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Abstract
Human enteric viruses, such as enteric adenoviruses (HAdV), are known to be involved with gastrointestinal disorders, 
especially acute gastroenteritis. Several studies have used HAdV as an indicator of water quality, since they are considered 
highly stable and widely distributed viruses in water matrices. The aim of this study was to detect and genotype HAdVs 
in water matrices impacted by discharges of treated effluents from wastewater treatment plants (WWTPs). Wastewater 
treatment plants from the sanitary system of the Brazilian Federal District were assessed in 2018 and 2019. Samples were 
collected upstream and downstream from discharge points for each WWTP. Viral concentration based on adsorption-
elution and conventional PCR was used for molecular detection, and positive samples were sequenced for phylogenetic 
analysis. Pluviosity data for the period in which the samples were collected were obtained. Our results demonstrated 
the presence of HAdVs in 27.2% (61/224) of the samples. The positivity was significantly higher in downstream samples 
compared to upstream. Moreover, the HAdV positivity was higher in downstream samples collected from receiving water 
bodies impacted by secondary-level WWTPs in comparison with those impacted by tertiary-level WWTPs. Phylogenetic 
analysis demonstrated the presence of genotypes 40 and 41, with prevalence of HAdV genotype 41. Despite the pre-
dominance of HAdV-41, an increasing frequency of the HAdV-40 was associated with higher pluviosity. In conclusion, 
this study is the first documentation in the Brazilian Federal District dealing with the prevalence and diversity of HAdVs 
in several WWTP, along with their correlation with rainfall index.
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1  Introduction

Agents associated with acute gastroenteritis are, in most 
cases, waterborne pathogens [1]. Among these pathogens, 
adenovirus (HAdV) is important as it is considered the third 
most common cause of viral gastroenteritis in children. 
The main symptoms are diarrhea and vomiting, with res-
piratory tract infections being common for some species 
[2]. For most patients the infection is asymptomatic or mild 

and self-limited, but in immunocompromised patients, the 
infection can be quite severe and mortality rates high due 
to a dysfunctional immune system and inability to elimi-
nate the pathogen [3].

HAdV are non-enveloped, linear double-stranded DNA 
viruses. The mature virions are approximately 90 nm in 
diameter and consist of a complex of DNA and protein 
surrounded by the capsid proteins. The capsid is formed 
by three main proteins—hexons, penton-bases, and 
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fibers—the latter two being responsible for the interac-
tion of the virus with the surface of the host cell [4]. They 
are considered genetically diverse pathogens, belong to 
the adenoviridae family, genus Mastadenovirus, and are 
divided into seven species (A–G) comprising 103 geno-
types [5].

The species and genotypes present diverse tissue tro-
pism, and it is for this reason viruses can be associated 
with a wide range of clinical manifestations, including 
upper and lower respiratory diseases, conjunctivitis, cys-
titis, and gastroenteritis. All subgroups of adenovirus infect 
the respiratory tract, while genotypes 40 and 41, belong-
ing to species F, have enteric tropisms and are regularly 
responsible for infections in the gastrointestinal tract [6]. 
On the other hand, under immunosuppression, other non-
enteric types of HAdVs are associated with the occurrence 
of severe gastroenteritis [6]. Also, studies worldwide have 
described the association of non-enteric HAdV types 
(such as A, B, C and D) and acute gastroenteritis. Unlike, 
the HAdVs can be shed in feces after previous infections 
in other organs and their association with diarrhea is still 
questionable [7].

Viral particles can be shed in the feces of infected indi-
viduals, ranging from 105 to 1013 viral particles per gram 
of stool. In addition, they are excreted for a long time after 
infection, even if diarrhea is no longer present [8, 9]. Viral 
particles can therefore reach the aquatic environment via 
sewage discharge and their presence in water resources 
is considered a public health concern, especially in places 
where basic sanitation coverage is insufficient, such as 
Brazil [10–12].

In general, enteric viruses are more stable in the envi-
ronment and more resistant to current wastewater treat-
ment methods compared to enteric bacteria. Infectious 
viral particles have been reported for up to 130 days in 
seawater, for up to 120 days in freshwater and sewage, 
and for up to 100 days in soil at 20 to 30 °C. These periods 
surpass those reported for fecal coliform and other indica-
tor bacteria in these environments [13]. In addition, several 
studies show that despite treatment, enteric viruses persist 
at high levels, which is why the use of a viral contamina-
tion indicator is proposed. HAdV is among the viruses sug-
gested as an indicator [14, 15].

Considering the high stability of these pathogens in 
the environment, their resistance to the treatment pro-
cesses currently applied to the effluents by the wastewater 
treatment plants (WWTP), and the lack of indicators of viral 
contamination to ensure the quality of the effluents dis-
charged into the environment [16, 17], the aim of the pre-
sent study was to evaluate the quality of water bodies in 
the Brazilian Federal District that accept treated effluents 
from WWTPs, looking for viral contamination that could 
threaten the public health.

2 � Material and methods

2.1 � Wastewater samples

In total, 224 water samples were analyzed from the 14 
wastewater treatment plants (WWTP) that are part of the 
sewage system in the Brazilian Federal District. Brazilian 
Federal District is divided into 31 administrative regions. 
Three out of 14 WWTPs serve administrative regions 
with predominantly rural economic activity: Brazlândia, 
Planaltina, and Paranoá. The sampling was performed 
in the following months: July, October, and November 
2018, and June, July, August, October, and November 
2019. In each WWTP sampling, one sample was collected 
upstream and another was collected downstream from 
the discharge point of treated wastewater. It is impor-
tant to note that WWTPs 5 and 13 discharge the treated 
wastewater into a lake (Paranoá Lake), and therefore has 
no downstream or upstream points. For both WWTPs, 
two samples were collected at different points in each 
collection cycle, and all samples were considered as 
downstream.

Sample collection was performed using a polyeth-
ylene bucket. Approximately, one liter of surface water 
from each sample site was collected in sterile bottles and 
transported to the laboratory in thermal boxes kept at 
room temperature and protected from sunlight. After 
processing, the samples were stored at – 30 °C.

2.2 � Virus concentration

The viral concentration of the samples was performed 
using the adsorption-elution method with negatively 
charged membranes [18, 19]. In order to avoid the con-
tamination with humic acid, besides the negatively 
charged membranes adopted for viral adsorption, a pre-
vious clarifying step using filters with a high capacity of 
binding dissolved organic materials was done [19, 20]. 
First, 0.6 mg of MgCl2 was mixed with the water sam-
ples (1 L) and the pH was adjusted to 5.0 with 10% HCl. 
The samples were then filtered twice using a vacuum 
system. The first filtration was done with a thick, 47-mm-
diameter membrane to remove impurities. The second 
filtration was performed using a negatively charged 
membrane (Nihon Millipore®, Tokyo, Japan) with a pore 
size of 0.45 µm and a diameter of 47 mm. In the next 
step, still in the vacuum filtration system, the membrane 
was rinsed with 87.5 mL of 0.5 mM H2SO4 solution (pH 
3.0); this procedure makes the virus polarity predomi-
nantly positive, allowing greater adsorption. The mem-
brane was then removed from the system and placed 
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in a petri dish. For viral elution, 2.5 mL of 1 mM NaOH 
(pH 10.5) was added to the plate and homogenized for 
10 min using the Coleman VDRL TS 2000A multifunc-
tional shaker. Alkaline elution makes the virus charge 
negative, allowing it to be eluted from the membrane. 
The eluate was then neutralized by the addition of 50 μL 
of H2SO4 solution (50 mM) and 50 µL of 1 mM Tris EDTA 
buffer solution (10X) (pH8). Concentrated samples with 
a final volume of approximately 2 mL were aliquoted and 
stored at – 80 °C until further analysis.

Qualitative controls for the virus concentration method 
were performed in each sample processing round. Three 
hundred microliters of bronchoalveolar lavage, previ-
ously tested positive for HAdV in the Central Laboratory 
for Public Health, were used to inoculate water samples 
(V = 1L) prior to the virus concentration procedure. These 
positive-control samples served as control for the genome 
viral extraction and PCR assays.

2.3 � Viral nucleic acid purification

The viral DNA was extracted from 250 μL of concentrated 
samples of wastewater using a Maxwell® 16 device with 
the Maxwell® 16 Viral Total Nucleic Acid Purification Kit 
Promega (Madison, WI, USA), following the manufacturer’s 
instructions. Nucleic acids were eluted in 50 μL Nuclease-
Free Water from Promega (Madison, WI, USA) and stored 
at − 80 °C until the detection. This magnetic silica bead-
based RNA extraction was adopted once it effectively 
removed inhibitors that interfere with viral nucleic acid 
extraction and RT-PCR assays [20].

2.4 � Detection of HAdV

HAdV was detected by conventional PCR, using primers 
specific for the hexon gene of all species (A to F) of the 
HAdV genome [21]. Briefly, amplification was performed 
using 3 µL of extracted DNA, 1 µL of each primer (forward 
Ad1 (TTC CCC ATG GCI CAY AAC AC) and reverse Ad2 (CCC 
TGG TAK CCR ATR TTG TA)), 2 µL of dNTP (2.5 mM) (Invit-
rogen, USA), 5 µL of 10 × buffer containing MgCl2 (Sigma-
Aldrich, USA), 0.5 µL of (5 U/μL) Taq DNA polymerase (Inv-
itrogen, USA), and 12.5 µL of MiliQ water, for a total volume 
of 25 µL. The amplification program used was as follows: 
1 cycle at 80 °C for 1 min, followed by 94 °C for 3 min; 35 
cycles of 94° for 1 min, annealing at 55 °C for 1 min and 
extension at 72 °C for 1 min; and a final extension of 72° 
for 7 min and subsequent maintenance at 4 °C. The reac-
tion product was stored at – 20 °C until used for further 
analysis. The amplicons were visualized on a 1.5% agarose 
gel stained with ethidium bromide. The running time was 
1 h, using a voltage of 80 V.

In addition to the positive-control samples, ultrapure 
water from Promega (Madison, WI, USA) was used as nega-
tive samples in PCR assays.

2.5 � Sequencing of viral genomes found in positive 
samples and phylogenetic analysis

HAdV amplicons were purified using ReliaPrepTM DNA 
Clean-up and Concentration System kit (Promega, USA) 
and the amplicons were sequenced using the BigDye™ 
terminator cycle sequencing v3.1 kit (Applied Biosys-
tems, USA) according to the manufacturer’s instructions. 
The thermal cycle used was as follows: 96 °C for 1 min; 30 
cycles of 96 °C for 10 s, 50 °C for 5 s, and 60 °C for 4 min; 
maintenance at 4 °C.

The sequencing reaction was purified with the Big-
Dye® XTerminator™ Purification Kit (Applied Biosystems, 
USA) according to the manufacturer’s recommendations 
and analyzed with ABI 3500 Genetic Analyzer equipment 
(Applied Biosystems, USA). The obtained sequences were 
identified by the BLAST program (http://​www.​ncbi.​nlm.​
nih.​gov/​BLAST) by comparison with available sequences.

2.6 � Phylogenetic analysis

The nucleotide sequences were edited and aligned using 
the BioEdit Sequence Alignment Editor program v. 7.0.5.3, 
based on the pherogram. After editing, they were com-
pared to the reference sequences obtained in BLAST. 
The reference sequences used were Adenovirus type 40 
hexon gene (X51782.1, position 1819.0.2252) for geno-
type 40; Human adenovirus 41 isolated GyK253, complete 
genome (sequence KX868523.2, position 19407.0.19825) 
and Human mastadenovirus F strain HAdV41/Novosi-
birsk/NS12-N3542/2012/RUS hexon gene, partial cds 
(sequence MF589701.1, position 81.0.430) for genotype 
41; and GgorAdV-B7 (sequence HQ292614.1, position 
14788.0.15136) as an outgroup.

The phylogenetic tree was constructed using the MEGA 
10.1.7 program based on neighbor-joining method; a 
bootstrap test with 1000 replicates was used. Genetic dis-
tances were calculated by the p-distance model. The tree 
was edited using iTOL: Interactive Tree Of Life v.5.

2.7 � Rainfall index

The rainfall index for the period in which the samples were 
collected were downloaded from the Instituto Nacional de 
Meteorologia (INMET) database, and the correlation with 
HAdV genotyping was evaluated.

http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST
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2.8 � Statistical analyses

To verify the statistical association in the frequency dis-
tribution of viral types at the upstream and downstream 
collection points, and secondary vs tertiary treatment at 
downstream collection points, an exact Fischer tests were 
performed. For rainfall analysis and adenovirus frequency, 
the non-normal distribution of one of the variables was 
verified and spearman correlation was performed. In order 
to assess rainfall indexes in relation to the genotype, the 
non-normal distribution of the data was verified, and the 
Mann–Whitney test was carried out. GraphPad Prism 8.3.0 
program was used for the analysis, and data were consid-
ered statistically significant at p < 0.05.

3 � Results

A total of eight collections were analyzed, corresponding 
to the months of July, October, and November 2018 and 
June, July, August, October, and November 2019. Each 
collection consisted of 28 samples; 12 samples from the 
upstream site and 12 samples from the downstream site 
of each WWTP. Four samples were collected from WWTP 
5 (two samples) and 13 (two samples), which have no 
downstream and upstream points; these samples were 

Table 1   Occurrence of 
adenovirus detected at 
downstream and upstream 
sites during for each sample 
collection

*The WWTPs 5 and 13 discharge the treated wastewater into a lake (Paranoá Lake), and therefore has no 
downstream and upstream points; these samples were considered as downstream samples

Abbreviations: WWTP-1 ALAGADO; WWTP-2 BRAZLANDIA; WWTP-3 GAMA; WWTP-4 MELCHIOR; 
WWTP-5 NORTE; WWTP-6 PARANOÁ; WWTP-7 PLANALTINA; WWTP-8 RECANTO EMAS; WWTP-9 RIACHO 
FUNDO; WWTP-10 SAMAMBAIA; WWTP-11 SÃO SEBASTIÃO; WWTP-12 SOBRADINHO; WWTP-13 SUL; 
WWTP-14 VALE AMANHECER;

**p < 0.0001

Wastewater treat-
ment plant (WWTP)

Samples collected 
(upstream/down-
stream)

Positive samples (%) Total of posi-
tive samples 
(%)Upstream Downstream

WWTP-1 16 (8/8) 5/8 1/8 37.5
WWTP-2 16 (8/8) 0/8 3/8 18.7
WWTP-3 16 (8/8) 5/8 4/8 56.2
WWTP-4 16 (8/8) 1/8 5/8 37.5
WWTP-5* 16 (0/16)* 0/0 2/16* 12.5
WWTP-6 16 (8/8) 0/8 4/8 25
WWTP-7 16 (8/8) 0/8 5/8 31.2
WWTP-8 16 (8/8) 0/8 5/8 31.2
WWTP-9 16 (8/8) 0/8 0/8 0
WWTP-10 16 (8/8) 0/8 5/8 31.2
WWTP-11 16 (8/8) 0/8 1/8 6.2
WWTP-12 16 (8/8) 1/8 4/8 31.2
WWTP-13* 16 (0/16)* 0/0 5/16* 31.2
WWTP-14 16 (8/8) 0/8 5/8 31.2
Total n (%) 224 (100) 12/96 (12.5%)** 49/128 (38.3%)** 61/224 (27.2**)

Fig. 1   Frequency of adenovirus by sample type (upstream and 
downstream); (****) p < 0.0001
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all considered as downstream. Of the 224 samples, 
HAdV was detected in 27.2% (61/224) collected samples 
(Table 1).

Downstream samples displayed a significant higher 
prevalence of HAdVs (38.3%, 49/128), as compared to 
prevalence observed for the upstream samples (12.5%, 
12/96) (Fig. 1) (p < 0.0001).

With the exception of the tertiary-level WWTP-9, 
HAdVs were detected in all remaining water bodies 
impacted by WWTPs. Despite HAdVs have been detected 
regardless of the sewage treatment achieved, the HAdV 
positivity was different (p = 0.0153) in downstream sam-
ples collected from receiving water bodies impacted by 
secondary-level WWTPs (55–22/40) in comparison with 
those impacted by tertiary-level WWTPs (30–22/72) 
(Table 2).

Of the 61 HAdV-positive samples, 60 were sequenced. 
After phylogenetic analysis it was possible to observe 
the presence of genotypes 40 in 20% (12/60) and 41 in 
80% (48/60) of the samples (Fig. 2; Table 2). Also, the pres-
ence of genotype 40 or 41 was independent of the type 
of treatment (secondary or tertiary) of each WWTP and 
the point of collection, upstream or downstream (Table 2). 
It is important to note that samples may have mixtures 
of HAdV genotypes. Considering this observation, our 
results may show the predominant occurrence of one 
HAdV genotype per sample collected. PCR reactions tend 
to enrich and detect nucleic acid molecules that are over-
represented, as the first amplification cycles of a specific 
target lead to concurrent inhibition of the amplification of 
other targets. Pherogram analyses in sequencing assays, 
which showed bases with well-defined peaks along the 
sequences and with a low level of noise, confirm the exist-
ence of predominant genotypes for each sample (data not 
shown).

Both genotypes have tropism for the gastrointestinal 
tract and are consequently associated with the develop-
ment of gastroenteritis. Phylogenetic analysis also made 
it possible to observe a possible association of genotypes 
with precipitation. Despite the overall predominance of 
genotype 41, it was verified a trend in increasing the fre-
quency of genotype 40 associated with higher pluvios-
ity. Indeed, pluviosity values associated with genotype 40 
were frequently higher (Mann–Whitney mean rank = 42.25) 
than those associated with genotype 41 (Mann–Whitney 
mean rank = 27.56) (p = 0.005) (Fig. 3).

Considering the possible association between the prev-
alence of genotype 40 in periods of rain and genotype 41 
in periods of drought, an analysis was carried out to verify 
the statistical difference between the variables. Indeed, 
the distribution of precipitation was different between 
the two genotypes (Spearman correlation; rs = -− 0.098; 
p > 0.05) (Fig. 3).

4 � Discussion

In Brazil, contamination of water bodies through the 
release of untreated sewage represents a public health 
problem that directly affects the most vulnerable and 
low-income populations [12]. In addition, the treatments 
currently applied by WWTPs are not able to completely 
remove or inactivate pathogens [22]. For the first time, 
all 14 WWTPs from Brazilian Federal District had their 
receiving water bodies surveyed for the presence of 
HAdV.

HAdV was detected in 27.2% (61/224) of the samples 
obtained from 13 out of 14 WWTPs. Despite the HAdV 
leak from both secondary- and tertiary-level WWTPs, the 
secondary-level plants responded for a higher frequency 
of water body contamination. The presence of HAdVs in 
some water samples was expected, given the stability of 
their genome in comparison with RNA viruses and their 
higher frequency and abundance in waters compared 
to other enteric viruses [23]. In Brazil, similar low preva-
lence was observed in waterstream samples in Porto 
Alegre (21.4%) [19]. Worldwide, low HAdVs prevalence 
was also observed in samples from a river water in Italy 
(21.6%) and wastewater samples in Taiwan (27.3%) and 
Morocco (45.5%) [24–26]. Oppositely, high prevalence of 
HAdVs were found in Brazil. Studies demonstrated high 
prevalence in treated effluents samples in São Paulo 
(100%) [15], in environmental samples in Florianópo-
lis (64%) [27] and in the Sinos River watershed region, 
southern region of Brazil (75%) [28]. Important studies 
demonstrated high prevalence of HAdVs around the 
world, such as studies from Italy (60%), South Africa (62.5 
and 64%), Tunisia (64%), Norway (92%), Greece (76.9 to 
92.3%), Poland (92.1%) and United Kingdom (100%) 
[10, 29–35]. The wide range of results from the different 
studies is related to the different water matrices, types 
of treatment, sampling point and detection methodolo-
gies. Anyway, the presence of HAdVS in diverse water 
samples in diverse regions of the world strengthens the 
need of environmental virology monitoring.

Despite the low-cost of use of fecal indicator bacte-
ria (FIB) to monitor water quality, there are still some 
limitations. There are sources other than human feces 
that give rise to FIB, and the presence of FIB does not 
necessarily correlate with the presence of human enteric 
viruses. Outbreaks of viral-related illnesses among FIB-
free waters or water with quality criteria based on FIB 
demonstrate that risks to health may occur when FIB 
alone are used as a water control quality index [36]. Virus 
particles should thus be considered as complementary 
measures to bacterial indicators, once the potential role 
of water in transmission of viruses and the outcomes 
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should not be excluded. In addition, recent studies dem-
onstrated the presence of several types of enteric viruses 
in water matrices, such as Rotaviruses A (RVA), Norovi-
ruses (NoVs), Hepatoviruses (HVA) and Adenoviruses 
(HAdVs) [10, 37–43]. Some authors note that HAdVs can 
be used as virological indicators of human contamina-
tion and, consequently, a marker for water quality. Fur-
thermore, characteristics such as persistence and stabil-
ity make HAdV a possible indicator of water quality. In 
addition, HAdVs are also widely distributed in a variety 
of water matrices, including lakes and rivers, sewage 
systems, treated waters, and swimming pools [17, 44].

On the other hand, the use of viruses as indicators 
of contamination faces some barriers, including the dif-
ficulty in recovering these particles and standardizing 
a detection method. Variability in the HAdV positivity 
rate found in different studies can be attributed to fac-
tors such as concentration and molecular methods used, 

season, and geographic location [1]. In this study, we 
successfully used an adsorption-elution method with 
negatively charged membranes for viral concentration 
[18]. Conventional PCR was used for molecular detection. 
Other studies used adsorption-elution methods with 
negatively charged membranes and demonstrated good 
recovery of viral particles [45–47]. In another study, this 
method was shown to be less susceptible to the action 
of organic compounds, which are potential inhibitors of 
molecular techniques [48]. Other advantages include 
low cost and easy execution of the technique [19]. The 
use of quantitative real-time PCR, a methodology with 
greater sensitivity than the conventional PCR, which 
may also explain the higher rates of detection in other 
studies. Finally, the concentration methods used in these 
studies (ultrafiltration and filtration systems, respec-
tively) are different from those used here. For instance, 
the study performed in Porto Alegre [19] used the same 

Fig. 2   Phylogenetic analysis 
based on the nucleotide 
sequence of the hexon gene 
for HAdV positive samples. The 
bootstrap values are repre-
sented by the colors red (100) 
and black (minimum 70)
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concentration and detection methods as our study and, 
similar results were found.

It is widely known that adenovirus is more resistant to 
sewage treatment compared to other enteric viruses [10, 
49], and the treatment level accomplished is a key factor 
that affects the positivity rate of HAdVs in effluents. Here, 
we observed a significant lower rate of HAdV positivity in 
downstream samples after tertiary treatment compared to 

secondary one. In the Brazilian context, another study had 
already demonstrated decreasing in the prevalence and 
concentration of HAdVs after tertiary treatment [15]. In fact, 
the higher resistance of HAdVs to secondary treatments was 
also documented, showing that conventional and standard 
wastewater treatment techniques are inadequate and inef-
fective for eliminating enteric adenoviruses [10]. In addi-
tion, although several types of treatment process effectively 

Fig. 3   a Analysis of rainfall, 
frequency of adenoviruses and 
occurrence of genotypes 40 
and 41 (rs =  − 0.098; p > 0.05; 
spearman correlation). b 
Analysis of the rainfall index in 
relation to HAdV genotypes 40 
and 41; (**) p = 0.005; Mann–
Whitney test
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reduce the adenovirus load, the virus is still detected in the 
final effluent (even after tertiary treatment) [50]. In our study, 
despite a lower HAdVs positivity was observed after tertiary 
treatment, the viability and concentration of remaining 
HAdVs were not assessed. It is particularly important, once 
the tertiary treatment and disinfection process may impact 
the viability of HAdVs particles and its genomes [15].

All HAdV strains were sequenced and a phylogenetic 
analysis was performed to identify the genotypes of HAdV. 
Only one sequence could not be identified due to the 
difficulty of obtaining the electropherogram with good 
quality. Phylogenetic analysis revealed two genotypes. All 
samples belonged to species F, with 20% of sequencing 
as genotype 40 (12/60) and 80% as genotype 41 (48/60). 
Species F is primarily associated with gastroenteric dis-
orders. Initial epidemiological studies on the prevalence 
of HAdV-40 and HAdV-41 reported that the occurrence 
rates of these genotypes were approximately equal [51]. 
However, the pattern of occurrence of these genotypes 
has changed in recent years, with a reduction in HAdV-
40 and an increase of HAdV-41. In addition, several epi-
demiological studies report a predominance of genotype 
41 in cases of pediatric gastroenteritis. The increase in the 
prevalence of HAdV may be associated with antigenic 
drift [52–54]. In water matrices, the genotype 41 is also 
the most prevalent genotype in several regions worldwide 
such as Michigan, Poland, Norway, South Africa, Tunisia, 
Taiwan, Singapore, Germany, Italy [10, 29, 31, 32, 55–58]. 
These data strengthen the results obtained in this study 
that also point the genotype 41 as the most prevalent in 
the capital of Brazil.

Through genotyping, it was uncovered a possible rela-
tionship between the presence of a specific genotype and 
rainfall, confirmed by the evaluation of precipitation levels 
in each sampling. We observed that genotype 40 had its 
detection frequency in months of higher rainfall. No other 
studies comparing the rainfall index and HAdV genotype 
emergence have been published. Studies assessing the 
prevalence of HAdVs in wastewater and seasonality have 
shown conflicting results. This may be explained by the 
climatic and environmental conditions and linked to the 
variation and the specificity of the climate in each region 
[10, 30, 32, 58, 59]. Here, the sampling method did not 
allow the assessment of seasonality, and any conclusion 
would be mere speculation. Thus, further studies should 
be conducted to investigate this correlation.

5 � Conclusion

For the first time, the prevalence and genetic diversity of 
HAdV in treated effluents in the Brazilian Federal District 
was demonstrated. As expected, the largest number of 

positive samples was found downstream of the collection 
point. The presence of genotypes 40 and 41 was observed 
in WWTPs evaluated, with the dominance of enteric ade-
noviruses genotype 41. Finally, the genotype 40 was asso-
ciated with the rainy season and genotype 41 with the 
drought period. This study had an exploratory character 
and was the first carried out with the objective of evalu-
ating viral contamination in the WWTPs in the Brazilian 
Federal District. We highlight the necessity of continuous 
viral contamination monitoring of WWTPs and the estab-
lishment of effective disinfection treatment of wastewater 
to prevent the waterborne disease outbreaks.
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