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Abstract
An accurate analysis of spatial rainfall distribution is of great importance for managing watershed water resources, in 
addition to giving support to meteorological studies and agricultural planning. This work compares the performance 
of two interpolation methods: Inverse distance weighted (IDW) and Kriging, in the analysis of annual rainfall spatial dis-
tribution. We use annual rainfall data for the state of Rio Grande do Sul (Brazil) from 1961 to 2017. To determine which 
proportion of the sample results in more accurate rainfall distribution maps, we use a certain amount of points close to 
the estimated point. We use mean squared error (MSE), coefficient of determination (R2), root mean squared error (RMSE) 
and modified Willmott’s concordance index (md). We conduct random fields simulations study, and the performance of 
the geostatistics and classic methods for the exposed case was evaluated in terms of precision and accuracy obtained 
by Monte Carlo simulation to support the results. The results indicate that the co-ordinary Kriging interpolator showed 
better goodness of fit, assuming altitude as a covariate. We concluded that the geostatistical method of Kriging using 
nine closer points (50% of nearest neighbors) was the one that better represented annual rainfall spatial distribution in 
the state of Rio Grande do Sul.
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1  Introduction

Rainfall is a measure (indicator) of an ecosystem’s water 
availability and has strong relationships with the produc-
tivity of a region [1, 2]. Variables related to precipitation 
such as average, maximum and annual variability, among 
others, are important for explaining spatial patterns of 
anomalies, as well as allowing assessments of climate 
change by increasing the frequency of extreme events 

[2], Al‐Yaari et al.[3]). Its monitoring makes it possible to 
understand the hydrological cycle that influences ecologi-
cal and environmental dynamics, also affecting economic 
and social activities (Morales and Araujo [4]).

The analysis of climatic variables essentially consists 
of two stages: an exploratory one, using descriptive sta-
tistics in order to verify the normality of the data and 
to discard the need for transformation in the set and 
also to identify the existence of possible outliers; and 
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the second, which is based on the adjustment of math-
ematical statistical models to the data, which can study 
the phenomena with different approaches, as well as 
the occurrence of extreme values [5–7], temporal distri-
bution (Pereira Britto, Barletta and Mendonça [8]), spa-
tial distribution [9], intensity of the phenomenon [10], 
among others.

According to Pereira Britto et al. [8], even though the 
state of Rio Grande do Sul is industrially developed, its 
economy is dependent on agriculture, and despite the 
great advances that have taken place in this sector during 
the last years, agricultural activity and crop yields depend 
on the occurrence of rainfall. The state has a large part of 
its territory in the La Plata Basin, which has a sparse and 
irregular rainfall network [11]. Therefore, in order to have 
knowledge about the regime or behavior of precipitation 
in these locations, it is necessary to spatially distribute the 
precipitation. In this situation, it is essential to apply a spa-
tial interpolation process where points with known values 
are used to estimate unknown values at other points.

Geostatistics began in the 1960s with a series of publi-
cations by Georges Matheron with theoretical bases on a 
method of spatial interpolation called Kriging developed 
by South African Daniel G. Krige [12]. Geostatistics is a set 
of statistical methods appropriate for analyzing an attrib-
ute of a phenomenon with continuous distribution over 
a geographic area.

Among the various methods of interpolation are the 
inverse distance weighted (IDW), Kriging, closest neighbor, 
spline and top-to-raster methods. According to Chirinos 
& Mallqui [13], the most used interpolators are Kriging, 
inverse distance and spline. The results obtained in each 
of the methods may be different for the same set of data. 
The inverse distance weighted is a univariate weighted 
interpolator that uses the distance between the points 
sampled to estimate an attribute of interest and has been 
highlighted by the ease of its applicability. Several stud-
ies prove its applicability. However, simulation studies 
involving these methods to investigate the influence of 
the number of points on the accuracy of the estimates are 
uncommon [14, 15]. The number of points used to obtain 
estimates through interpolators is directly related to the 
algorithm’s execution time, representing a significant con-
cern from the computational point of view[16], Das et al. 
[17]).

The Kriging using a continuous covariance function, 
which explains the behavior of the variable in space, 
stands out in the literature for presenting non-biased 
estimates and the minimum variance associated with the 
estimated value [18].

Choosing interpolators for climate data is not a simple 
task and the end result does not just depend on the inter-
polator. The interpolation process requires knowledge about 

the nature of the data to be interpolated and the spatial dis-
tribution of the samples [19].

Spatial analyzes involving climatic events are rare and 
require simulation studies [20]. In studies of this type, it is 
desirable that the random variables have a symmetrical 
distribution in order to satisfy the first- and second-order 
stationarities. From a practical point of view, in the meteoro-
logical studies, other statistics such as maximum and median 
are usual, their probability distributions are not necessarily 
symmetrical, and more complex geostatistical methodolo-
gies are required [21, 22].

In the state of Rio Grande do Sul, Brazil, the analysis of 
spatial events has been based on specific regions [23, 24]. 
Understanding the spatial distribution of data from phe-
nomena that occur in space today constitutes a major chal-
lenge for the elucidation of central issues in several areas 
of knowledge [9]. In order to analyze the spatial distribu-
tion of rain, we usually use interpolators that can be clas-
sical or geostatistical. The interpolation methods are used 
to evaluate the spatial variability of a given attribute based 
on sample data located in a locality of interest (Gardiman 
[25]. According to Nashwan & Shahid [26], although there is 
a certain degree of reliability in the analyzes using grid data, 
the uncertainty in the results is still a considerable problem 
and arises mainly due to factors, such as the interpolation 
of observed data, the model used for data generation, the 
number of stations used for the development of models, in 
addition to the quality of the observed data.

Because the state of Rio Grande do Sul is a region of 
high importance for the economy of Brazil and has most 
of its activities dependent on the occurrence of rains, it is 
important to know the spatial behavior of different vari-
ables related to annual precipitation. In addition, there are 
no studies for this region, indicating (analyzing) different 
techniques used in the spatial analysis of rainfall in order to 
have more accurate and accurate results. Given these facts, 
the main objective of the present work is to evaluate the 
performance of different interpolation methods in the esti-
mation of spatially dependent annual rainfall levels in the 
state of Rio Grande do Sul. Therefore, it sought to answer the 
following questions: (i) which interpolation method is best 
suited to estimate spatially dependent annual rainfall levels 
in the state of Rio Grande do Sul? (ii) how do the interpola-
tors behave in the use of different statistics (mean, median 
and maximum)? (iii) to predict spatially, more precisely, rain-
fall, how many neighboring points are needed?

2 � Materials and methods

Rio Grande do Sul is located in the extreme south of Bra-
zil (Fig. 1), with a territorial area of 281,737.888 km2 [27]. 
The relief is represented by plateaus of the Paraná Basin, 
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Peripheral Depression, Eastern Plateau of Rio Grande do 
Sul and Patos and Mirim lagoons plains (Ross [28]). Accord-
ing to Sartori [29],

Due to its location in a transition zone, the climate of 
Rio Grande do Sul reflects the participation of Extra-
tropical Atmospheric Systems (polar masses and 
fronts) and intertropical (Tropical masses and Dis-
turbed Currents), although the first control the types 
of weather in 90% of the days of the year, providing 
also the monthly and annual distribution of rainfall.

According to the Kõppen system, Rio Grande do Sul falls 
into the fundamental temperate zone, denoted by "C", and 
humid, denoted by "Cf". Due to the altimetric differences, 
the state’s climate split into "Cfa" and "Cfb". The oceanic 
climate, with mild summers (Cfb), occurs in the moun-
tains of the southeast and northeast, where the average 
temperatures of the summer months are below 22 °C, and 
the Cfa type, or humid subtropical climate, occurs in the 
other regions, where the average temperature is warmer, 
exceeding 22 °C in the month with high temperatures [30].

The data set was obtained from the meteorological 
database for teaching and research (BDMEP) provided 
by National Institute of Meteorology (INMET). Informa-
tion from 18 conventional monitoring stations were used 

and cover the period from 1961 to 2017, totaling 56 years 
of analysis (Table  1). The variable considered was the 
monthly cumulative rainfall, the data were separated by 
year and the maximum, mean and median of each sea-
son were extracted, thus forming a subset with the annual 
averages, medians and maximums values of each weather 
station. The georeferenced points that form the polygon 
of Rio Grande do Sul were extracted from a file of the type 
Shapefile made available by the Brazilian Institute of Geog-
raphy and Statistics (IBGE). The percentage of failures was 
calculated by the ratio between the number of monthly 
records in which there was no reading and the total num-
ber of monthly records. We emphasize that the choice for 
the stations, as mentioned above, was because they are 
the stations with the most considerable amount of records 
available in the state according to the BDMEP.

2.1 � Inverse Distance Weighted (IDW)

The IDW method, univariate interpolator, is a classical 
interpolator that uses the distance between the points 
sampled to determine the value of the points of interest. 
Thus, to estimate a point not sampled at a given location, 
we used Eq. (1) described by

Fig. 1   a Location of the state of Rio Grande do Sul, Brazil; b Location of the 18 weather stations in the state
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where di is the distance between the observation pairs 
( ui ), p is a power parameter generally equal to two and n 
represents the number of sampled points used for the esti-
mation [10]. In Eq. (1), more significant power parameters 
emphasize closer points, making the result less smooth. 
Smaller power parameters emphasize more distant points, 
making the result smoother but less accurate (Marcuzzo, 
Andrade and Melo [31]). As the distance increases, weights 
diminish significantly when the value of the power param-
eter rises. Nearby stations have a heavier weight more 
influence on the estimation [32].

2.2 � Kriging methods

Kriging is a geostatistical method based on the Theory of 
Regionalized Variables, which assumes that phenomenon 
variation depends on its location. A semivariogram quanti-
fies the spatial variation in the Kriging method. The semivari-
ogram is, in turn, calculated by Eq. (2).
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in which, h is the vector distance between pairs of 
observations, N(h) is the number of ordered pairs and 
Z ( ui ) and Z ( ui + h ) are values observed at respective 
locations.

The empirical semivariogram estimated by �̂(h) pro-
vides a graph to which a function fits, thus generating 
a theoretical semivariogram. This function should best 
represent the behavior of �̂(h) . Omnidirectional semivari-
ograms were used.

Three theoretical semivariogram models were con-
sidered: spherical, exponential and Gaussian models. All 
of these models have as parameters: range (a), distance 
within which the samples are spatially correlated; partial 
sill (C) is the maximum value of the semivariogram within 
its range; effect nugget (C0) is the value of semivariogram 
for distance zero.

The adjustment of the theoretical models was done by 
the methods of ordinary least squares (ols) and weighted 
least squares (wls), to determine which would best fit the 
graph generated by �̂(h) . The choice of the best semivario-
gram was aided by the Cambardella criterion, which quan-
tifies the degree of spatial dependence [33]. The degree of 
dependence is obtained by expressing the nugget effect 
as a percentage of the partial sill, so semivariograms with 
a nugget effect ≤ 25% of the partial sill are considered 
with strong spatial dependence, moderate dependence 
when the nugget effect is between 25 and 75% and weak 
dependence nugget effect is ˃ 75%.

Table 1   Data from the meteorological stations evaluated in the state of Rio Grande do Sul, Brazil, as well as the beginning and end dates of 
the series and percentage of failures

Station ID City Latitude Longitude Altitude (m) Beginning of 
the series

End of series % failure

83,980 Bagé  − 31.347801  − 54.013292 245.66 01/31/61 12/31/17 9.44
A840 Bento Gonçalves  − 29.164581  − 51.534202 623.27 01/31/61 12/31/13 22.31
83,919 Bom Jesus  − 28.666667  − 50.433333 1048.59 01/31/61 12/31/17 23.24
83,942 Caxias do sul  − 29.196389  − 51.186389 750.16 01/31/61 12/31/17 14.38
83,912 Cruz Alta  − 28.60344  − 53.673597 475.52 01/31/61 12/31/17 14.57
83,964 Encruzilhada do Sul  − 30.543164  − 52.524669 428.52 01/31/61 12/31/17 14.19
83,881 Iraí  − 27.18  − 53.23 247.1 01/31/61 12/31/17 12.69
83,916 Lagoa Vermelha  − 28.222381  − 51.512845 833.73 01/31/61 12/31/17 44.00
83,914 Passo Fundo  − 28.226805  − 52.403582 684.05 01/31/61 12/31/17 10.32
83,985 Pelotas  − 31.78  − 52.41 12.01 01/31/61 12/31/17 65.62
83,967 Porto Alegre  − 30.053536  − 51.174766 41.18 01/31/61 12/31/17 7.04
83,995 Rio Grande  − 32.07878  − 52.167738 2.46 01/31/61 12/31/15 16.94
83,936 Santa Maria  − 29.72496  − 53.720469 103.1 01/31/61 12/31/17 12.13
83,997 Santa Vitória do Palmar  − 33.742297  − 53.372218 24.01 01/31/61 12/31/17 14.77
83,953 Santana do Livramento  − 30.842449  − 55.613089 328 01/31/61 12/31/13 76.67
83,907 São Luiz Gonzaga  − 28.417113  − 53.962403 245.49 01/31/61 12/31/17 11.22
83,948 Torres  − 29.350359  − 49.733263 8.47 01/31/61 12/31/17 11.95
83,927 Uruguaiana  − 29.83987  − 57.081899 62.31 01/31/61 12/31/17 19.60
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The ordinary Kriging method (OK) is used when the 
regionalized average of the data is unknown. In order to 
estimate the amount of annual rainfall at a non-sampled 
location ( Ẑ

(
ui
)
 ), the following ordinary Kriging estimator 

was used,

where Z
(
ui
)
 is the observed value, �OK  refers to the 

weights calculated on the basis of n data Z
(
ui
)
 and 

∑n

i=1
�KMZ

�
ui
�
 is the estimator of the average for each 

region. Further details on the estimation of the mean can 
be seen in Yamamoto [12].

The universal Kriging (UK) is used to model a trend in 
rainfall in longitude and/or latitude, when this happens to 
occurs. Instead of considering the regional average m(u) 
unknown, which can be estimated by an average around 
a region with the n closest points (ordinary Kriging), a 
first-order or higher-order polynomial for the trend and/
or covariates is set (E. j Pebesma and Bivand [34]). Assum-
ing that we have a first-degree bias in n points, then

where x may be the direction of the trend. Similarly, if a 
covariate (secondary variable) is analyzed joint with the 
annual rainfall, the co-ordinary Kriging (COK) estimator 
can be considered and is given by

where Sk
(
uj1

)
 is the observed value from secondary vari-

able and �OK
ji

 are the ordinary Kriging weights. We used the 
k = 1 case for altitude as secondary variable.

The influence of the neighboring points in the predic-
tion of non-sampled points is verified through the maps 
of the IDW and Kriging methods constructed considering 
fractions of points near the ones that will be estimated, 
given by 10, 20, 30, 50, 70 and 100% of the set of points 
data. The fractions formed by the 18 points are equivalent 
to 2, 4, 6, 9, 13 and 18 neighbors.

2.3 � Evaluation of the models

The quality of the estimates was evaluated by the leave-
one-out method, which is a particular case of k-fold, also 
known as cross-validation. According to Andriotti [35], 
the leave-one-out method consists of taking a sample 
point from the data set and calculating the estimate for 
that point. Repeating the procedure for all points in the 
sample set and at the end comparing the known point 
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with the estimate gives the mean square error (MSE) of 
these discrepancies. In this sense, five methods were used 
to evaluate the residuals calculated by the cross-validation, 
MSE (6), R2 (7), square root of the MSE (RMSE) and modified 
Willmott’s concordance index (md) (8),

where Z
(
ui
)
 is the mean and Ẑ

(
ui
)
 is the fitted value. The 

md index is less sensitive to the presence of outliers and 
has a range between 0 and 1, where values close to 1 bet-
ter indicate the model’s performance in the prediction 
[36].

We conducted a computational simulation study to 
evaluate the performance of the geostatistical and clas-
sical methods used. The Monte Carlo simulation method 
was used, which consists of making several achievements 
of a phenomenon according to pre-established parame-
ters. At the end of these simulations, we can calculate the 
mean and standard deviation of the simulations, and these 
represent measures of accuracy and precision, respectively 
[37, 38]. Thus, two scenarios are considered:

1.	 Random fields generated considering spatial depend-
ence structure according to the best result of the geo-
statistical method;

2.	 Random fields generated considering the spatial 
dependence structure different from the best results 
obtained by the geostatistical method.

In the proposed methodology we use, the R version 
4.0.0 [39], the packages geoR [40], gstat (E. J. [41], sp (E. 
j Pebesma and Bivand [34]), rgdal (Bivand and Keitt [42]), 
hydroGOF [43] and ggplot2 [44].

3 � Results

All rainfall series are homogeneous by Levene’s test con-
sidering 1% as significance level (Fig. 2). The size of the 
dataset is an essential issue in the analysis of the data. As 
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shown in Table 1, there is an imbalance in the amount of 
data among the weather stations. The occurrence of tech-
nical problems at the stations has meant that many other 
stations in the state have a much lower number of records 
than our work, which is similar in quantity to the work of 
Alvares et al. [30]. Given these considerations and given 
the focus of the work, we analyze annual rainfall data. 
However, we emphasize that this approach constitutes 
one possibility of analysis, and others such as monthly, 
seasonal and/or cumulative annual analysis could be 
considered [11, 32, 45, 46]. The plots of the exploratory 
analyses are shown in Fig. 3. In the mean and median his-
tograms, it is possible to notice a slight negative asymme-
try, −0.231671 and −0.230965, respectively, while for the 
maximum, the asymmetry is positive 0.583762. This result 
suggests that the data may not follow a normal distribu-
tion. However, it is possible to assume the normality of the 
data before the results of the Shapiro–Wilk test [47], 1% of 
significance, with the following p values: for a maximum 
of 0.5466, for a mean of 0.3167 and a median of 0.06111.

Figure 4 shows the relation between the rainfall vari-
able with the latitude and longitude coordinates, where 
it is possible to verify that there is no trend around the 
longitude for any of the measures under study. For lati-
tude, the mean and median tend as the coordinates 
increase the observed values. This behavior indicates 
that the trend can be modeled.

Table 2 shows the semivariogram fitted values, and 
Fig. 5 shows the plots. We analyzed the degree of spatial 
dependence calculated by Cambardella and the square 
root of the mean square error to choose the method and 
model that best fits the empirical semivariogram. The 
values of the Cambardella test are all within the same 
range of less than 25%, indicating strong spatial depend-
ence [33]. For the variables analyzed in OK, the Gauss-
ian model is the one that presented the lowest value of 
the RMSE for the mean and the median, fitted by the 
weighted least squares (wls) method. For the maximum, 
the exponential model fitted by ordinary least squares 
(ols) was the best. In the UK, the mean was adjusted by 

Fig. 2   Box plots of the daily rainfall series in each weather station evaluated according to Table 1 and Levene’s homogeneity test (p-value)
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the spherical model by wls, and the median with the 
Gaussian model by ols.

Figure 6 shows the generated maps for IDW and Krig-
ing. It is possible to notice that the estimation surfaces 
provided by the IDW show some regions of rainfall well 
delimited generating some islands or points located in 
the vicinity of the sampling points. The maps provided by 
Kriging have smoother surfaces and evidence of transition 
zones between different levels of rainfall.

The rainfall variable has no relation with the longitude 
coordinates. It was possible to verify that there is no trend 

around the longitude for any of the measures under study. 
For latitude, the mean and median have a trend as the 
coordinates increase the observed values, indicating that 
the trend can be modeled. The universal Kriging was used 
to adjust the first-degree polynomial, explaining this fea-
ture in the rainfall estimates.

Table  3 shows the cross-validation results for the 
mean and median. For the mean, the models presented 
the lowest MSE with 50% of the data set, which equals 
nine points. According to Andriotti [35], the num-
ber of neighboring samples required depends on the 

Fig. 3   Histograms of annual rainfall in mm. a Histogram of the mean; b histogram of the median; c histogram of the maximum

Fig. 4   Plots of mean a, median b and maximum c annual rainfall with latitude and longitude coordinates
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configuration of locations sampled and the degree of 
anisotropy, and for irregularly spaced samples is 10 sam-
ples. OK presented the best result with a 3.1 mm error in 
relation to IDW, corresponding to 31.62%, lower than the 
IDW and a determination coefficient of 84.12%.

This study shows a slight difference in the MSE val-
ues, indicating OK as the most appropriate for the 
mean. Analyzing the values of the RMSE it is possible to 
notice that the difference of the OK and UK errors is of 
0.88 mm of rainfall. This result indicates that considering 
the assumed modeling trend did not bring substantial 
improvement in Kriging estimates, which leads to con-
sider the equivalence between them. Thus, the trend 
observed in the data may have more relation with other 
variables such as altitude. This result is in agreement with 
Baratto & Wollmann [48] who studied the rainfall profile 
of state of Rio Grande do Sul. According to the authors, 
it is possible to trace two profiles in the state, one in the 
south–north direction and the other in the west-north-
east direction, and conclude that rainfall is influenced by 
orography and this influence is more significant in the 
north–south direction between Santa Maria and Júlio de 
Castilho cities. The results for COK were better than OK 
and UK, which shows that considering the covariate alti-
tude for rainfall has brought substantial improvements 
in decreasing the prediction error (Table 3).

Concerning the median, the interpolators diverged on 
the ideal number of neighboring neighbors. The MSE low-
est value for OK was obtained with 70% of the points. The 
best MSE results were obtained for the UK using 100% of 
the set. In IDW, the lowest RMSE was with 50% of the data 
set, but for other numbers of points, there were no sig-
nificant discrepancies between the RMSE, showing that 
for the median, the IDW showed approximately consistent 
results (Table 3).

The values of the determination coefficient (R2) related 
to the best results of Kriging, ordinary and universal, of the 
mean and median are more significant than 0.7. This value 
of R2 means that the choice of the number of points is 
correctly determined. The R2 values of the IDW, 0.6975 for 
mean and 0.6828 for median, indicate that the estimated 
values are moderately close to the real ones.

The modified Willmott’s index of agreement shows that 
the co-ordinary Kriging approach is more appropriate in all 
predictions evaluated, unless in the case of the maximum, 
as md < 0.6, as pointed out by Da Silva Moraes et al. [49], 
for all approaches.

Three points not sampled in different regions of the 
state were chosen to verify if the estimates for these loca-
tions are within the mean error margin of the OK and COK 
models. For the city of Itaqui, located on the western bor-
der, considering the mean annual rainfall between January 
and December 2019, the model underestimated the rain-
fall by 4.05 and 2.04 mm. In same way, for the city located 
in the south of the state, Jaguarão, the observed rainfall 
refers to the period from 2019, was underestimated at 
2.59 mm (OK) and 2.49 mm (COK). Federico Westphalen 
at the north at 7.86 mm (OK) and 10.11 mm (COK). In this 
case, both models slight overestimate the mean annual 
rainfall (Table 4).

The annual maximum rainfall analysis presented high 
values for the MSE (Table 3). The lowest result for MSE was 
obtained using the IDW method using 50% of the data 
set equivalent to the nine points closest to the estimated 
point. The RMSE expresses the error in the same propor-
tion of the variable. Thus, the best fit presented an aver-
age error of 85.37 mm of rainfall. The low values for the 
coefficient of determination (R2) are direct results of the 
MSE values and, at most, can explain 0.2295 of the rainfall 
that occurred.

Table 2   Estimates of the 
parameters (Co), contribution 
(C) and range (a) of the 
semivariograms by the 
ordinary (ols) and weighted 
(wls) least squares methods 
and results of the Cambardella 
criterion and root mean 
squared error (RMSE)

* Results related to the fitted annual rainfall semivariogram. The results of the altitude and cross semi-
variogram will be omitted because of the work focus

Variable Method Model Co C a Cambardella RMSE

Ordinary Kriging
Mean wls Gaus 40.07 2065.70 7.62 1.94 6.95
Median wls Gaus 23.56 1023.56 4.76 2.30 7.18
Maximum wls Exp 3977.14 12,612.37 5.76 23.97 8.76
Universal Kriging
Mean wls Sph 2.13 48.82 0.83 4.18 5.14
Median ols Gaus 14.23 117.72 3.12 10.78 107.23
Maximum wls Sph 1179.15 9385.49 4.35 11.16 7.17
Co-Ordinary Kriging*
Mean wls Gaus 43.83 700.94 4.70 5.88 397.67
Median wls Gaus 43.16 764.60 4.70 5.34 479.12
Maximum wls Exp 1931.82 21,929.13 5.10 8.10 16,492.98
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Since R2 values are far below 0.7, it is clear that the 
models do not apply to maximum values. These values 
can be approached by other probability distributions 

that are not considered in this work (Table 3). It should 
be noted that since Fig. 4 does not provide an indicative 
trend for maximum rainfall in the direction of latitude 

Fig. 5   Fitted theoretical semivariograms to the empiricals. a semi-
variogram of the mean for ordinary Kriging (OK), b semivariogram 
of the median for OK, c semivariogram of the maximum for OK, d 
semivariogram of the mean for universal Kriging (UK), e semivari-

ogram of the median for UK, f semivariogram of the maximum for 
UK, g semivariogram of the mean for co-ordinary Kriging (COK), h 
semivariogram of the median for COK, i semivariogram of the maxi-
mum for COK
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Fig. 6   Prediction maps of annual rainfall levels. a Map of the mean 
generated with the IDW using 50% of the data set; b map of the 
mean generated with co-ordinary Kriging (COK) using 50% of the 
data set; c map of the median generated with the IDW using 50% 

of the dataset; d map of the median generated with co-ordinary 
Kriging using 50% of the data set; e map of the maximum gener-
ated with the IDW using 50% of the data set; f map of the maxi-
mum generated with co-ordinary Kriging using 50% of the data set
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or longitude, we did not perform the universal Kriging 
for this variable. These results may be associated with 
the inherent difficulties in the process of forecasting 
extreme values. Ferro [50] points out that, due to the 
extreme values being at the tail of the distribution, there 
is a difficulty in verifying the forecast of these events, 
as this fact causes only a small number of events to be 
observed and this generates great variation in the verifi-
cation measures and, therefore, great uncertainty about 

the quality of the forecast. More information must be 
incorporated into the modeling To reduce this uncer-
tainty, as highlighted by Cox et al. [51]. When discussing 
some theoretical and practical aspects in the analysis of 
extreme values related to torrential rainfalls and floods, 
they concluded that, in order to obtain more accurate 
and reliable estimates, are needed models that take into 
account as much information as possible, such as trend, 
dispersion and temporal and spatial dependence.

Table 3   Results of cross-validation for mean, median and maxi-
mum, mean squared error (MSE), root mean squared error (RMSE), 
determination coefficient (R2) and modified Willmott’s index of 

agreement (md) for the evaluated methods (OK—ordinary Kriging, 
UK—universal Kriging, COK—co-ordinary Kriging, IDW—inverse 
distance weighted)

N° of points Method MSE RMSE R2 md MSE RMSE R2 md MSE RMSE R2 md
Mean Median Maximum

10% OK 118.43 10.88 0.5869 0,70 122.21 11.06 0.6236 0.72 8653.10 93.02 0.1557 0.44
UK 3202.61 56.59 0.0578 0.45 2401.90 49.01 0.1717 0.49 141,713.3 376.45 0.2836 0.32
COK 73.78 8.59 0.7462 0.72 45.90 6.77 0.8526 0.80 7406.13 86.06 0.2608 0.49
IDW 117.71 10.85 0.5935 0,69 129.42 11.38 0.6054 0.71 8706.01 93.31 0.1342 0.43

20% OK 81.13 9.01 0.7160 0,71 75.27 8.68 0.7580 0.74 8342.93 91.34 0.1499 0.43
UK 104.62 10.23 0.7010 0.72 117.67 10.85 0.7098 0.72 9405.63 96.98 0.1016 0.42
COK 65.01 8.06 0.7805 0.75 47.18 6.87 0.8548 0.80 6302.66 79.39 0.3116 0.50
IDW 102.28 10.11 0.6486 0,68 118.04 10.87 0.6471 0.70 7837.34 88.53 0.1658 0.42

30% OK 62.52 7.91 0.7825 0,75 66.54 8.16 0.7876 0.76 7447.98 86.30 0.2080 0.45
UK 70.62 8.40 0.7733 0.76 81.92 9.05 0.7569 0.75 7579.92 87.06 0.2288 0.48
COK 54.64 7.39 0.8124 0.77 42.74 6.54 0.8671 0.81 5915.53 76.91 0.3494 0.53
IDW 105.99 10.30 0.7569 0,66 124.84 11.17 0.6252 0.68 7650.53 87.47 0.1738 0.42

50% OK 45.05 6.71 0.8412 0,76 55.52 7.45 0.8207 0.78 7298.51 85.43 0.2205 0.46
UK 58.09 7.62 0.8022 0.77 78.95 8.89 0.7680 0.76 7670.88 87.58 0.2044 0.47
COK 49.00 7.00 0.8345 0.79 42.11 6.49 0.8691 0.82 5379.89 73.35 0.4082 0.55
IDW 96.35 9.82 0.6975 0,67 113.89 10.67 0.6828 0.69 7288.61 85.37 0.2085 0.42

70% OK 46.25 6.80 0.8382 0,73 50.92 7.14 0.8375 0.77 7515.12 86.69 0.2295 0.46
UK 65.71 8.11 0.7847 0.76 72.05 8.49 0.7901 0.77 7530.31 86.78 0.2220 0.49
COK 48.24 6.94 0.8359 0.79 43.21 6.57 0.8648 0.82 5365.87 73.25 0.4101 0.54
IDW 112.36 10.60 0.6591 0,64 127.73 11.30 0.6557 0.65 7783.58 88.23 0.1560 0.37

100% OK 48.24 6.95 0.8338 0,74 51.49 7.18 0.8341 0.78 7332.41 85.63 0.2251 0.46
UK 59.09 7.69 0.7956 0.77 65.86 8.12 0.8010 0.77 7003.81 83.69 0.2566 0.51
COK 47.44 6.89 0.8381 0.79 43.89 6.62 0.8646 0.82 5380.68 73.35 0.4084 0.53
IDW 124.80 11.17 0.6266 0,60 140.05 11.83 0.6242 0.61 7870.39 88.72 0.1477 0.35

Table 4   Annual mean rainfall estimates by ordinary Kriging (OK) and co-ordinary Kriging (COK) for non-sampled points in Rio Grande do Sul 
state, Brazil, to the period from January 2018 to December 2020 at Jaguarão, Frederico Westphalen and Itaqui

1 Agência Nacional das Águas (National Water Agency); 2 Instituto Nacional de Meteorologia (National Institute of Meteorology)

City Weather Station (Code) Observed Predicted

2018 2019 2020 OK COK

Itaqui ANA1 (2,956,005) 114.17 135.33 101.27 131.28 133.29
Jaguarão INMET2 (A863) 114.92 107.42 80.58 104.83 104.93
Frederico Westpha-

len
INMET (A854) 131.77 143.32 105.33 151.18 153.43
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The Kriging model with the fitted semivariograms used 
was satisfactory for the mean and median rainfall. We can 
then test this model for other variables using algorithms 
that simulate their behavior in the same sample space of 
this study, thus determining the level of robustness or 
evidencing the sensitivity of the model to the different 
sample situations.

Monte Carlo method is used to simulate different sce-
narios to evaluate the interpolators’ behavior before a new 
data set is introduced, as mentioned in Sect. 2.3. The simu-
lation results (Table 5) point out that the Gaussian random 
field for the OK presented greater accuracy and precision 
for all sets of simulated samples. This greater accuracy and 
precision provide to be robust when submitted to a differ-
ent data set from which it was modeled.

Random fields were generated under the hypothesis 
of an Exponential random field with parameters C0, C and 
chosen randomly to analyze the interpolators’ behavior 
when submitted to scenario 2. The results of Table 5 show 
that with the lowest number of samples, 100 observations, 
the IDW method presented better performance, being 
more accurate, since it presented lower Monte Carlo mean 
of the MSE, and more accurate, with lower standard devia-
tion Monte Carlo of the MSE, that the ordinary Kriging. For 
the other sample sizes, this result did not maintain. There-
fore, Kriging is the most accurate and precise.

As for computational efficiency, in a laptop computer 
core i7 CPU, 2.2 GHz, 8 GB RAM, the execution time for 

1 simulation by ordinary Kriging using the parameters 
established in Table 5 for N = 750 was 48.3 s considering 
50% of the data set to perform spatial estimates. Consider-
ing 100% of the data set, the time was 99.64 s. We can see 
that time has practically doubled. Regarding our applica-
tion, the computation time was approximately 0.2 s con-
sidering 50% of the data set and 0.26 s considering 100% 
of data set.

4 � Discussion

For Marcuzzo et al. [31] the formation of islands is a fea-
ture of the IDW and are formed because as the distance 
between the interpolated point and the sampling point 
tends to zero, the weight attributed to the influence of 
the sampled point on the interpolated tends to infinity 
thus points esteemed many close to an observed suffer 
influence practically only of him. However, among clas-
sic interpolators, it cannot be said that this is the best 
among them, as shown by Lyra et al. [15] with the use of 
splines. Still, there may be situations in which the IDW may 
perform better, as pointed out by Qiao et al. [52], in the 
study of maximum and minimum concentrations of heavy 
metals in the ground. Lu and Wong [53] when studying 
rainfall data for Taiwan, and because the data are limited 
to support Kriging (such as problems with the spatial 

Table 5   Monte Carlo simulation results for scenario 1, best results 
for the methods, ordinary Kriging (OK) and inverse distance 
weighted (IDW), with random field generated under the assump-
tion of spatial dependence by the Gaussian semivariogram, nugget 
C0 = 40.07, contribution C = 2065.703 and range a = 7.623926, in dif-
ferent sample sizes N. In similar way, scenario 2, from Monte Carlo 
simulation for the best results of the methods, ordinary Kriging 

(OK) and inverse of the weighted distance (IDW), with random field 
generated in the assumption of spatial dependence by the expo-
nential semivariogram, nugget C0 = 1 contribution C = 0 and range 
a = 0.1, in different sample sizes N. The results are in terms of mean 
squared error (MSE) and square root mean squared error (RMSE). In 
both scenarios, 50% of the data set was considered for calculating 
the MSE and RMSE

Scenario (1)

Method Measures descriptive MSE RMSE

N = 100 N = 200 N = 500 N = 750 N = 100 N = 200 N = 500 N = 750

OK Mean 63.13 56.2 44.82 44.14 7.81 7.36 6.69 6.64
Standard deviation 25.19 26.25 3.62 2.64 1.47 1.39 0.26 0.20

IDW Mean 117.45 135.65 194.9 224.73 10.67 11.48 13.83 14.87
Standard deviation 45.02 47.67 56.02 59.13 3.88 1.96 1.90 1.91

Scenario (2)

Method Measures descriptive MSE RMSE

N = 100 N = 200 N = 500 N = 750 N = 100 N = 200 N = 500 N = 750

OK Mean 1.032 1.014 1.005 1.006 1.013 1.006 1.002 1.003
Standard deviation 0.163 0.108 0.059 0.047 0.080 0.053 0.029 0.023

IDW Mean 1.028 1.043 1.025 1.027 1.011 1.020 1.012 1.013
Standard deviation 0.156 1.126 0.068 0.057 0.076 0.062 0.033 0.028
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correlation structure), IDW was shown to be a logical and 
viable alternative.

Interpolators require the number of points as a hyper-
parameter to calculate spatial estimates. As shown in 
Table 2, the ideal number of points to estimate the aver-
age using ordinary Kriging corresponds to 50% of the data 
set. In large data sets, reducing data to make estimates is 
an important concern from a computational perspective. 
Geostatistical methods based on machine learning are 
considered in some situations [54–57]. However, in these 
studies, this parameter has not been explored.

Carvalho et al. [58] concluded in their study that the 
weighted least squares method allows the estimation of 
model parameters with greater precision. This greater 
precision reflects in the smallest sum squared residuals, 
as occurred in the present study. Hatvani et al. [59] used 
geostatistics resources to predict isoscape areas, consist-
ing of water isotopes preserved in ice bodies in Antarctica. 
They concluded that the range parameter of the adjusted 
Gaussian semivariogram estimated that the area of influ-
ence of the referred isotopes is 350  km. In our paper, 
this semivariogram showed the most negligible sums of 
squares of the residuals.

Medeiros et al. [60] point out that universal Kriging 
was the one with the lowest prediction error being the 
most appropriate for the region of the state of Rio Grande 
do Norte. It should be noted that these authors make a 
uniquely visual analysis of the Kriging and Kriging variance 
maps to arrive at this conclusion.

For Lundgren et al. [61], cross-validation provides esti-
mates of errors consistent with genuine errors in irregu-
larly spaced samples, and when R2 ≥ 0.7 can be used as the 
determinant of the best number of points. Several studies 
show that IDW performed worse than geostatistical meth-
ods [62, 63]. Cross-validation is widely used to assess the 
quality of the geostatistical and classical method and sim-
ulation studies are rare. In the present work, in addition to 
the one done with cross-validation, we present simulation 
results and show the consistency of our results.

More complex models of Kriging can be considered 
when, for example, variables cause some trend in the spa-
tially dependent variable, as reported Collardos-Lara et al. 
[45], who used regression Kriging and external drift Kriging 
to relate rainfall to elevation. The latter, also known as uni-
versal Kriging, was also used in the work of Lado et al. [64], 
who found slightly better results than ordinary Kriging in 
terms of RMSE in the analysis of the concentration of heavy 
metals in the soil. Kizza [65] used two interpolation meth-
ods were used for generating the gridded rainfall data-
set and the universal Kriging method performed slightly 
better than the inverse distance weighting method. 
However, there is no guarantee that modeling external 
drift can increase the accuracy of rainfall estimates [66]. 

Furthermore, for Haberlandt [67], the extra value of a vari-
able’s information, such as elevation, can be influenced 
by the time interval and the type of rainfall considered. In 
multivariate analysis, data obtained from satellites as an 
additional variable have greater relevance. Our results indi-
cate an advantage for ordinary and co-ordinary Kriging.

Co-Kriging is a viable method to be applied. However, 
there is no guarantee that the results in terms of RMSE 
will be better than those achieved by ordinary Kriging [62, 
68]. Many applications have been used to improve the 
accuracy of expensive-to-measure properties (sparsely 
sampled) using one or more spatially interdependent, 
cheaper-to-measure properties. This is because the ben-
efits of co Kriging are maximized when the secondary data 
are related to the primary data and the amount of second-
ary data is considerably larger than the primary data. In 
this respect, remotely sensed data provide cheap, inten-
sively sampled spatial information for use with this tech-
nique. According to Cunha et al. [46], the improvement 
in the prediction accuracy is conditioned to the covari-
ate to be used and they verified that the altitude allows 
better performance of the interpolation by co-Kriging of 
the rainfall than the distance from the sea. Slightly bet-
ter results with co-Kriging were also found by Hoshmand 
& Delghandi [69], but note that ordinary Kriging can also 
be used to estimate water salinity parameters. Our results 
indicate that using altitude as a covariate has brought 
about a substantial improvement in the annual rainfall 
accuracy for the mean, median and maximum, corrobo-
rating with studies by Ma et al. [70], who, by using altitude 
as a covariate, reduced errors in the generation of rainfall 
grid in the Tibetan Plateau (TP). However, even with the 
best global indicators of fit quality point out that the geo-
statistical methods considered and classic are not suitable 
in the study of maximum annual rainfall. Possibly, for situa-
tions involving maximums, methods for analyzing extreme 
events are more suitable [71, 72].

Our application is a small size data set because it is lon-
gitudinal records, so computing time is relatively short. 
In the simulation studies, we observed that larger sample 
sizes demand more computation time, which was already 
expected, and that using half of the data provides results 
as good as the whole. In addition, more complex mod-
els and large data sets, such as big data, pose a challenge 
concerning modeling (Gárate-Escamilla, El Hassani, and 
Andres [73]; Das et al. [17]).

We can make a point regarding missing data. We 
decided to work with original data and not to embed 
artificial data since we have a long series of data for each 
weather station. Given the objective of the work and part 
of the results, it is evident the importance of considering 
statistics when analyzing climatological data. It is possi-
ble to verify that the models used managed, in a certain 
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way, to capture the behavior of the series, since the mar-
gin of error was low and variable depending on the year 
(Table 4). This study may have ramifications such as those 
carried out by Barrios, Trincado, and Garreaud [74] in 
monthly precipitation records and Aieb et al. [75] to daily 
rainfall considering data imputation methods such as an 
artificial neural network (ANN), multiple linear regression 
(MLR), among others.

All Kriging techniques use ordinary Kriging as opposed 
to simple Kriging because of the underlying assumption 
made that the rainfall process is stationary only within 
local neighborhoods, and hence, the mean’s population 
is unknown [68]. For this reason, we prefer not to address 
simple Kriging. On the other hand, we explore the number 
of neighboring points that must be used to make spatial 
estimates. We found the surprising result that it is not nec-
essary to use the entire data set to obtain accurate spatial 
estimates, which in none of the papers presented was dis-
cussed. It should be noted that, as presented, there are 
many other promising methodologies for spatial analysis 
and that we do not address in this paper. Issues such as 
simulation of random fields with the presence of external 
and / or covariable drift are not well established at the 
moment but constitute possibilities for future work. Thus, 
the simulation results of this work are restricted to the 
absence of external or secondary influence, as shown in 
Table 5.

5 � Conclusions

The geostatistical method was the one that best repre-
sented the spatial distribution of the annual rainfall in the 
state of Rio Grande do Sul with the estimates that were 
closer to those observed. Minimum error for non-sampled 
point was 2.04 mm.

For the mean, Kriging methods presented the slightest 
mean square error using only nine points (50% of the data-
set) for the calculus, representing a decrease in the com-
putational cost. Our results indicate that using altitude as 
a covariate has brought about a substantial improvement 
the mean, median and maximum annual rainfall accuracy. 
Among the Kriging methods, co-ordinary Kriging resulted 
in the best goodness of fit indicators, which indicates that 
the inclusion of the altitude covariate increased the accu-
racy of the predictions. If this information were not avail-
able, ordinary Kriging would still be a viable method to be 
applied. Our results points out those conventional Kriging 
methods are not suitable when analyzing maximum rain-
fall events. For situations that involves maximum events 
(or extreme events), methods for modeling extreme 
events could be considered.

The simulation results show that Kriging is the interpo-
lator with the highest degree of reliability in the annual 
rainfall estimates according to the scenarios evaluated. 
Sample sizes greater than 500 points and using 50% of the 
data set indicate that both MSE and RMSE tend to stabilize. 
The spatial interpolators methods used in this study were 
not suitable for analysis of maximum annual rainfall data.
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