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Abstract
A simple, straightforward, and ultrasound-promoted method for the preparation of some highly functionalized tetrahy-
dropyridines reported via pseudo five-component reaction of (hetero)aromatic aldehydes, different anilines, and alkyl 
acetoacetates in the presence of [N-CH2CO2H-3-pic]+HSO4

−, as a novel ionic liquid, in green aqueous medium. The IL 
was synthesized utilizing simple and easily-handled substrates and characterized by FT-IR, 1H NMR, 13C NMR, GC-MASS, 
FESEM, EDX, and TGA/DTG techniques. The procedure contains some highlighted aspects which are: (a) performing the 
MCR in the presence of aqua and sonic waves, as two main important and environmentally benign indexes in green 
and economic chemistry, (b) high yields of products within short reaction times, (c) convenient work-up procedure, (d) 
preparing the new IL via simple substrates and procedure.
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1 Introduction

Synthesis of various nitrogen-containing heterocyclic 
compounds widely attracted in organic chemistry [1, 2]. 
Among different types of N-heterocycles, tetrahydropyri-
dines are particularly significant because of their organic 
and pharmaceutical attractions [3, 4].

Tetrahydropyridine (THP) moiety exists in various alka-
loids and natural products [5]. Tetrahydropyridine exist-
ence in heterocycles cause to different pharmacological 
and biological activities such as antimicrobial activity 
against Escherichia coli [6], antimalarial [7], anti-oxidant 
(which made them as potent radical scavengers) [8], 

anti-fungicidal and insecticidal [9], anti-tumor [10], and 
neuroprotective (Parkinson’s disease) [11]. Some com-
pounds hold THP scaffolds also used as corrosion inhibi-
tors for mild steel [12],

Recently a wide range of functionalized tetrahydro-
pyridine-3-carboxylates has been synthesized via the 
reaction of various aldehydes, amines, and β-keto esters 
utilizing various catalysts under different conditions such 
as: bromodimethylsulfonium bromide (BDMS) in acetoni-
trile at room temperature [13],  FeCl3/SiO2 NPs in refluxing 
methanol [14], Bi(III) immobilized on triazine magnetized 
dendrimer  (Fe3O4@TDSN-Bi(III)) in ethanol at room tem-
perature [15], nano-Al2O3/BF3/Fe3O4 at 80 °C [16], CAN in 
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acetonitrile at room temperature [17], nano-spherical silica 
sulfuric acid (NS-SSA) in acetonitrile at 65 °C [18], Ag,  Ni2+, 
and  Fe2+ immobilized on the core‐shell hydroxyapatite γ‐
Fe2O3 MNPs (γ‐Fe2O3@-HAp‐Ag, γ‐Fe2O3@HAp‐Ni2+, and 
γ‐Fe2O3@HAp‐Fe2+) in ethanol at room temperature [19], 
and [(Et3N)2SO][HSO4]2 at 120 °C [20].

Sonochemistry, utilizing the high-power ultrasound 
that generate cavitation in a liquid, is a source of energy 
to accelerate a wide-spread chemical transformation. The 
hot-spot theory explains the energy release from cavita-
tion as a physical process. The theory explains that each 
cavity (bubble) acts a localized microreactor that produces 
thousand degrees temperatures and pressures more than 
one thousand atmospheres [21]. Recently ultrasound, 
as one of the useful non-traditional condition, utilized 
for enhancing diverse organic reactions in heterocyclic 
preparations [22–25], and multi-component one-step or 
domino reactions [24, 26, 27], The sonochemistry is also 
green technique due to enhanced reactivity and accelera-
tion leads to energy savings and cleaner products with 
formation of little or no by-products [23].

Performing the reactions in aqueous media achieved 
attention in recent organic synthesis. The phrase “on-
water” that communicates to the situation in which reac-
tants are insoluble in water, firstly expressed by Sharpless 
[28]. The water has some special characteristics that make 
it an optional green medium for organic reactions such as 
non-toxicity, cheapness, non-flammability, readily avail-
ability, and some physicochemical properties (polarity, 
hydrogen bonding, and trans-phase interactions) [29, 30]. 
Performing the organic transformation in aqueous media 

included some advantages such as: enhanced reactivity 
and selectivity of the procedure, work-up and purification 
improvement, recycling and reusability of the catalyst, 
milder reaction conditions, and straightforward prepara-
tion of natural and bioactive compounds [30].

Ionic liquids (ILs, salts melted without decomposing or 
vaporizing) are very famous and versatile catalysts and/
or solvents in organic transformations. These liquid salts 
which could own dual catalytic/solvent role are classified 
as task-specific ionic liquids (TSILs) [31], room temperature 
ionic liquids (RTILs) [32, 33], chiral ionic liquids [34], basic 
ionic liquids (BILs) [35], acidic ionic liquids [36], Brønsted 
acidic ionic liquids (BAILs) [37], and Lewis acidic ionic liq-
uids [38]. They also utilized as part of multi-layered struc-
tures which causes to enhance the total efficacy through 
synergic effects [39–41]. Recently pyridinium-based ILs 
attached special attention in various kind of organic 
transformations such as cyclocondensation-Knoevenagel-
Michael domino reactions [42], synthesis of bis‐naph-
thodipyrans [43], synthesis of spiropyrans [44], and pre-
pation of pyranopyrazoles [45].

In extending our research group preferences for the 
synthesis of novel nano promoters to catalyze various 
MCRs [46–51] here in we report preparation of a new 
organic IL on the basis of 3-picoline, named N-carboxym-
ethyl-3-methylpyridinium hydrogensulfate ([N-CH2CO2H-
3-pic]+HSO4

-). Its catalytic activity was examined to obtain 
multi-substituted tetrahydropyridine-3-carboxylates via a 
pseudo five-component ultrasound-assisted reaction of 
(hetero)aromatic aldehydes, different anilines, and alkyl 
acetoacetates in water (Scheme 1).

Scheme 1.  Ultrasound-assisted 
synthesis of multi-substituted 
tetrahydropyridine-3-car-
boxylates in the presence of 
[N-CH2CO2H-3-pic]+HSO4

− IL
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2  Experimental

2.1  Materials and measurements

The chemicals and reagents purchased from Merck 
Chemical Company and utilized without any purifica-
tion. FT-IR spectra were run on a Bruker, Tensor 27 spec-
trometer. The 1H NMR and 13C NMR were recorder by 
A Bruker (DRX-300 Avanes) apparatus. Melting points 
were determined by Electro thermal 9200. Field emis-
sion scanning electron microscopy (FESEM) gained by 
a VEGA//TESCAN-LUM. The mass spectra were recorded 
on a GC-Mass 5973 Network Mass Selective Detector, GC 
6690 and Mass l 5973 Network Mass Selective Detector, 
Agilent Technology (HP) Agilent. Thermal gravimetric 
analysis (TGA) done through a “TGA1 METTLER TOLEDO” 
apparatus. A centrifuge machine UNIVERSAL 320 (capac-
ity of 1000 W) used in the preparation procedure of IL. 
Homogenization performed in a Wise clean bath with 
power of 90 W. The ultrasonic device was an HD 3100 
ultrasonic homogenizer form Bandelin Company (Ger-
many). The SH 70 G horn, which emits 20 kHz ± 500 Hz 
ultrasound at intensity levels tunable up to maximum 
sonic power density of 100  Wcm-2, was used. Sonication 
carried out at 100% (maximum amplitude 245 μ m). An 
MS73 probe with the 3 mm diameter was immersed 
directly to the reaction mixture.

2.2  General procedure for the preparation of [N‑CH
2CO2H‑3‑Pic]+HSO4

−

A solution of 3-methylpyridine (10 mmol) and chloro-
acetic acid (10 mmol) in dry acetone (40 ml), in a two 
necked round bottomed flask, was refluxed within 7 h. 
The reaction completing-time monitored by TLC (elu-
ent: n-hexane:EtOAc, 5:3). After that the flask put into 
ice-bath and a solution of concentrated sulfuric acid in 
dried acetone (20 ml) poured into the balloon through 
a dropping funnel drop by drop and stirred for 90 min 
at room temperature. The resulting mixture centri-
fuged (10,000 rpm) and the solid residue washed with 
further dried acetone (3 × 10  ml). The obtained solid 
was dissolved in 20 ml acetone and sonicated in a bath 
for 30  min to be homogenized. After air-drying and 
oven-drying at 50 °C for 2 h, the obtained white solid is 
[N-CH2CO2H-3-pic]+HSO4

− IL (M.P. = 80–82 °C). FT-IR (KBr): 
3386, 3171, 3063, 2930, 2809, 1631, 1475, 1313, 1231, 
119, 1054  cm–1. 1H NMR (300 MHz, DMSO-d6): 2.45 (s, 3H, 
 CH3), 3.85 (s, 2H,  CH2), 7.99 (dd, 1H, J = 7.8, 5.7 Hz, Ar), 
8.46 (d, 1H, J = 7.8 Hz, Ar), 8.73–8.78 (br s, 2H, Ar), 12.67 
(br s, 2H, OH). 13C NMR (75 MHz, DMSO-d6): 17.9, 127.0, 

138.2, 139.3, 141.5, 147.1. MS (EI) (m/z): 248  [M+-1], 234 
 [M+]–Me, 186  [M+]–CO2H, –H2O, 175  [M+]–CH2CO2H, –Me, 
152  [M+]–HSO4, 138  [M+]–HSO4

−, –Me, 93 [3-methylpyri-
dine]+, 80  [pyridine]+, 60  [MeCO2H]+.

2.3  General procedure for synthesis of alkyl 
1,2,6‑triaryl‑4‑(arylamino)‑1,2,5,6‑tetrahydro‑
pyridine‑3‑carboxylates (4a‑s)

A mixture of aromatic aldehydes 1a-h (2 mmol), aro-
matic amines 2a-f (2 mmol), alkyl acetoacetate 3a-b (1 
mmol), and [N-CH2CO2H-3-Pic]+HSO4

− IL (0.032 g, 12.8 
mol%) in water (5 ml), sonicated by a probe (60  Wcm-2) 
for the appropriate time monitored by TLC (eluent: 
n-hexane:EtOAc, 5:3). After completion of the reaction, 
the mixture was dissolved in hot methanol to obtain the 
desired products 4a-s.

2.4  Ethyl 2,6‑bis(2‑hydroxy‑4‑nitrophenyl)‑1‑(4‑nit
rophenyl)‑4‑((4‑nitrophenyl)amino)‑1,2,5,6‑tet‑
rahydropyridine‑3‑carboxylate (4 l)

Yellow solid; M.P. 194–195  °C; FT-IR (KBr): 3348 (NH), 
3368 (OH), 2923 (CH), 1623 (CO), 1588 (C=C), 1515 (N–O), 
1345 (N–O), 1291(C–O, ester), 1223 (CO, phenol)  cm−1; 
1H NMR (300 MHz, DMSO-d6) δ/ppm: 1.86 (m, 3H,  CH3), 
3.15–3.27(m, 2H,  CH2), 3.27–3.28 (m, 2H,  CH2), 6.56–6.59 
(m, 1H, CH), 6.71 (d, 1H, J = 8.9 Hz, Ar), 7.11–7.14 (m, 2H, 
Ar), 7.40 (d, 2H, J = 8.8 Hz, Ar), 7.49 (d, 1H, J = 9.0 Hz, Ar), 
7.55 (d, 2H, J = 8.8 Hz, Ar), 8.13–8.37 (m, 5H, Ar), 8.57–8.58 
(m, 1H, Ar), 10.25 (s, 1H, NH), 11.78 (br s, 1H, OH), 12.93 (br 
s, 1H, OH).

Ethyl 1-(4-chlorophenyl)-4-((4-chlorophenyl)amino)-
2,6-di(1H-pyrrol-2-yl)-1,2,5,6-tetrahydropyridine-3-carbox-
ylate (4m).

Black solid; M.P. 288–289 °C; FT-IR (KBr): 3444 (NH), 2922 
(C–H), 1648 (CO), 1558 (C=C), 1462 (C=C), 1263 (C–O), 777 
(C–Cl)  cm−1; 1H NMR (300 MHz, DMSO-d6) δ/ppm: 1.99–2.48 
(m, 3H,  CH3), 3.16–3.46 (m, 1H, CH), 3.57–3.62 (m, 4H, 
 2CH2), 6.27–6.57 (m, 5H, Ar), 6.77–7.02 (m, 6H, Ar), 7.20 (m, 
1H, Ar), 7.40 (br s, 1H, NH), 7.55 (br s, 1H, NH), 8.19–8.57 (M, 
2H, Ar), 11.46–12.18 (br s, 1H, NH).

3  Results and discussion

The FESEM images of the [N-CH2CO2H-3-Pic]+HSO4
− IL has 

been obtained in order to recognize the structure and size 
of the particles. As it is illustrated in Fig. 1, there is moder-
ate uniformity in the structure of the IL in μm scale. There 
are some IL nanoparticles with the average diameter of 
35–55 nm on the surface of the [N-CH2CO2H-3-Pic]+HSO4

−.
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Fig. 1  FESEM images of [N-CH2CO2H-3-Pic]+HSO4
− IL
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TGA/DTG analysis of [N-CH2CO2H-3-Pic]+HSO4
− IL in 

Fig. 2 showed that the nanostructure decomposes through 
an endothermic one-step process. It is thermally stable 
up to about 300 °C and total decomposition occurred at 
360 °C.

The EDX analysis of the IL illustrated in Fig. 3. The results 
show the existence of the elements such as C (40.12%), N 
(6.98%), O (42.02%), and S (10.87%). The impurities related 
to the solvents and materials used in the catalyst manufac-
turing process didn’t observe.

In the next step, in order to examine the catalytic activ-
ity of newly-prepared IL, the reaction of benzaldehyde 1a 
(2 mmol), 4-chloroaniline 2d (2 mmol), and ethyl acetoac-
etate 3a (1 mmol) was chosen as the model. To achieve 
the optimized conditions different exams performed that 
are presented in Table 1. As it observed, in the solvent-
free conditions the best amount of the catalyst is 0.032 g 
(12.8 mol%) (Entries 1 & 2). The temperature investigations 
showed that 60 °C is the best choice (entries 3 & 4). Imple-
mentation of the reaction in ethanol (entry 5) and water 

Fig. 2  TGA/DTG analysis of 
[N-CH2CO2H-3-Pic]+HSO4

− IL

Fig. 3  EDX analysis of 
[N-CH2CO2H-3-Pic]+HSO4

− IL
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(entry 6) defined that the reaction progressed better in 
the absence of solvent (compare the results of entries 1, 5, 
and 6). In the best try, the reaction investigated under the 
sonic waves with various power density (entries 7–10). The 
results affirmed that utilizing sonic waves with the power 
of 60  Wcm−2 in aqueous medium is the best choice (entry 
7). Eventually due to results, performing the reaction in 
the presence of 0.032 g (12.8 mol%) of the [N-CH2CO2H-3-
Pic]+HSO4

− IL in aqueous medium under sonic waves (60 
 Wcm−2) is the best choice. In order to check the IL effi-
cacy and necessity to accelerate the reaction, the model 
reaction also examined in the absence of [N-CH2CO2H-3-
Pic]+HSO4

− through addition of 5 drops of concentrated 
sulfuric acid as protic inorganic acid catalyst (entry 11). 

According to the result the reaction progress is not satis-
factory in comparison to the entry 7, which confirmed the 
crucial role of IL to perform the reaction. This phenomena 
could be due to the amphipathic (hydrophilic and lipo-
philic) characteristics of the  CH2CO2H-3-Pic]+HSO4

− that 
could be dissolved better than mineral acid  (H2SO4) in the 
micelles of the organic reactants suspended in water [52]. 
The model reaction also repeated in the presence of chlo-
roacetic acid, as an organic acid which is one of the staring 
materials to prepare the IL (entry 12). The model reaction 
accomplishment in the absence of IL (entry 13) didn’t gen-
erate the corresponding product. The results summarized 
in entries 11–13, affirmed the importance catalytic role of 
IL for the reaction progress. It seems that the optimized 

Table 1  Screening the reaction conditions in the synthesis of 4ca

a Benzaldehyde 1a (2 mmol), 4-chloroaniline 2d (2 mmol), and ethyl acetoacetate 3a (1 mmol)
b Isolated yields

 

Entry Conditions Time (min) Yield (%)b

IL (g)/solvent (5 ml)/Temp (°C)

1 0.032/–/60 50 91
2 0.024/–/60 60 85
3 0.032/–/50 60 85
4 0.032/–/70 30 90
5 0.032/EtOH/60 65 73
6 0.032/H2O/60 45 84
7 0.032/H2O/US (60 W  cm−2) 10 93
8 0.032/EtOH/US (60 W  cm−2) 15 87
9 0.032/H2O/US (80 W  cm−2) 10 92
10 0.032/H2O /US (40 W  cm−2) 25 75
11 Con.  H2SO4 (5 drops)/H2O/US (60 W  cm−2) 25 40
12 ClCH2COOH (0.032)/H2O/US (60 W  cm−2) 25 30
13 -/H2O/US (60  Wcm−2) 40 –
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reaction conditions which consist of ultrasound/ionic liq-
uid/water media could enhanced the reaction progress 
through generation of hot-spots and cavitation in addi-
tion with the catalytic aid of the IL.

Afterwards, the synthesis of various multi-substituted 
THP-3-carboxylates surveyed under the optimized con-
ditions. Based on the data summarized in Table 2 and 
Scheme 1, benzaldehydes, various anilines, and ethyl 
acetoacetate gained their corresponding THPs in good 
yields (entries 1–13). In order to extend the efficacy of 
the method methyl acetoacetate also performed the 
pseudo-five component condensation well (entries 
14–19). No significant substituent effect on the time 
and/or yield of the reactions didn’t observe.

Although no mechanistic verification examined, the 
proposed mechanism illustrated in Scheme 2. According 
to suggested plan, the synthesis of THPs 4 could be pro-
ceeded through two pathways (I & II). In the pathway I, 
the ionic liquid ([N-CH2CO2H-3-Pic]+HSO4

−) activates the 

C = O group of aldehyde 1 which condensed to aniline 
2 to obtain imine A. Activation the carbonyl group of 
alkyl acetoacetate 3 by IL followed by condensation with 
aniline 2 generates β-enaminone B. The intermolecular 
Mannich addition of A and B affords the intermediate 
C. Subsequently, the condensation of activated alde-
hyde with the intermediate C generates intermediate D 
that follows by tautomerization to intermediate E. The 
intramolecular ring closure follows by tautomerization 
obtains the final product 4. The pathway II, the Knoev-
enagel condensation of β-enaminone B with aldehyde 
1, yields intermediate G that tautomerizes respectively 
to H. the [4 + 2] Aza Diels–Alder reaction of H with imine 
A obtained the desired product 4.

Finally, to clarify the efficacy of the protocol, a com-
parison performed for the synthesis of with the previ-
ously reported methods illustrated in Table 3. According 
to data, presence of [N-CH2CO2H-3-Pic]+HSO4

− IL, in addi-
tion with sonic waves in aqueous medium, elevated the 
reaction progress.

Table 2  Ultrasound-assisted 
synthesis of multi-substituted 
THP-3-carboxylates in aqueous 
 mediaa

a Aldehydes:anilines:alkyl acetoacetate molar ratio is 2:2:1. 0.032  g (12.8  mol%) of the ionic liquid, 
[N-CH2CO2H-3-Pic]+HSO4

−, was used
b Isolated yields

Entry R1 R2 R3 Time (min) Yieldb (%) M.P. (°C)
Found (reported)

1 Ph 4-MeC6H4 Et 4a 25 89 190–191 (192–194) [16]
2 Ph 4-MeOC6H4 Et 4b 25 90 199–200 (196–197) [53]
3 Ph 4-ClC6H4 Et 4c 10 93 203–205 (202–204) [16]
4 Ph 4-BrC6H4 Et 4d 25 92 225–227 (230–231) [53]
5 4-MeC6H4 Ph Et 4e 10 86 219–221 (227–229) [16]
6 4-MeC6H4 4-MeC6H4 Et 4f 25 84 172–173 (170–172) [16]
7 4-MeOC6H4 4-BrC6H4 Et 4g 25 91 214–215 (217–219) [16]
8 4-ClC6H4 4-ClC6H4 Et 4h 30 85 210–212 (214–215) [16]
9 4-NO2C6H4 Ph Et 4i 20 89 242–244 (247–250) [17]
10 4-NO2C6H4 4-MeOC6H4 Et 4j 25 92 195–196 (197–199) [14]
11 3-NO2C6H4 Ph Et 4k 25 87 227–229 (229–231) [14]
12 2-OH-4-NO2C6H3 4-NO2C6H4 Et 4l 15 91 194–195
13 2-Pyrrolyl 4-ClC6H4 Et 4m 30 89 288–289
14 4-MeC6H4 Ph Me 4n 25 92 211–213 (215–216) [17]
15 4-MeC6H4 4-MeOC6H4 Me 4o 25 91 224–225 (226–227) [14]
16 4-MeC6H4 4-BrC6H4 Me 4p 15 92 248–250 (253–254) [17]
17 4-MeOC6H4 4-BrC6H4 Me 4q 20 86 178–179 (177–178) [17]
18 4-ClC6H4 4-ClC6H4 Me 4r 30 94 190–191 (188–190) [17]
19 4-NO2C6H4 Ph Me 4s 15 87 238–240 (240–241) [17]
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Scheme 2.  The proposed 
mechanism for the synthesis 
of multi-substituted THP-3-car-
boxylates

Table 3  Comparison of the 
methods in the synthesis of 4d 

Entry Conditions Time (min) Yield (%)b References

1 FeCl3–SiO2 NPs (0.8%)/MeOH/Reflux 300 91 [14]
Fe3O4@TDSN-Bi(III) (0.133 g)/EtOH/RT 60 96 [15]

2 Nano-Al2O3/BF3/Fe3O4 (0.03 g)/80 °C 180 84 [16]
3 NS-SSA (0.05 g)/CH3CN/65 °C 330 89 [18]
4 [Bmim-G-(SO3H)4]+[HSO4]− (10 mol%)/EtOH/40 °C 300 76 [53]
5 Lactic acid (5 mol%)/EtOH/RT 30 92 [54]
7 [N-CH2CO2H-3-Pic]+HSO4

− (0.032 g)/H2O/US (60 W  cm−2) 25 92 This work
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4  Conclusions

In summary, an efficient MCR protocol to obtain multi-
substituted tetrahydropyridine-3-carboxylates catalyzed 
by novel ionic liquid [N-CH2CO2H-3-Pic]+HSO4

− was 
developed. These compounds were prepared from the 
ultrasound-assisted pseudo five-component condensa-
tion of anilines, (hetero)aromatic aldehydes and alkyl 
acetoacetates in a one-pot one-step aqueous-mediated 
process. Utilizing aqua as green solvent in the presence 
of sonic waves, as powerful microreactors which prepare 
hot-spots and cavitation, and the catalytic efficacy of the 
newly prepared organo-based ionic liquid, clean synthe-
sis, and high yields of products, are some advantages of 
this methodology.
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