, 402 °C and 464 °C (Fig. 4a). For pure 
Cr–ZnO nanoparticles, the first weight loss of 1.2% from 25 
to 287 °C is because of the evaporation of water molecules 

on the surface of ZnO nanoparticles. Then, the sample dis-
plays the second weight loss of 5.23% and a in the range 
of 287–480 °C, which attributed to the removal of organic 
components. The final weight loss of 0.2% in the range of 
480–656 °C is the crystallization of as-prepared material 
during the heating process. The crossponding DTA peaks 
are observed at 315 °C, 326 °C and 340 °C (Fig. 4b). Hence, 
TGA analysis showed that total weight loss of 8.13% and 
6.63% for ZnO and Cr–ZnO nanoparticles, respectively. 
Thus, Cr–ZnO nanoparticles are more thermally stable 
than ZnO [59].

4 � Conclusions

In this paper, ZnO and chromium doped zinc oxide 
(Cr–ZnO) nanoparticles were developed via a simple 
chemical co-precipitation route by changing the doping 
concentration in the range 0.05–0.1 M, which is further cal-
cined at 600 °C. The influence of Cr-doping on the physical 
characteristics of ZnO nanoparticles was investigated and 
addressed. Hence, developed samples were examined via 
XRD, FTIR, TGA/DTA, BET, and ICP-MS. The crystal structure 
of ZnO and Cr doped ZnO nanoparticles was the hexago-
nal wurtzite without any additional peaks for all samples 
regardless of the dopant concentration. However, chro-
mium doping has no noticeable influence on the crystal 
structure of ZnO as determined by the results of XRD anal-
ysis. The FTIR spectroscopy analysis confirms the existence 

Table 2   Doping concentration of chromium obtained from ICP-MS 
result

Sample Expected Cr (formulated 
composition) (mol%)

ICP-MS
Actual content 
of Cr (mol%)

0.05 M Cr–ZnO 0.5 0.46
0.075 M Cr–ZnO 0.75 0.69
0.1 M Cr–ZnO 1.0 0.97

Fig. 3   FTIR spectra of ZnO, and 
Cr doped ZnO nanoparticles
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Fig. 4   TGA/DTA illustration of 
a ZnO nanoparticles, and b 
Cr–ZnO nanoparticles
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of chromium in the doped ZnO nanoparticles and the for-
mation of ZnO. TGA/DTA analysis shows that Cr–ZnO nano-
particles are more thermally stable than ZnO nanoparti-
cles. In addition, the concentration of the dopant has been 
analyzed by ICP-MS and showed good agreement with the 
expected chromium concentration. The BET surface area 
measurement shows 176.25 m2/g for un-doped ZnO and 
287.17 m2/g for 0.1 M Cr-doping ZnO nanoparticles. Thus, 
the addition of chromium in ZnO nanoparticles increases 
the surface area and thermal stability.
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