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Abstract
One of the most notable errors in the global navigation satellite system (GNSS) is the ionospheric delay due to the total 
electron content (TEC). TEC is the number of electrons in the ionosphere in the signal path from the satellite to the 
receiver, which fluctuates with time and location. This error is one of the major problems in single-frequency (SF) GPS 
receivers. One way to eliminate this error is to use dual-frequency. Users of SF receivers should either use estimation 
models or local models to reduce this error. In this study, deep learning of artificial neural networks (ANN) was used to 
estimate TEC for SF users. For this purpose, the ionosphere as a single-layer model (assuming that all free electrons in 
the ionosphere are in this thin layer) is locally modeled by the code observation method. Linear combination has been 
used by selecting 24 permanent GNSS stations in the northwest of Iran. TEC was modeled independently of the geometry 
between the satellite and the receiver, called L4. This modeling was used to train the error ANN with two 5-day periods 
of high and low solar and geomagnetic activity range with a hyperbolic tangential sigmoid activation function. The 
results show that the proposed method is capable of eliminating ionosphere error with an average accuracy of 90%. The 
international reference ionosphere 2016 (IRI2016) is used for the verification, which has a 96% significance correlation 
with estimated TEC.
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1  Introduction

The ionosphere has extended from an altitude of 80 km 
to more than 1000 km. This layer of the atmosphere has 
important and fundamental effects on radio waves and 
their transmission. Radio waves travel slower when passing 
through this layer, resulting in longer transmission time. 
This is called the delay in the transmission of waves, which 
must be precisely determined for the accurate position-
ing done [1]. The ionosphere is a dispersive medium, and 
the dispersion of the waves depends on their frequency. 
Dual-frequency global positioning system (GPS) receivers 
reduce the effect of this error by accurately positioning [2]. 
But these receivers are expensive and partly complex, 

most users and systems use SF GPS receivers, which are 
not capable of eliminating or reducing the effect of the 
ionospheric delay [3]. For this purpose, it will be important 
for ionospheric models to be able to accurately represent 
ionosphere characteristics to allow for accurate position-
ing using GNSS measurements [4]. The signal transmission 
delay is proportional to the free electron distribution in the 
signal transmission path from the satellite to the receiver. 
Generating TEC maps directly from GPS measurements is 
one of the methods for studying the ionosphere [5].

Numerous studies have been conducted to investigate 
ionosphere error using different empirical models [6, 7]. 
The capability of ANN in this area is evaluated by tempo-
ral TEC estimation and presented as a suitable modeling 
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tool [8]. TEC IRI2012 estimate of GPS models in the low-
latitude East Africa regions has good consistency and 
accuracy of over 75% offers [9]. The estimated TEC from 
GPS based on IRI2016 long short-term memory DL models 
is R2 = 0.99 [10]. The estimated GNSS TEC with ionosonde 
outputs in various distributions is highly consistent, with 
the most changes estimated in the 9 March 2012 magnetic 
storm [11].

Radial basis function ANN is a reliable tool for predicting 
TEC and its average relative error is 9% [1]. Regulated DL 
can estimate TEC at different locations, times, and different 
geomagnetic conditions of the ionospheric structure and 
is effective in filling the missing data [2]. The TEC profile 
estimated with the ANN in 3D is in good agreement with 
the Jicamarca and Millstone Hill stations radar sensors. The 
proposed model represents the daily, seasonal, and annual 
variation of the ionosphere successfully [13].

The innovation of this paper is the use of artificial intel-
ligence with special architecture in order to estimate TEC 
with high accuracy. In this study, DL was used to estimate 
TEC for SF users. First, the mathematical equations of local 
ionosphere computation and the propagation error of 
ANN is presented. Estimated TEC from GNSS with 24 sta-
tions in northwest Iran has been investigated using code 
observations in two high and low SGA time zones. The 
numerical results are then compared with the TEC values 
of IRI2016.

2 � VTEC (TEC)

The first-order ionosphere delay is a function of the inte-
gral expression ∫ N ⋅ ds , which is called TEC. TEC is the 
number of electrons in the ionosphere in the signal path 
from the satellite to the receiver, expressed in TECU units 
(each electron per square meter TEC = 1016 ). Using TEC, 
we can write the first-order delay according to relation 1 
[13].

where A = 80.6 m3/s2 and f is the carrier signal frequency. 
TEC has very high variations due to changes in time and 
space. Another important point is that the TEC is strongly 
dependent on the satellite’s elevation angle (the geomet-
ric position of the satellite) because the signal path length 
in the ionosphere varies with the satellite position in the 
sky [14].
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2.1 � Modeling the ionosphere locally

Ionosphere modeling involves steps such as collecting 
ionosphere measurements, data processing, analysis, 
and finally validation and verification of results. Different 
models can be used to model the ionosphere. The model 
used in this study is local for modeling the ionosphere in 
Northwest Iran. The mechanism of this model is that it 
considers all free electrons in a thin layer about 450 km 
from the Earth’s surface [10]. This model is known as the 
single-layer model. The mapping function of this model 
is written FI with relationships 2 and 3 [9].

where Z ′ and Z are the zenith distance at single-layer and 
station height, respectively. R is the mean radius of the 
Earth and H is the height of the single layer above the 
Earth surface. At the height of this ideal layer, it is expected 
to have the highest electron density. In addition, the elec-
tron density E at this surface is a function of the latitude or 
geomagnetic latitude and the constant solar length S  [7]. 
To produce the TEC map, geometry-free linear compo-
nents called L4, which contain ionospheric information, 
are used. The nondifferential observational equations of 
the phase and code are written with relationships 4, 5, and 
6 for the calculation of the vertical local TEC [11].

where P4 and L4 are phase and code observations free 
of geometry. a = 40.3 × 1017 ms−2 TECU−1 is constant. F1 
and F2 are the frequencies of the wave phases carrying 
L2 and L1, respectively. FI(Z) is a function of the mapping 
evaluated at zenith distance Z′ [1, 12]. EV (� , s) TEC is a func-
tion of s (latitude) and β (longitude). s0 and β0 are the ref-
erence latitude and reference longitude. a constant bias 
(in meters) is B1 due to the ambiguity of the inner phase 
ambiguity and B2 to the wavelengths λ1 and λ2 [6]. The 
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reason for using pseudo observations is low noise and 
multi-path error compared to phase equations.

2.2 � Kp‑index

Geomagnetic activity in the field of ionospheric research is 
measured by the Kp-index, which indicates solar radiation. 
The Kp-index is obtained by averaging the observations 
of the horizontal field H intensity from a network [3]. This 
index is calculated at 3-h intervals, which is a kind of global 
measurement of the magnetic deviation from regular daily 
changes in one-hour period  [14].

3 � Deep learning of artificial neural networks

Artificial Neural Networks with simple processor units are 
capable of parallel processing, storing knowledge and 
using it for sequential evaluation [15]. These networks 
are a simplified model of human brain decision making, 
formed by simple, synthetic neurons [16]. The input infor-
mation of the neural cells is managed by the mean synap-
tic weight, which is known as the learning process during 
the sequential bursting process. After the training process 
with the activation function, this process is used through-
out the neural cell to produce information [1].

ANN with a hidden layer and sigmoid activation func-
tions in the middle layer and linear conversion functions 
in the output layer will be able to approximate the desired 
functions with any degree of approximation, provided 
they are sufficient. The middle hidden layer has several 
neural cell. The activation function used in the hidden neu-
ral cell is the sigmoid function of the hyperbolic tangent, 
expressed as a relation 7 [17].

where z is the input information of the neural cell and 
f (z) ∈ [0, 1] . The output and input values of the neural 
networks are defined in this range. This function must be 
continuous, derivative and monotonically descending [16]. 
It is also expected to have a saturate activation function 
(asymptotically approaching its maximum and minimum 
values).

A backpropagation artificial neural network (BPANN) 
error propagation algorithm is proposed for estimating 
the TEC because it has a good estimation function and has 
some estimator quality criteria such as inaccuracy, com-
patibility, minimum variance, efficiency and adequacy [18, 
19].

(7)f (z) =
2

1 + e−2z
− 1

3.1 � BPANN

This method is more widely used in engineering sciences 
than other methods of artificial neural networks. BPANN 
is a supervised learning network and feed forward. The 
network with a hidden layer and the use of the sigmoid 
activation function can estimate any continuous function 
by taking a sufficient number of hidden neurons [20]. The 
BPANN training process, similar to adjustment, attempts to 
reduce the residual output of the network [21]. This is done 
by initializing the weights and communicating between 
the neural cells of each layer. To prevent BPANN learning 
from slowing down, the initialization of weights between 
0 and 1 is usually selected.

The Delta rule is used based on the least-squares error 
in BPANN. Training process with a set of data consisting of 
specified input and output parameters based on hidden 
layer and weighting layer adjustment [22]. This iteration 
works by updating the weights and reducing the residu-
als of the neural network output (the difference between 
the calculated output and the actual output) and has two 
main feedback and propagation steps. These steps are per-
formed continuously with a set of training data of over 
several thousand iterations. In the feed-forward step, each 
input unit receives an input signal and sends it to each 
of the hidden units. Each hidden unit then calculates its 
activation and sends its signal to all output units [23]. A 
supervised value is also available in the tutorial for each 
input pattern. During the backpropagation training, each 
activation output unit compares its computational activa-
tion output with its target value to determine its associ-
ated error and to reduce the error value in the backpropa-
gation step [23, 24]. Mean square error (MSE) can be used 
as a measure of neural network efficiency. For a set with N 
inputs, MSE is defined as a relation 8.

where yact
i

 represents the actual output and ypred
i

 repre-
sents the output estimated by the neural network. The 
BPANN network architecture used in this study is illus-
trated in Fig. 1, which consists of three input layers of lati-
tude, longitude and, time, hidden layers (with hyperbolic 
tangential sigmoid activation function) and a vertical TEC 
output layer. Seventy percent of the data were used for 
training, 15% for testing, and 15% for validation. Further 
details on the BPANN learning process can be found in 
Bishop [20], Yang et al. [25] and Gupta and Singh [22].
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4 � The study area and results

Geodynamic GNSS stations of Iran with 127 stations 
have been designed and implemented by the national 
cartographic center since 1994 to monitor the earth’s 

crust movements. The study area is northwest of Iran 
with latitude and longitude 37 ≤ φ ≤ 40 and 45 ≤ λ ≤ 48 
and an approximate area of 150,000 square kilometers. 
The study used 24 GNSS stations of the East Azerbaijan 
region that collect 24-h data. GNSS data were processed 
using the standard BERNESE software process. The pro-
cessing uses the IGS (International GNSS Service) final 
satellite orbit data and the Earth’s rotational parameters. 
To model the ionosphere and estimate the TEC, the iono-
sphere is considered as a thin layer around the Earth with 
a constant height from the earth, assuming that all free 
electrons in the ionosphere are contained in this thin 
layer. Figure 2 shows the distribution of stations used in 
this study. All GNSS permanent stations have recorded 
observations with Ashtech Z12 and Trimble 4000SSI 
receivers with the choke-ring antenna.

Two data series with Kp ≥ 4 and Kp ≤ 4 SGA were used to 
estimate the DLANN. For the period of high geomagnetic 
and solar activity (PHGSA) (Kp ≥ 4) the ranges of 13 July 
2012 to 17 July 2012 and for the period of low geomag-
netic and solar activity (PLGSA) (Kp ≤ 4) ranges 8 August 
2012 to 12 August 2012 have been considered. Figure 3a 
shows the geomagnetic activity from 11 July 2012 to 15 
August 2012. The Kp-index had the highest value on 15 
Jul 2012 and the lowest value on 10 July 2012, which is 

Fig. 1   BPANN architecture

Fig. 2   Distribution of GNSS 
permanent stations
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also evident in the estimated TEC. The range of TEC varia-
tions in the study ranges from 0 to 8 TECU at low latitudes 
greater than high latitudes. According to Fig. 3b, c, TEC has 
the highest value on 15 July 2012 and 8 August 2012. At 
lower latitudes, the TEC is higher than the higher latitudes. 

Also in the northeast of the study area in July and August, 
TEC is lower than in other areas.

BPANN trains the network with the gradient method 
to minimize MSE. Increased repetition in network training 
increases network accuracy. But too much repetition will not 

Fig. 3   a Geomagnetic activity from 11 JUL 2012 to 15 AUG 2012, red and black ellipse shows the range of PHGSA and PLGSA processed in 
this study, respectively b TEC of PHGSA c TEC of PLGSA
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have much effect on increasing network accuracy. Increas-
ing the number of neural cells in the middle layer increases 
the accuracy of the neural network, but excessively increas-
ing the number of neural cells decreases the accuracy of 
the network because any increase will not always improve 
the network [26]. MATLAB has been used to implement 
DL. According to the hyper-parameters, hidden layers with 
changes in different training have been optimally selected. 
Also, the data for the training, testing and validation steps 
were randomly selected at different times.

To estimate the accuracy of backpropagation error, the 
absolute and relative errors in the form of nine and ten rela-
tionships are used.

(9)Absolute Error = |
|TECe − TEC||

(10)Relative Error =
Absolute Error

TEC
× 100

where TECe is the estimated value (the value obtained 
after the BPANN) and the TEC is the calculated value 
(the value obtained from the L4 code equations). In this 
study, 428 estimates were made for the TEC north-west 
of Iran between different stations, days and hours. The 
mean absolute error of the estimates is 1.4 TECU with a 
standard deviation of 1.1 TECU and the mean relative error 
of 11.8% with a standard deviation of 10.3%. Figure 4a, 
b shows the absolute error and the relative error dur-
ing PLGSA, respectively. Figure 4c, d shows the absolute 
error and the relative error during PHGSA, respectively. In 
PLGSA, the absolute error is greater in the northwest and 
southeast regions, and the relative error is greater in the 
western and southeast regions. In PHGSA, the absolute 
error is greater in the northwest and southeast regions 
and the relative error in the northern, eastern, western 
and southern regions is higher. In the central regions 
of both solar activity periods, absolute error rates are 
observed due to the high density of the GNSS stations, 
which is similar to the relative error. ANN can estimate 

Fig. 4   a Absolute error during PLGSA b relative error during PLGSA c absolute error during PHGSA d relative error during PHGSA
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the required parameters with high accuracy due to the 
simultaneous usability of several factors, they also do not 
require complex mathematical formulas and can be prop-
erly selected and trained if the network pattern is correct 
(good for estimating parameters in a short time). Based on 
the accuracy, BPANN is a very powerful network that can 
be used to estimate various parameters. These networks 
will be able to provide logical answers to new input data 
if they are properly trained [2, 5, 14].

To evaluate the accuracy of the proposed DL model, a 
support vector machine (SVM) with different kernels has 
been used to identify features (longitude, latitude and 
time) and forecast, the results of which are given in Table 1. 
The fine Gaussian kernel is more accurate than the rest 
and the lowest is the linear kernel. Due to the accuracy of 
about 90%, DL has a successful performance compared 
to the SVM method and to improve the accuracy of SVM, 
other features must be defined. Figure 5a shows the accu-
racy of different methods.

The IRI empirical model is an international project 
and the result of the collaboration of the Committee On 
Space Research (COSPAR) and the International Union of 

Radio Science (URSI), which set up a working group with 
the aim of establishing an international standard for the 
determination of ionospheric parameters as the IRI model. 
The experimental IRI model was developed as a numeri-
cal model to avoid the complexities of theoretical models 
based on all available data sources [27]. For validation, 
the IRI2016 model was used in the study period. The IRI-
2016 model is suitable for scientific analysis of the over-
all behavior of the ionosphere [28]. The results show an 
almost linear relationship between TEC from IRI 2016 and 
GNSS and their SC is 96% and their difference is less than 
2 TECU. An almost linear relationship is observed between 
IRI 2016 and TEC estimated from GNSS and in PHSA varia-
tions with a value greater than 8, it also provides consist-
ent results. Also at lower TEC values is good compatibility 
between IRI 2016 and TEC estimated from GNSS.

5 � Conclusion

Two data series with Kp ≥ 4 and Kp ≤ 4 SGA over 5 days 
were used to estimate the TEC. The results show that the 
mean absolute error of the estimates is 1.4 TECU with a 
standard deviation of 1.1 TECU and the average relative 
error of 11.8% with a standard deviation of 10.3%. In this 
study, the ability of DLANN has estimated the TEC that is 
based on BPANN is close to the real values. It is also capa-
ble of eliminating ionosphere error with an average accu-
racy of 90%. Estimated values can be used by users of SF 
receivers in the study area to correct ionosphere error. 
With the increase in the number of hidden layer neurons 
and passing the current set point, the network with the 
overtrain phenomenon and the MSE value will increase 

Table 1   Accuracy of different SVM kernel functions

SVM Kernel Accuracy (%)

Linear 60.12
Quadratic 66.41
Cubic 68.24
Medium Gaussian 73.74
Fine Gaussian 75.68
Coarse Gaussian 70.14

Fig. 5   a Accuracy of different methods b scatter plot of TEC from IRI2016 and GNSS during the study period
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sharply. Therefore, the best number of neural cells or atten-
tion to minimizing MSE for network training should be cal-
culated using the trial and error process. The number of 
hidden layers required is determined by the convergence 
of the training process. The disadvantages of DL are the 
inability to interpret the outputs and how to select train-
ing data, which can be used to solve this problem with 
the genetic algorithm (find the optimal number of train-
ing data). Further studies can estimate TEC values in other 
regions using different activation functions and compare 
the efficiency and accuracy of DL with local and global 
ionosphere models. The proposed method can be useful 
in other fields of geodesy. Therefore, it is recommended to 
implement in other areas such as geoid determination and 
gravity and compare the results with wavelet [12].
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