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Abstract
Excessive pesticide residues in crops directly threaten human life and health, so rapid screening and effective measure-
ments of agricultural pesticides residues have important application significance in the field of food safety. It is impera-
tive to detect different pesticide residue types in actual complex crop samples cause mixture analysis can provide more 
information than individual components. However, the accuracy of mixture analysis can be obviously affected by the 
impurities and noise disturbances. Purification and denoising will cost a lot of algorithm time. In this work, we used 
the problem transformation method to convert pesticide residues prediction into multi-label classification problem. 
In addition, a new convolutional neural network structure Pesticide Residues Neural Network (PRNet) was proposed to 
solve the problem of multi-label organophosphate pesticide residue prediction. The method of binary correlation and 
label energy set was used to adapt 35 pesticide residues labels. The Cross Entropy were used as loss functions for PRNet. 
The comprehensive comparison performances (e.g. 97% optimal accuracy rate) of PRNet is better than the other four 
models. By comparing the ROC curves of the five models, PRNet performs the best. The PRNet can separate the inde-
pendent mass spectrometry data by different collision energy applied to phosphorus pesticide compounds through 
a three-channel structure. No complicated data preprocessing is required, the PRNet can extract the characteristics of 
different compounds more efficiently and presents high detecting accuracy and good model performance of multi-label 
mass spectrometry data classification. By inputting MS data of different instruments and adding more offset MS data, 
the model will be more transplantable and could lay the foundation for the wide application of PRNet model in rapid, 
on-site, accurate and broad-spectrum screening of pesticide residues in the future.
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1 Introduction

Pesticides are widely used in agricultural production. They 
play a significant role in preventing insects or diseases and 
increasing yields. However, unreasonable use of pesticides 
occurs occasionally, which could not only cause pesticide 
residues, but also pollute the environment severely [1]. 
There are many different types of pesticides based on their 

structure, including carbamate, organochlorine, organo-
phosphorus, pyrethroids, heterocycles and amides, etc. 
Among those, organophosphorus pesticides are the most 
widely used. There are more than 100 organophosphorus 
pesticides. Most of them have the irreversible cholinester-
ase inhibitors for organisms to bring detrimental impacts 
on human healthy [2]. Therefore, it is a necessary and dif-
ficult problem to realize rapid detection and identification 
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of organophosphorus pesticides in vegetables according 
to the detection limit, sensitivity and accuracy require-
ments. At present, mass spectrometry (MS), as a strong 
qualitative function, is one of the most broadly used con-
firmations in practice. It firstly dissociates the molecules of 
the substance to ions with different masses, and then uses 
the different motion behavior of ions in electric field or 
magnetic field to separate the ions according to the mass 
charge ratio (m/z) to obtain the mass spectrometry [3]. 
The qualitative and quantitative information of the sam-
ples can be obtained from the MS data. Since it is targeted 
at the molecular structure of the sample. The information 
obtained by MS is more accurate and reliable for qualita-
tive analysis. In real life, different compounds are always 
mixed together. Due to the complexity of MS analysis, the 
amount of MS data is usually very large. Consequently, 
most MS peaks are meaningless for the components’ iden-
tification. Considering that MS data is usually accompa-
nied by some noise to conceal sample ion strength. The 
introduced confused information can not only make the 
identification algorithm-more computationally intensive, 
but also increase the possibility of random matching. It 
results in a decrease in the appraisal results reliability and 
an increase in the false positive or false negative iden-
tifications. Even though, some mathematical methods 
attempted to detect specific compounds from mixed 
samples MS data [4].

Over the past several years, many works on Artifi-
cial Neural Network (ANN) in the area of MS have been 
reported. MSnet, created by Curry et al. may be the first 
generation neural network for MS [5]. It involves a hierar-
chical system of several neural networks for MS data. The 
work of Werther et al. uses classical multi-dimensional 
numerical analysis techniques to compare the perfor-
mance of ANNs [6]. A. Eghbaldar et al. presented a meth-
odology for optimizing ANN to identify the compounds’ 
structural features from MS data [7]. Ankita thakur uses 
ANN to mine MS data to detect ovarian cancer [8]. Ion 
mobility spectra can also be successfully classified by neu-
ral networks from the combination of drift time, number, 
intensity, and peak shape [9].

In general, the dimensionality of MS data inputs is 
always very large. Although, the performance of the neural 
network becomes better for the larger data set. Unfortu-
nately, small number of samples and the large dimension 
of MS data inputs construct the typical dilemma for the 
realistic datasets. Deep learning can directly extract fea-
tures from raw large dimension data by neural unit learn-
ing data characteristics. Hence, it was explored to predict 
molecular substructure in the mass spectral data. With the 
development of deep learning, some models based on 
recurrent neural network have shown amazing potential 
when processing sequence data. J. Liu proposed a material 

classification system based on short and short time mem-
ory (LSTM) [10]. Nevertheless, it is still difficult to detect a 
class similar molecular inside the mixture sample MS data.

Since the multi-label classification can study each 
example associated with a set of labels simultaneously. 
The performance of multi-label classification algorithm 
in the detection of organophosphorus pesticide residues 
was investigated in this work. The practical algorithm is 
based on convolutional neural network (CNN). CNN is the 
most widely used deep learning method to achieve the 
desirable classification performance in various classifi-
cation problems. Compared with other algorithms, CNN 
can separate the independent MS contributed by different 
compounds, so as to accomplish better accuracy. In this 
study, we mimicked the CNN’s architecture and use the 
three-channel architecture as input [11]. Compared with 
the traditional classification methods, the PRNet (Pesticide 
Residues Neural Network) can significantly improve the 
prediction accuracy and performance of mixture samples 
MS data. This model has a respectable potential in large 
target MS data analysis.

2  Materials and methods

2.1  Chemical and materials

All high purity pesticide standards with purity greater than 
97.0% were purchased from Dr. Ehrenstorfer (Augsburg, 
Germany) or LGC Standards (Teddington, UK). Stock solu-
tions were prepared in acetonitrile at a concentration of 
100 mg/L, stored at − 20 °C and restored to room tem-
perature and diluted the stock solution to 100 µg/L before 
detection. Acetonitrile and methanol (Merck, German), for-
mic acid (Fluka) and ammonium acetate (Sigma–Aldrich, 
Germany) were chromatographically pure. Anhydrous 
magnesium sulphate  (MgSO4), sodium chloride (NaCl), 
adsorbents: octadecyl chemically bonded phase silica gel 
(C18, 43–60 μm) and N-primary secondary amine (PSA, 
40–60 μm) were all of analytical grade. A Milli-Q Advan-
tage A10 ultrapure water system from Millipore (Milford, 
MA) was used to obtain the HPLC-grade water during the 
analyses. Three fruits or vegetables (grapes, apples and 
cabbage) were purchased from markets in Beijing.

2.2  Sample preparation and extraction

We precisely weighed 10 g crushed sample of each fruit 
or vegetable with the accuracy to 0.001 g. Then every 
sample was put in 50 mL polytetrafluoroethylene (PTEF) 
centrifuge tube and added 10 mL acetonitrile, extracted in 
1 min through high-speed homogenate, added 4 g  MgSO4 
and 0.5 g NaCl, vortexed in 1 min, centrifuged in 5 min 
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under 5000 r/min. Then 6 mL upper acetonitrile phase 
solution was put into 15 mL centrifuge tube of containing 
400 mg C18 + 400 mg PSA + 1200 mg  MgSO4, vortexed in 
1 min and centrifuged in 5 min under 5000 r/min; then 
the supernatant was filtrated with 0.22 μm organic filter 
membrane for the following determination.

2.3  Preparation of spiked samples

We precisely weighed 10 g targeted sample of grape, apple 
and cabbage with the accuracy to 0.001 g respectively. 
Then we added 10 µL monocrotophos and phoxim stock 
solutions to grape, 10 µL isazofos and methamidophos 
stock solutions to apples, and 10 µL dichlorvos and chlor-
pyrifos stock solutions to cabbage. After mixing each sam-
ple, we could prepare 0.1 mg/kg spiked samples according 
to the extraction procedure in above mentioned.

2.4  UPLC‑Q‑TOF/MS analysis

Ultra-high-performance liquid chromatography-quadru-
pole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS, 
Agilent 1290-G6545, USA) equipped with Zorbax Eclipse 
Plus-C18 column (150 mm (L) × 3 mm with 1.8 μm of par-
ticle size, Agilent, USA) was used for chromatographic 
separation. 2 mM of ammonium acetate and 0.05 % formic 
acid solution were used as mobile phrase A, and metha-
nol aqueous solution which contained 0.05 % formic acid 
was used as mobile phrase B. The column was equilibrated 
with 90% of mobile phase A and 10% of mobile phase B 
for 30 min before injection. The amount of mobile phase A 
maintained unchanged at 90% from 0 to 0.5 min. From 0.5 
to 3 min, the amount of mobile phase A decreased from 90 
to 50%, from 3 to 20 min to 0%, then maintained for 4 min 
and at last go back to 90% at 24.1 min. The temperatures 
of column oven and auto sampler were set at 40 and 4 °C, 
respectively. The flow rate was 0.4 mL/min and the injec-
tion volume were 2 µL.

MS parameters: UPLC-Q-TOF/MS equipped with Dual 
AJS ESI source was operated in full-scan TOF mode and 
MS/MS spectra were acquired for further compound iden-
tification using auto MS/MS acquisition. MS detection was 
carried out in positive electro spray ionization mode  (ESI+). 
The following operating conditions were used: scan range, 
50–1200 m/z; capillary voltage, 3500 V; fragmentor volt-
age, 120 V; skimmer voltage, 65 V. The temperature of the 
drying gas and sheath gas were 250 and 325 °C, and the 
flow rates of the drying gas and sheath gas were set to 
7 L/min and 12 L/min. The nebulizer pressure was 35 psi, 
and the nozzle voltage was 300 V. Auto MS/MS acquisition 
conditions were set to: mass range, 50–1200 m/z; collision 
energy (CE) was set at 10 eV, 20 eV and 40 eV. The source 

and gas parameters used were the same as those used in 
full-scan TOF mode.

2.5  Preparation for dataset

The experiments were repeated with different pesticide 
solutions. MassHunter Acquisition B.03 and MassHunter 
Qualitative Analysis B.03 were used for the acquisition and 
treatment of data. In addition, Python 3.7 was used to cre-
ate pkl file for the dataset of pesticides.

In this work, 35 kinds of common organophosphorus 
pesticides were mixed randomly, as listed in Table 1. The 
negative data came from the sample reagents that did 
not contain the 35 organophosphorus pesticide com-
pounds. The positive data came from the sample reagents 
that added the mixture of organophosphorus pesticide 
compounds. There were 1–5 kinds of organophosphorus 
pesticides in each positive data. With the permission of 
experimental conditions, over 30,000 mixtures were pre-
pared with more than 97 % purity. A typical mixture sam-
ple experimental MS data was shown in Fig. 1.

Additionally, in different conditions, the use of differ-
ent instruments and experimental operations tend to pro-
duce different noises. In order to make experimental MS 
data closer to the real environment and make the training 
model more robust, three level of collision energy (10 eV, 
20 eV, 40 eV) were chosen to generate the three-channel 
data besides the experimental MS data according to the 
assumption of the linear mixed model. The random noised 
was added in experimental MS data for training model, as 
demonstrated in Fig. 2. Based on linear composite hybrid 
approach, 10,000 noise simulation data were also gener-
ated to explore the noise impact on the performance of 
the experimental model eventually.

After finishing the dataset preparation, the total data-
set was divided into 32,000 training sets, 4,000 validation 
sets and 4,000 test sets. For the data label, the Encoding 
label with one-hot Encoding for the specified compound 
was set as “1”, and “0” for none specified compound. For 
the data label, we encode the output label, and set “1” as 
the existence of the specified compound, and “0” as the 
absence of the specified compound.

2.6  Algorithm

2.6.1  Support vector machine

Support Vector Machine (SVM) is a common classi-
fier. The core idea of SVM is to find a linear classifier to 
separate hyperplane with the maximum interval in the 
feature space. Then SVM can classify the unknown sam-
ple set through the hyperplane. SVM uses inner prod-
uct kernel function instead of nonlinear mapping to 
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high-dimensional space [12]. Due to the influence of noise, 
the classification effect is usually better on small sample 
set. Meanwhile, SVM uses quadratic programming to solve 
support vector (the calculation of m-order matrix, M is the 
number of samples). When the number of M is large, the 
storage and calculation of the matrix will consume a lot of 
machine memory and operation time [13]. Therefore, it is 
difficult to solve the multi classification problem with SVM.

2.6.2  Artificial neural network

Artificial Neural Network (ANN) is an abstract model for 
describing how the human brain organizes and operates. 
All neurons contained in a neural network record the 

weight corresponding to their inputs [14]. Corresponding 
to the three processing units, the neural network contains 
three levels: input layer, hidden layer and output layer [15]. 
By repeated learning and training of the input informa-
tion data, the neural network can constantly improve the 
parameter values of the weights in the neural network to 
reach the closest conclusion, as represented in Fig. 3.

2.6.3  Extreme gradient boosting

extreme Gradient Boosting (XGBoost) is one of the Boost-
ing algorithms. The idea of the Boosting algorithm is to 
integrate many weak classifiers together to form a strong 
classifier [16]. It corrects the residuals of all previous weak 

Table 1  Mass spectral data 
source: 35 organophosphorus 
pesticide reagents

Compound name CAS Molecular weight Molecular formula Classification

Glyphosate 1071-83-6 169.0140 C3H8NO5P Class1
Trichlorphon 52-68-6 255.9226 C4H8Cl3O4P Class2
Dichlorophos 62-73-7 219.9459 C4H7Cl2O4P Class3
Parathion 56-38-2 291.0330 C10H14NO5PS Class4
Fenitrothion 122-14-5 277.0174 C9H12NO5PS Class5
Parathion methyl 298-00-0 263.0017 C8H10NO5PS Class6
Chlorpyrifos-methyl 5598-13-0 320.8950 C7H7Cl3NO3PS Class7
Sulfotep 3689-24-5 322.0266 C8H20O5P2S2 Class8
Fenthion 55-38-9 278.0200 C10H15O3PS2 Class9
Dimethoate 60-51-5 228.9996 C5H12NO3PS2 Class10
Phorate 298-02-2 260.0128 C7H17O2PS3 Class11
Isazofos 42509-80-8 313.0417 C9H17ClN3O3PS Class12
Demeton 126-75-0 258.3384 C8H19O3PS2 Class13
Methidathion 950-37-8 301.9619 C6H11N2O4PS3 Class14
Isocarbophos 24353-61-5 289.0538 C11H16NO4PS Class15
Phoxim 14816-18-3 298.0541 C12H15N2O3PS Class16
Cadusafos 95465-99-9 270.0877 C10H23O2PS2 Class17
Methamidophos 10265-92-6 141.0013 C2H8NO2PS Class18
Isofenphos-methyl 99675-03-3 331.1007 C14H22NO4PS Class19
Profenofos 41198-08-7 371.9351 C11H15BrClO3PS Class20
Acephate 30560-19-1 183.0119 C4H10NO3PS Class21
Diazinon 333-41-5 304.1010 C12H21N2O3PS Class22
Monocrotophos 6923-22-4 223.0610 C7H14NO5P Class23
Phosfolan 947-02-4 255.0153 C7H14NO3PS2 Class24
Phosalone 2310-17-0 366.9869 C12H15ClNO4PS2 Class25
Phosmet 732-11-6 316.9945 C11H12NO4PS2 Class26
Posfolan-methyl 5120-23-0 226.9840 C5H10NO3PS2 Class27
Malathion 121-75-5 330.0361 C10H19O6PS2 Class28
Chlorpyrifos 2921-88-2 348.9263 C9H11Cl3NO3PS Class29
Triazophos 24017-47-8 313.0650 C12H16N3O3PS Class30
Mecarbam 2595-54-2 329.3700 C10H20NO5PS2 Class31
Ethoprophos 13194-48-4 242.0564 C20H15NO3 Class32
Pirimiphos-methyl 29232-93-7 305.3300 C11H20N3O3PS Class33
Omethoate 1113-02-6 213.0225 C5H12NO4PS Class34
Isocarbophos 24353-61-5 289.2900 C11H16NO4PS Class35
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classifiers by continuously adding new weak classifiers. The 
final prediction is finally made by adding multiple classi-
fiers. Thus, the accuracy rate will be higher than a single 
weak classifier. When adding a new model, the gradient 
boosting algorithm is used to minimize the loss. XGBoost 
has fast calculation speed and is widely used in small-scale 
classification tasks [17].

2.6.4  Long short‑term memory

Long Short-Term Memory (LSTM) is a kind of time recur-
rent neural network. This model takes sequence data as 
input, recurses in the evolution direction of the sequence 
and connects all nodes in a chain way. The input of the 
hidden layer is not only related to the output of the input 
layer, but also related to the output of the hidden layer 
at the previous moment [10]. LSTM has two transmission 
states, the memory cell state and the hidden state. This 
strategy can effectively avoid the phenomenon of gradi-
ent disappearance and gradient explosion in the training 
process. It is very suitable for dealing with problems highly 
related to time series [18].

2.6.5  Convolution neural network

Convolution neural network (CNN) is a kind of deep neural 
network with convolution structure to reduce the mem-
ory occupation. Its three key operations are local recep-
tive field, weight sharing, and pooling layer [19]. CNN can 
effectively reduce the number of network parameters and 
alleviate the over fitting problem of the model, as illus-
trated in Fig. 4.

The differences between the CNN and the ANN were 
the usage of convolution layers and the dimension of 
input [20]. The convolutional layer reduces the number 
of parameters to be trained by receptive field and weight 
sharing. The convolutional layer is sometimes followed 

Fig. 1  The MS data (UPLC-Q-TOF/MS) from experiment (the 
selected MS data were marked by red dots)

Fig. 2  The MS data (UPLC-Q-TOF/MS) with added noise (the 
selected MS data were marked by red dots)

Fig. 3  Architecture of multi-
layer artificial neural network 
with error
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by a pooling layer, which can reduce the dimension of 
features, compress the number of data and parameters, 
reduce overfitting, and improve the fault tolerance of the 
model. Convolutional neural network has stronger feature 
learning ability and feature expression ability than tradi-
tional neural network [21, 22].

2.6.6  Mass spectrum matrix

Assuming the MS data of a mixture are equal to the 
weighted sum of the MS of the individual compounds [23]. 
The MS data of mixtures can be written from the normal-
ized intensities:

where Ii,j is the intensity of the i  th mass in the j th mix-
ture, n is the number of components in the mixture, aik is 
the intensity of mass i  in pure compound k , and skj is the 
concentration of compound k in the source for mixture j . 
Equation (1) can be simply expressed as:

where Im is an i × j matrix, A is an i × k matrix and S is an 
k × j matrix; i  , j , k represent the number of different mix-
tures, masses and pure compounds respectively and I , A , 
S represent overlapping MS data matrix, pure compound 
matrix and concentration matrix respectively. The Imhere is 
the mixture MS data we used for training and testing, and 

(1)Ii,j =

n
∑

k=1

aikskj

(2)Im = AS

the information described by the m/z and intensity is the 
characteristics to be learned by the experimental model.

2.7  PRNet model training

Based on iteration algorithm, PRNet is an optimized multi-
target detection CNN model for pesticide residue identifi-
cation. The architecture of PRNet model is listed in Table 2. 
The mixture MS data of three energy (10 eV, 20 eV and 
40 eV) were flatten as one-dimensional input. Based on the 

Fig. 4  Convolution operation with multiple filters: By sliding the convolution kernel at the input and calculating the dot product, a matrix 
called convolution feature is obtained

Table 2  The architecture of PRNet model (N: the number of m/z 
windows)

Layer (Type) Output shape Parameters

conv1d_1 (Conv) N, 16, 3 160
conv1d_2 (Conv) N, 32, 3 1568
max_pooling1d_1(Pooling) N//2, 32, 3 0
conv1d_3(Conv) N//2,32,3 3104
max_pooling1d_2(Pooling) N//2,32,3 0
conv1d_4 (Conv) N//2, 64 3 6208
conv1d_5 (Conv) N//2, 64, 3 12,352
max_pooling1d_3(Pooling) N//4, 64, 3 0
conv1d_6(Conv) N//4, 128, 3 24,704
max_pooling1d_4(Pooling) N//4, 128, 3 0
conv1d_7 (Conv) N//4, 32,3 12,320
max_pooling1d_5(Pooling) N//4, 32, 3 0
flatten_1 (Flatten) 24*N 0
dense_1 (Full-connected) N//5 6,912,240
dense_2 (Full-connected) N//10 28,920
dense_3 (Full-connected) 35 4235
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CNN, the established PRNet model had same number of 
layers and same full-connected layers with Rectified Linear 
Units (ReLU) activation [24].

Utilizing the twelve hundred m/z windows with 10 ppm 
interval, in range from 50 to 1200 m/z, the MS data of each 
energy could be flattened into one-dimensional matrix. 
With the character of input, one-dimensional convolu-
tion layers could further simplify the model. The informa-
tion between different energy could be recognized by 
the convolution layers. Max pooling layers were applied 
to abstract the characteristics of the region and reduce 
the coupling degree of the model. Convolution layers 
and pooling layers were used for the feature extraction. 
The fully-connected layers were applied for the classifica-
tion. In the last fully-connected layer, sigmoid activation 
was applied to output the probability of each compound 
presence. Usually the model threshold was set to 0.5. The 
threshold value also could be modified according to actual 
condition (If the goal is to screen for as many pesticide 
residues as possible, the threshold can be lower down). 
The operation flow is shown in Fig. 5.

3  Results and discussion

In the classification problem of machine learning, Sig-
moid function is the commonly used activation function 
of the output layer of neural network. Since multiple 

classes can overlap each other. Compared with the Soft-
max, Sigmoid is more suitable for the multi-label classi-
fication task. In this work, Sigmoid function was applied 
as the activation function of the neural network. The 
binary cross entropy is the corresponding loss function 
of Sigmoid [25]. The smaller loss function represents the 
better model robustness. The loss function of this multi-
label classification was utilized to estimate the difference 
between the predicted value and the true value from 
the model. This loss function can also make the training 
model as fast as possible and require less memory:

x is the input sample, m is the total number of training 
data,yi is the output value of the ith data, and fi(x) is the 
predicted value of the ith model.

Because the output of each tag is assumed to be inde-
pendent. The general configuration for multi-tag binary 
classification is the BCE and Sigmoid activation func-
tions. Each category outputs a probability between 0 and 
1. Each corresponds to a sigmoid function. The Adam 
algorithm was deployed as the optimizer to update the 
weights of the neural network iteratively according to 
the training data [26]. The Model PRNet refers a netural 
network model for pesticide residue prediction based 
on the convolutional neural network structure. All mod-
els run on an Ubuntu system that based Linux with 24 

(3)BCE = −
1

m

∑m

i=1
yilogfi(x) + (1 − yi)log(1 − fi(x))

Fig. 5  The architecture of PRNet: Convolution neural network 
adopts MS data as input, which can effectively learn the corre-
sponding features directly from a large number of samples, reduce 

the complex process of data preprocessing, and avoid the complex 
process of feature extraction
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cores, 128 GB RAM and NVIDIA 2080 GPU cards. After 100 
epochs of training, the accuracy, recall rate and precision 
of the test set for each model of the target compound 
detection are shown in Table 3.

The comparison results show that these five machine 
learning models can detect multiple target compounds 
in overlapping samples well. They can effectively learn 
features from raw MS data. The results obtained by the 
neural network are usually classification results such as 
0.5 and 0.8 instead of labels such as 0 or 1. Therefore, a 
threshold can be selected to diverge them. When the 
result is greater than the threshold, the predicted value 
can be judged as 1. On the contrast, the predicted value 
is judged to be 0. By increasing the threshold, more 
confidence can be obtained in the predicted results, 
thereby improving accuracy. But this will reduce recalls. 
Otherwise, the number of true cases missed by the 
model will decrease and the recall will increase. For 
those models, 0.5 was chosen as the threshold under 
comprehensive consideration. The ANN model only 
includes the full connection layers and batch normali-
zation layers, it does not contain other additional struc-
tures. The performance effect of ANN is moderate. Due 
to the good adaptation and outlier processing, PRNet 
has the respectable feature extraction performance. For 
the larger mixture MS data predictions, PRNet always 
obtains higher accuracy than the other four models. 
Furthermore, for the target compounds detection, 
recall is an equally important indicator to reflect the 
proportion of correctly predicted (true) components 
in all predicted (true and true negative) components. 
Since the SVM model is difficult to predict a large num-
ber of samples with positive labels. The accuracy of SVM 
is much lower in performance than neural networks for 
higher number of detection targets. LSTM has a higher 
accuracy rate with a lower recall rate conversely. It 
requests a lower threshold. The effect of XGBoost is 
acceptable. But there is still a certain gap (accuracy and 
recall) between XGBoost and PRNet. For further obser-
vation, the receiver operating characteristic (ROC) [27] 

curves were arranged to evaluate the predictive ability 
of the five investigated models:

The comparison of the five models’ ROC curves is illus-
trated in Fig. 6; Table 4. The AUC (average area under curve) 
value is the area covered by the ROC curve. The better clas-
sification effect classifier has the larger AUC. The ROC curve 
is farther from the pure opportunity line (the dashed black 
line), the model has the stronger discrimination ability. 
Because of the mapping principle of ROC curve, the model 
based on neural network and other models have different 
curve shapes. According to Fig. 6, the AUC of PRNet is the 
largest to indicate the most robust classification perfor-
mance among the five models.

The average precision (AP) score can also be sum-
marized as a weighted average precision achieved at 
each threshold to evaluate the five models. In general, 
the average precision is the mean of the accuracy cor-
responding to all the values from 0 to 1 across the recall 
rate:

This integral value is approximately the sum of the pre-
cision at each possible threshold multiplied by the change 
in recall rate:

In multi-label classification, Mean Average Precision 
(MAP) is a commonly used evaluation method as well [28]. 
It measures the quality of the learned model in all catego-
ries by taking the average of all AP:

From Table  5, the classifier performance of SVM and 
XGBOOST is also poor. Compared with the ROC curves in 
Fig. 6, the target detection performance of PRNet model for 
the mixture MS data is more stable than that of other models.

(4)AP = ∫
1

0

p(r)dr

(5)AP =

N
∑

k=1

p(k)�r(k)

(6)mAP =
1

num

∑

AP

Table 3  Accuracy(A)/recall(R)/
precision(P) for the five models

1a : model based on MS data of 10 compounds; 2b : model based on MS data of 20 compounds; 3c:model 
based on MS data of 35 compounds

SVM ANN XGBoost LSTM PRNet

A R P A R P A R P A R P A R P 

1a 0.92 0.55 0.73 0.96 0.87 0.52 0.92 0.71 0.62 0.96 0.65 0.61 0.99 0.89 0.82 

2b 0.92 0.56 0.74 0.95 0.86 0.51 0.92 0.67 0.62 0.94 0.65 0.61 0.98 0.87 0.83 

3c 0.90 0.54 0.74 0.94 0.88 0.48 0.90 0.65 0.60 0.93 0.62 0.62 0.97 0.87 0.82 



Vol.:(0123456789)

SN Applied Sciences           (2021) 3:700  | https://doi.org/10.1007/s42452-021-04661-x Research Article

Fig. 6  Receiver operating characteristic (ROC) curves for:(a) SVM; (b) ANN; (c) XGBoost. (d) LSTM; (e) PRNet
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Fig. 6  (continued)

Table 4  The average area under the curve for the five models

Models SVM ANN XGBoost LSTM PRNet

mAP 0.83 0.92 0.88 0.94 0.97 

Table 5  Mean average precision score for the five models 

Models SVM ANN XGBoost LSTM PRNet

mAP 0.68 0.78 0.81 0.84 0.95 

In general, the detection of pesticide residues involves 
more types of compounds. Consistent with the Table 3, 
when more organophosphorus pesticide compounds 
were added, the accuracy reduction of PRNet was less 
than that of other models. This indicates that PRNet is 
more suitable for large-sample detection.

4  Discussion

If the MS data is pre-processed in advance, such as 
smoothing, baseline correction, and peak picking [29]. 
The traditional machine learning algorithms, e.g. SVM, 
can also perform well, especially for single MS data clas-
sification. PRNet does not require much preprocessing 
or denoising, as demonstrated in Table 5.
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In the 4000 testing MS data, about 10 % testing data 
are negative reagent data or other type compounds 
interference data (Multi-classification problems usu-
ally do not have negative samples, we treat categories 
other than 35 organophosphorus pesticides as negative 
samples). TP means that all compounds were detected. 
FP means that some compounds have been detected 
correctly. TN indicates the correct prediction of a nega-
tive reagent as the absence of the compound. FN means 
it falsely predict the presence of a pesticide compound 
that does not exist.

From Table  6, the performance of PRNet is better 
than ANN (the ANN is only composed of full connec-
tion layers and batch normalization layers), SVM, LSTM 
or XGBoost in multi-tag target detection for mixture MS 
data. In fact, SVM and others have a good effect on the 
double-label classification. As the detection of organo-
phosphorus pesticides increased, SVM cannot work well 
in the multi-label classification. LSTM is more suitable for 
time series data analysis [18]. The molecular weight of 
organophosphorus compounds is usually not very large. 
So, the MS data of organophosphorus compounds may 
not reflect strong sequence characteristics, which may 
be the reason for the general performance of the LSTM 
model. In the case of more noise impurities, the clas-
sification problem with boosting method may appear 
overfitting. Compared with ANN, PRNet can effectively 
handle high-dimensional data processing due to the 
existence of convolution kernel and other structures. 
Compared with PRNet, the XGBoost model is less effec-
tive, which may be related to the characteristics of the 
MS data. The mixture MS data may have high variability, 
noise and high dimension. XGBoost is a kind of boosted 
trees model derived from ensemble learning [30]. High-
dimensional sparse features may make the training effi-
ciency of the tree model become extremely low and easy 
to overfit (Fig. 7).

If there are more MS data of different energies as input, 
PRNet based on the CNN can handle more relationships 
between different energies. Comparison with time series, 
MS energy is an easier controllable variable factor for the 
input channel of the CNN network structure. Once more 
MS data of different energies are added as inputs, espe-
cially continuous signals on the energy axis, the accuracy 
of PRNet will decline. Further research on the architecture 
of PRNet, including the depth of the network, alternat-
ing layer and filter size, will be launched to continuously 
improve the ability of learn and detect complex mixture 
target compounds.

The size of MS data set is a bottleneck to limit the per-
formance of deep learning. Usually, when the number of 
detected targets increases, these models need large data 
sets to learn the characteristics of samples. Therefore, if the 

MS data set is very small, deep learning would be limited 
[30]. Our method based on the CNN can effectively real-
ize the identification of multiple compounds from tandem 
mass spectrometry data. When the model was modeled 
with 35 organophosphorus pesticide compounds, the final 
mAP scores of the five models were 0.68, 0.78, 0.81, 0.84 
and 0.95, respectively. This methodology can be applied to 
classify more pesticide compounds and even other types 
of compounds (Table 7).

The ★ is applied to compare the average training 
speeds of the five models in Table  7. In the case of 
small data samples, the training speed of SVM model is 
fast. But with the expansion of the training set and the 
increase of the types of phosphorus pesticides in the 
classification task, the training speed of SVM becomes 
very slow. Overall, the comprehensive training speed of 
SVM model is the slowest. Due to the large parameter 
space, the training speed of ANN is also slow. As the GPU 
speeds up and the batch normalization layer is added 
in the network, the training speed of ANN increases to 
some extent.

XGBoost has the fastest training speed, but XGBoost’s 
parameter tuning is a little complicated. Thanks to GPU 
acceleration, the training speed of PRNet model is also 
moderated. The improvement of training speed obtained 
by LSTM through GPU acceleration is not obvious. Since 
LSTM is a kind of time series model, time t depends on 
the information at time t-1 and cannot be executed in 
parallel, its training speed is slower than the PRNet.

MS data sometimes have high variability, noise and 
high dimensionality [31], compared with traditional 
algorithms, deep learning is more universal and less vul-
nerable to MS data. The local receptive field of CNN can 
extract the subtle features of mass spectrometry data. 
CNN has the ability to learn low-level features from com-
plex inputs. The CNN feature detection layer is learned 
from training data, avoiding explicit feature extraction. 
At the same time, due to the robustness of the filter, the 
model based on CNN is less affected by noise. In prac-
tice, the MS data may vary considerably depending on 
the operator, instrument, and laboratory environment. 
Controlling variables and capturing large amounts of 
data is crucial. The training model set by data obtained 

Table 6  Number of true positive (TP)/true negative (TN) / false pos-
itive (FP)/ false negative (FN) /test data for the five models

Models

SVM ANN XGBoost LSTM PRNet 

TP 2017 2677 2433 2835 3521 
TN 383 400 393 400 400 
FP 1583 923 1167 765 79 
FN 17 0 7 0 0 
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under the same conditions and data extension realizes 
the input of MS data from different instruments. Add-
ing more offset in MS data can brand the model more 
transplantable.

5  Conclusions

In this paper, we propose a CNN-based method: PRNet. 
This model can directly detect a variety of organophos-
phorus pesticide compounds from mixture sample MS 
data obtained by UPLC-Q-TOF/MS. PRNet can directly 
extract features from the original high-dimensional MS 
data without complicated data preprocessing process. 
By evaluating different neural network structures, the 
average accuracy of the PRNet can reach 97 %. Compared 
with traditional machine methods such as SVM, ANN, 
XGBoost and LSTM, PRNet has the best performance in 
accuracy, recall rate and precision. The multi-component 
identification and detection of pesticide residues mass 

spectrometry data through convolutional neural net-
works would be an efficient way to help professionals 
and non-professionals detect pesticide residues quickly 
and correctly in the future. However, the presented 
PRNet model can only aimed at the existing pesticide 
species. If possible, the component concentration pre-
diction would be considered in the future research and 
more conditions (e.g. spectral tilt) need to be explored 
to optimize quantitative analysis conditions. Benefit 
from the excellent transplantation and generalization 
of neural network, the model can be easily applied to 
mobile terminals for the pesticide residues detection. 
The model performance can be significantly improved 
through further study of input data and selection of 
structural components.
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