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Abstract
Salt’s deposition in the subsoil is known as salinization. It is caused by natural processes such as mineral weathering 
or human-made activities such as irrigation with saline water. This environmental issue has grown more critical and is 
frequently occurring in the Hungarian Great Plain, adversely influencing agricultural productivity. This study aims to 
predict soil salinity in the Great Hungarian Plain, located in the east of Hungary, using Landsat 8 OLI data combined with 
four state-of-the-art regression models, i.e., Multiple Linear Regression, Partial Least Squares Regression, Ridge Regres-
sion, and Feedforward Artificial Neural Network. For this purpose, seventy-six soil samples were collected during a field 
survey conducted by the Research Institute for Soil Sciences and Agricultural Chemistry between the 15 of September 
and the 15 of October, 2016. We used the min–max accuracy, the root-mean-square error (RMSE), and the mean squared 
error (MSE) to evaluate and compare the four models’ performance. The results showed that the ridge regression model 
performed the best in terms of prediction  (MSEtraining = 0.006,  MSEtest = 0.0007, RMSE = 0.081), with a min–max accuracy 
equal to 0.75. Hence, the application of regression modeling on spectral indices, principal component analysis, and land 
surface temperature derived from multispectral data is an efficient method for soil salinity assessment at local scales. 
The resulting map can provide an overview of salinity levels and evaluate the efficiency of land management strategies 
in irrigated areas. An increase in sampling density will be recommended to validate this approach on the regional scale.
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1 Introduction

Soil salinization is the salts accumulation process in the 
subsurface that destroys soil composition and water qual-
ity, reduces agricultural productivity, and negatively influ-
ences economic growth [1]. As one of the most serious 
land degradation forms, salinization occurs in arid and 
semiarid zones, where evaporation exceeds precipitation 
[2]. The Food and Agriculture Organization (FAO) [3] esti-
mated the salt-affected surface area to be 831 million ha 
in total, including 434 million ha of sodic soils and 397 
million ha of saline soils. In Hungary, salinity and sodicity 

affect one-third of the Great Hungarian Plain soils, and the 
potential salt-affected soils (SAS) cover one-third of the 
territory [4]. Drought, climate change, low water resources, 
and land-use changes can aggravate salinity conditions 
[5]. Therefore, authorities tend to adopt monitoring strat-
egies to control this process continuously. Control and 
prevention approaches on the regional scale are time-
consuming and require various resources. As a result, the 
geographic information systems (GIS) and remote sens-
ing techniques opened the window for technology to 
replace or assist conventional methods. They established 
easier, less time-consuming, and inexpensive techniques 
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to assess and predict environmental processes such as 
salinization. Using spectral response extracted directly 
from sensors or after the application of spectral transfor-
mations, i.e., principal component analysis (PCA) [6, 7], tas-
seled cap transformation [8], and spectral indices [9, 10], 
have given promising results in terms of prediction accu-
racy. Many scholars emphasize the importance of spectral 
signature in remote sensing studies as a core concept in 
this field [11–14]. Digital soil mapping has been the focus 
of several research projects operated with different types 
of remotely sensed data, using statistical or geostatistical 
methods. El Hafyani et al. [15] demonstrated Landsat 8 OLI 
image’s efficacity to model soil salinity in Morocco’s Tafila-
let plain. The results yielded a coefficient of determina-
tion  R2 ranges from 0.53 to 0.75, and a root-mean-square 
error (RMSE) ranges from 0.62 to 0.80 dS/m. Hihi et al. [16] 
found a medium correlation  (R2 = 0.48) between electrical 
conductivity (EC) and spectral indices derived from a Sen-
tinel 2 MSI image using a simple linear regression model. 
In Uzbekistan, using variance analysis, Ivushkin et al. [17] 
found a significant correlation between soil salinity and 
canopy temperature derived from the moderate resolu-
tion imaging spectroradiometer (MODIS) data. The Gauss-
ian processes method applied on SAR Sentinel-1 data and 
advanced machine learning algorithms produced a highly 
accurate model that explains the relationship between 
remotely sensed data and EC, with a coefficient of determi-
nation  R2 equal to 0.808 [18]. Taghadosi et al. [19] revealed 
the efficiency of intensity images derived from VV and VH 
polarization of SAR Sentinel-1 imagery in the discrimina-
tion of saline soils. The support vector regression (SVR) 
technique with radial basis function (RBF) kernel produced 
the most accurate model, with a coefficient of determina-
tion  R2 equals 0.9783 and an RMSE equals 0.3561. In Alge-
ria, Dehni et al. [10] proved the importance of Landsat 
ETM+ and ALI-EO-1 images in identifying and delineating 
saline and sodic soils. Zurqani et al. [20] used a time series 
of Landsat data for 29 years (1972, 1987, and 2001) and 
field measurements to detect the spatiotemporal vari- 
ation of soil salinity in Libya. Weng et al. [21] suggested 
using hyperspectral imagery to produce a higher accuracy. 
The univariate regression using a new salinity index (SSI) 
derived from EO-1 Hyperion data yielded a coefficient of 
determination  R2 equal to 0.873. Sahbeni G. [22] applied 
a multiple linear regression analysis between salt content 
and Sentinel 2 MSI data for modeling soil salinity distribu-
tion in the Great Hungarian Plain. The final model showed 
a significant moderate accuracy with a coefficient of deter-
mination  R2 equal to 0.51 and an RMSE equal to 0.1942 g/
kg. Li Z. et al. [23] analyzed the performance of multiple 
linear regression (MLR), geographically weighted regres-
sion (GWR), and random forest regression (RFR) models in 

terms of soil salinity prediction. The findings revealed that 
remote sensing imagery scanned during the dry season 
is better for estimating electrical conductivity (EC), with 
topographic variables and spatial location playing a crucial 
part in the modeling. However, the random forest regres-
sion (RFR) model had a higher prediction accuracy than 
the GWR model, while the MLR model had the highest 
error. Al-Ali Z.M. et al. [24] studied eight different physi-
cal models for soil salinity mapping in an arid landscape 
using spectral reflectance measurements and Landsat 8 
OLI data. The statistical tests for models based on visible-
near-infrared (VNIR) bands showed insignificant fits with 
a coefficient of determination  R2 of 0.41 and a very high 
RMSE (≥ 0.65). In contrast, models based on the second-
order polynomial equation using the shortwave infrared 
(SWIR) bands produced better results, with a coefficient of  
determination  R2 equal to 0.97 and an RMSE equal to 0.13. 
The study conducted by Zhang X. and Huang B. [25] to pre- 
dict soil salinity using soil-reflected spectra showed that 
smoothing methods and spectral transformations influ-
enced the models’ estimation accuracies. The PCR based 
on the median filtering data smoothing method gave the 
most accurate results, with a coefficient of determination 
 R2 equal to 0.7206 and an RMSE equal to 0.3929.

The studies mentioned above have explored the 
potential efficiency of remotely sensed data in estimat-
ing salinity when coupled with field measurements. The 
electromagnetic signal sensitivity to surface soil param-
eters can be processed to map salinity distribution with 
great accuracy. Nevertheless, most of these reviewed 
studies used statistical analysis and satellite imagery to 
model soil salinity in the Afro-Eurasia region. Only a few 
studies focused on the Central-Eastern European zone, 
although Hungary has the largest expanse of naturally 
salt-affected soils in the continent.

In flat landscapes with a typical continental climate 
like the Great Hungarian Plain, soluble salts accumu- 
late more quickly. Certain environmental and climatic 
conditions make the landscape threatened by saliniza-
tion, mainly when groundwater levels are oscillating. As 
a result, modeling soil salinity variability and mapping 
its spatial pattern for the Great Hungarian Palin become 
an essential task to endorse successful soil reclamation 
programs that mitigate possible fluctuations in salinity 
levels. The aims of this study are to; (i) predict salinity 
using remotely sensed data derived from Landsat 8 OLI 
sensor and field measurements through evaluating four 
regression methods; Multiple Linear Regression (MLR), 
Partial Least Squares Regression (PLSR), Ridge Regres-
sion (RR), and Artificial Neural Network (ANN), and (ii) 
prove the importance of spectral enhancements in soil 
salinity modeling.
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2  Study area

The study area is located in the Great Hungarian Plain 
(GHP), east of Hungary (Fig. 1). It lies between longitudes 
20°22’24" and 21°41’51", and between latitudes 47°5’6" 
and 47°48’40", covering an area of 7602.84  km2. The aver-
age elevation is 88.8 m above sea level. Half of the Great 
Hungarian Plain (GHP) is flat with topographic level dif-
ferences of 3–4 m. Wind-blown sand on the hills, loess 
and loess-like sediments above the level of the actual 
floodplains, and silty clay in flat alluvial areas are the 
three deposit types that can be found on its surface [26, 
27]. The main river is the Tisza. It flows through the plain 
and collects tributaries from almost the entire lowland 
area. The study area climate is semiarid, with an average 
annual temperature of 11 °C [28]. The most precipitation 
occurs between May and July, while the least precipita-
tion falls between January and March. The annual mean 

precipitation is less than 500 mm in the Tisza river’s low 
altitude valley [29].

3  Materials and methods

3.1  Remotely sensed data

We downloaded a Landsat 8 OLI image from the United 
States Geological Survey (USGS). It was acquired on the 
08 of August, 2016. The difference between the imagery 
acquisition day and the field measurements date is due 
to the scarcity of cloudless accessible data (Cloud Cover < 
5%). Table 1, extracted from the metadata file, illustrates 
the properties of remotely sensed data used.

SRTM GL1 (30 m Ellipsoidal) is a version of the Shuttle 
Radar Topography Mission dataset that uses elevation val-
ues from WGS84 ellipsoidal height instead of the normal 

Fig.1  Location of the study area; a Satellite imagery map of Hungary (ESRI Basemap, ArcMap 10.3), b Sampling sites’ locations
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orthometric or geoid-referenced elevation. The EGM96 
geoid model was subtracted from the standard SRTM GL1 
data to create this dataset. It has a resolution of 1 arc-sec-
ond (30 m) [30]. We downloaded an SRTM elevation model 
in GeoTIFF format. The OpenTopography Facility provided 
it with support from the National Science Foundation [31].

3.2  Soil sampling

The Research Institute for Soil Sciences and Agricultural 
Chemistry (RISSAC) provided the field measurements 
database on the 16th of March 2020. Soil samples are 
collected within the subsoil’s upper layer (30 cm) from 

mid-September until mid-October 2016 [32, 33]. The field 
campaign is carried out during the dry season to improve 
salt spectral properties at the surface during salt accumu-
lation. Electrical conductivity is measured in the laboratory 
by immersing an electrode in a water-saturated soil paste 
at the plasticity limit [34]. Soil salinity is determined using 
saturated paste according to the Hungarian Standard MSZ-
08-0206/2-1978 [35, 36]. MSZ-08-0206/2-1978 protocol 
details can be found in (MSZ 1978, 1978) [37].

3.3  Preprocessing

We converted Landsat 8 OLI image to Top of Atmosphere 
(TOA) Reflectance [54]. Fast line-of-sight atmospheric anal-
ysis of spectral hypercubes (FLAASH) was applied using 
ENVI 5.3 software package for atmospheric correction with 
standard options [21, 38, 39].

3.4  Spectral indices

Based on the literature review [40–46], we computed 
eighteen spectral indices from preprocessed data using 
ENVI 5.3 and ArcMap 10.3. These indices were selected for 
this study due to their potential association with salinity 
detection. Table 2 shows the mathematical expressions of 
spectral indices.

Table 1  Properties of Landsat 8 OLI image used

Product ID LC08_L1TP_187027_201
60808_20170322_01_T1

Acquisition date 2016-08-08
Spatial resolution 30 m
Radiometric resolution 8 bits
Output format GeoTIFF
Sensor OLI_TIRS
Path/Row 187/27
Map projection UTM_WGS84_34N

Table 2  Spectral indices used 
in regression analyses

* For detailed information, see (Sobrino et  al. 2004); The land surface temperature (LST) calculation 
method is too extensive to include in this table

Index Expression

Normalized Difference Vegetation Index NDVI (NIR − R)∕(NIR + R)[47]
Normalized Difference Salinity Index NDSI (R − NIR)∕(R + NIR)[48]
Vegetation Soil Salinity Index VSSI 2*G − 5∗(R + NIR)[10]
Albedo ((0.356*B) + (0.130*R) + (0.373*NIR) +

(

0.085*SWIR
1

)

[49]
Canopy Response Salinity Index CRSI

√

((NIR * R − G * R)∕(NIR * R + G * R))[5]
Brightness Index BI

√

(

R
2 + NIR

2
)

[48]
Salinity Index SI (R*G)∕B[50]
Salinity Index 1  SI1

√

(G * R)[44]
Salinity Index 2  SI2

√

(R * NIR)[10]
Salinity Index 3  SI3

√

G
2 + R

2 + NIR
2[44]

Salinity Index 4  SI4
√

(

G
2 + R

2
)

[51]
Salinity Index 5  SI5 B∕R[52]
Ratio Spectral Index RSI R∕NIR[53]
Differential Vegetation Index DVI NIR—R [54]
Intensity Index 1  Int1 (G + R)∕2[55]
Intensity Index 2  Int2 (G + R + NIR)∕2[55]
Simple Ratio SR (R − NIR)∕(G + NIR)[10]
Land Surface Temperature LST * [56]
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The information in intercorrelated variables is con-
densed into a few variables called principal components. 
Principal component analysis (PCA) application removes 
spectral noise and reduces information redundancy. 
Therefore, we used PCA to compress information from 
visible, near-infrared, and SWIR bands [6, 7]. Based on the 
statistics file produced by ENVI 5.3, the first two compo-
nents explain approximately 99% of data variance. They 
contain the majority of information that can be useful for 
soil salinity modeling (Fig. 2).

The effect of topography on salts movement within 
the profile is revealed by many scholars, mainly where the 
water balance is negative [57, 58]. Therefore, we included 
elevation as an independent covariate in the regression 

modeling to evaluate this component’s influence on salin-
ity’s spatial distribution.

After extracting spectral indices, bands,  PCA1,  PCA2, and 
elevation values corresponding to sampling sites, we per-
formed regression analyses between salt content meas-
urements and spectral data. The goal is to understand 
the statistical relationship between remotely sensed data 
and the sampled soil’s salt content. Figure 3 illustrates the 
study’s methodology.

3.5  Regression modeling

On systems with limited computing resources, linear 
regression is a simple algorithm that can be trained quickly 
and efficiently. It has a significantly lower time complexity 
than other machine learning algorithms [59–61].

Due to their robustness to collinearity, which is frequent 
between multiple variables, ridge regression and partial 
least squares regression approaches are commonly used 
[62, 63]. The artificial neural network is distinguished by 
the efficiency of handling highly complex data, along with 
the potential to generalize, as discussed by many scholars 
[46, 64, 65]. This study evaluates the statistical methods 
cited above. Details are explained and well-presented by 
Bishop C.M. [66].

Multiple linear regression is a linear approach to mod-
eling the relationship between one or more explana-
tory variables and a scalar variable [16, 50]. Equation (1) 
describes the relationship between the dependent and 
explanatory variables.

(1)Y = A0 + A1 ∗ x1 + A2 ∗ x2 + A3 ∗ x3 +⋯An ∗ xnFig.2  Eigenvalues and variance accounted by principal compo-
nents

Fig. 3  Schematic diagram of the study methodology
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where Y is the dependent variable, xi is the explanatory 
variable, Ai is the coefficient of the variable i, and A0 is the 
intercept.

By adding a bias to the regression estimates, the ridge 
regression overcomes the data collinearity problem. 
The penalization factor or lambda regularizes the coef-
ficients to penalize the optimization function if the coef-
ficients take large values [62, 67]. The ridge estimation of 
coefficients in a linear regression model y = β(k)*x + b is 
described in Equation (2).

where X is an n-by-p independent variable matrix, X’ is its 
transpose, I is an n-by-n identity matrix, Y is an n-by-1 vec-
tor of observations, and k is the ridge parameter.

The Hoel–Kennad formula in Equation (3) can be used 
to calculate the ridge parameter.

where σ̂ 2 is the estimation of residual squares, and σ̂ is 
defined as σ ̂ = Λ−1G’X’Y, where G is an orthogonal square 
matrix, and Λ is a diagonal matrix. Λ and G are associated 
with this equation: G’(X’X)G = Λ. [62]

The partial least squares regression (PLSR) reduces the 
predictors to a smaller collection of uncorrelated compo-
nents before performing least squares regression on these 
components. This approach is advantageous when the 
predictors are strongly collinear. The predictors are meas-
ured with error, making PLSR more robust to uncertainty 
measurement [63, 68].

(2)𝛽(k) = (X�X + kI) − 1X�Y

(3)k = �̂�2∕max(�̂� i2)

(4)y =

n
∑

1

wi ∗ �i + w0

where y is the dependent variable, ρ is the explanatory 
variable, w is the model coefficient for the ith variable, w0 
is the constant item, and n is the number of variables.

The artificial neural network (ANN) is a problem-solving 
model inspired by the biological neuron system and con-
sisted of many highly interconnected computing elements 
called neurons. It takes a nonlinear path and processes data 
in parallel through nodes, resulting in a complex adaptive 
system that can alter its internal structure by changing input 
weights [69]. In this study, we used a feedforward neural net-
work with a single hidden layer. Its simplicity distinguishes 
it from other types of artificial neural networks, in which 
data moves through various input nodes before it reaches 
the output node [46, 70]. For a regression function y = f (x), 
a feedforward network defines a mapping y = f (x; θ) and 
learns the value of the parameters θ, resulting in the best 
function approximation, described in Eq. (5).

where y is the dependent variable, x is the explanatory 
variable, n is the number of independent variables (i goes 
from 1 to n), w is the weight of the explanatory variable, 
and b is the bias added to the function. Figure 4 illustrates 
the neural network’s basic concept.

We used seventy-six soil samples in this study, with 70% 
for training and 30% for validation. Three statistical met-
rics, i.e., root-mean-square error (RMSE), mean squared 
error (MSE), and min-max accuracy, are computed to assess 
regression models’ performance.

Equations (6) and (7) describe the mathematical expres-
sions of MSE and RMSE.

(5)y = f

(

n
∑

1

xi ∗ wi + b

)

Fig. 4  Basic concept of artifi-
cial neural network [71]
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(6)RMSE =

√

√

√

√

n
∑

1

(

ŷi − yi
)

∕n

where ŷi is the predicted value for the ith observation, yi 
is the measured value for the ith observation, and n is the 
total number of observations.

4  Results and discussion

4.1  Descriptive analysis

The main statistical parameters for the salt content data 
are given in Table 3. The disparity between the minimum 
and the maximum reflects a spatial variability in salinity 
levels. The normality test revealed that the salt content 
data were positively biased. The contrast between the 
mean and the median has demonstrated this point.

We applied a square root transformation to increase the 
distribution of data to normality. This was approved by a 
remarkable improvement in skewness from 1.96 for the 
initial data to − 0.39 for the normalized data.

(7)MSE =
1

n
∗

n
∑

1

(

yi − ŷi
)

Table 3  Descriptive statistics on salt content samples

Maximum Minimum Mean Median Skewness

Salt content 
(%)

0.26 0 0.057 0.06 1.96

Table 4  Models’ performance using three statistical parameters

Model MSE RMSE Accuracy

Training Test

MLR 0.004 0.014 0.004 0.73
PLSR 0.006 0.009 0.006 0.73
RR 0.006 0.007 0.081 0.75
ANN 0.029 0.108 0.118 0.71

Fig. 5  Relationship between 
measured and predicted nor-
malized salt content values, a 
MLR, b PLSR, c RR, d ANN
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4.2  Models performance

A low RMSE value indicates an accurate prediction. Simi-
larly, a low MSE value indicates a more precise estimation. 
We calculated the statistical parameters using Eqs. (6) 
and (7). More RMSE and MSE are closer to zero, higher is 
the model’s accuracy. The statistical performance of the 
regression models is given in Table 4. Overall, the four 
regression models have a satisfactory goodness-of-fit for 
the training and test sets, based on Table 4 and Fig. 5. The 
MSE of the ridge regression (RR) model is the lowest for 
the test sample (= 0.007). The MLR model has the lowest 
MSE (= 0.004) for the training sample, followed by the RR 
and the PLSR models (MSE=0.006), and eventually the 
ANN model (MSE=0.029). The MLR model yielded the low-
est RMSE value (= 0.004), followed by the PLSR model (= 
0.006), the RR model (= 0.081), and finally, the ANN model 
(= 0.118). To evaluate the models’ accuracy, we ran a min-
max accuracy test, which takes the mean values of the 
minimum and maximum values between the measured 
and the predicted values. It has a range from zero to one. 
A min-max accuracy score equal to one indicates a perfect 
match between the actual and estimated values [72]. The 
RR model has the highest accuracy (= 0.75), followed by 
the PLSR model (= 0.73), the MLR (= 0.73), and the feedfor-
ward ANN model (= 0.71).

The objectives to be achieved determines the appropri-
ate approach for a model’s selection. Overall, the highest 
accuracy model would be favored, but very low RMSE and 
MSE must also be considered. Hence, the ridge regression 
(RR) model is regarded as the best model with the highest 
accuracy (= 75 %) and the lowest MSE for the test set.

4.3  Salinity prediction map

Based on three statistical metrics analyses, the ridge 
regression model was selected for predicting soil salinity 
in the Great Hungarian Plain. Therefore, we used Eq. (8).

(8)

SQRT(SSC%) = 1.36582 + 0.00087 ∗ LST − 0.03777 ∗ CRSI − 0.00103 ∗ BI + 0.1195 ∗ SI−

0.01713 ∗ SI1 − 0.05036 ∗ SI2 + 0.016 ∗ SR + 0.0141 ∗ NDSI − 0.25137 ∗ log (elevation)+

0.00059 ∗ VSSI + 0.02754 ∗ RSI − 0.1545 ∗ PCA1 + 0.03208 ∗ PCA2 + 0.00106 ∗ SI3−

0.00184 ∗ SI5 − 0.0083 ∗ DVI − 0.10293 ∗ B7

The maximum predicted value of normalized salt 
content equals 0.38. The minimum estimated value 
equals − 0.13. The mean value equals 0.21, and the stand-
ard deviation equals 0.03. Water bodies and urban infra-
structures are the most common negative predictions. As 
a result, we used a masking tool to exclude these pixels 
from the landscape. According to Weng et al. [21], nega-
tive predictions are illogical and indicative of prediction 
errors. However, it can also be caused by residual noise 
that occurs after atmospheric corrections.

As data rescaling represents an essential step in data 
analysis, we converted the salt content variable from (%) 
to g/kg, giving it broader ranges for the classification 
(Table 5). The final map is presented in Fig. 6.

Figure 6 shows that around 99% of total classified pixels 
are non-saline and less than 1% are low saline. The maxi-
mum predicted value of salt content equals 1.46 g/kg. In 
contrast, the minimum estimated value equals zero. The 
mean equals 0.44 g/kg, and the standard deviation equals 
0.11 g/kg.

A visual interpretation of the map showed a noticeable 
association between extremely non-saline soils and the 
elevation. Despite the study area’s absolute flatness, the 
effect of microrelief in salinity distribution is relatively evi-
dent on the map. Comparing LST variation with soil salinity 
distribution, we found similarities between the two vari-
ables’ spatial distribution. High LST values are frequent in 
soils with higher salinity, while lower LST values occupy 
firmly non-saline soils (0 g/kg). The correlation matrix 
derived from the band collection statistics test shows a 
strong negative correlation with elevation, and a moder-
ately low positive correlation with LST, with a coefficient 
of determination  R2 equal to − 0.86 and 0.28, respectively.

Overall, saline land features discrimination is an 
achievable task using spectral response values and 
spectral transformations derived from multispectral 
sensors. This agrees with Matinfar et al. [73] and   Wu 
et al. [74] results regarding spectral indices’ efficiency in 

Table 5  Soil salinity content levels using Chinese Saline Soil Classification Standard presented by WENG et al. [21]

* SSC: Soil Salinity Content

SSC*  < 1 g/kg 1–2 g/kg 2–4 g/kg 4–6 g/kg  > 6 g/kg

Class Non-saline Low saline Moderately saline Highly saline Extremely saline
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soil salinity mapping. Mousavi et al. [39] found a strong 
association between spectral indices and soil salinity 
distribution using artificial neural network  (R2 = 0.964), 
which is relatively in agreement with our findings. Nev-
ertheless, the ANN model performed the least among 
other regression models producing the lowest accuracy 
(= 71%) and the highest RMSE (RMSE= 0.118). The small 
sample size used to train the neural network limited the 
prediction performance of this method. Using a multiple 
linear regression model, Hihi et al. [16] found a medium 
correlation between spectral indices derived from Sen-
tinel 2 MSI sensor and salt content in the Tunisian South, 
with a determination coefficient  R2 equals 0.48. Allbed 
et al. [50] found a medium correlation with a coefficient 
of determination  R2 equals 0.65 using an IKONOS image 
and regression techniques in Al-Hassa oasis, Saudi Ara-
bia. Asfaw et al. [2] found a strong relationship between 
remotely sensed data and electrical conductivity (EC) in 
a regression model with a coefficient of determination 

 R2 equals 0.78. These findings agree with our approach, 
elucidating statistical modeling’s potential to map soil 
salinity with lower costs.

Furthermore, this work demonstrates the significance 
of shortwave infrared bands, and in particular the sec-
ond SWIR band, in salinity prediction. This agrees with 
Hihi S et al. [16] and Lamqadem A et al. [75] studies. 
Bannari et al. [76] also revealed the importance of SWIR 
bands in soil salinity modeling using Sentinel 2 MSI 
image. Electrical conductivity in the laboratory  (ECLab) 
showed a moderate association with SWIR bands with a 
coefficient of determination  R2 equal to 0.5 for  SWIR1 and 
0.6 for  SWIR2. The relationship is uncertain for sand pat-
terns, moist soils, and vegetated areas with high salinity 
values and low reflectance in the near-infrared channel, 
where prediction errors are more likely to occur. Future 
studies will focus on using data derived from hyperspec-
tral sensors to overcome this issue, as recommended by 
previous studies [21, 53, 77].

Fig.6  Soil salinity prediction 
map using the final model



Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:587 | https://doi.org/10.1007/s42452-021-04587-4

Despite models’ accuracy differences from one study 
area to another, a significant relationship between 
remotely sensed data and soil salinity has been well-
established in the literature. Moreover, several environ-
mental factors influence soil salinity measurements and 
spectral information reception, explaining the findings 
disparity within previous studies.

Like many natural processes, soil salinization is influ-
enced by environmental variations, making it difficult to 
track and analyze with absolute certainty. The prediction 
errors persist even with using the most robust statisti-
cal technique. Therefore, it is suggested to perform a 
validation sampling to evaluate the regression model’s 
applicability and estimate its real predictive potential.

5  Conclusions

Soil salinization is a major environmental threat that 
affects soil and water quality, reduces agricultural produc-
tion and food safety worldwide. As a result, collecting valu-
able information on salinity levels is a critical challenge for 
decision makers to improve and sustain land management 
strategies.

We discussed this issue by evaluating the usefulness of 
Landsat 8 OLI imagery for soil salinity prediction using four 
state-of-the-art regression modeling algorithms. Accord-
ingly, the ridge regression approach performed the best 
in this research with a penalty parameter equal to 0.387 
and a min-max accuracy equal to 75%. The model can be 
applied in another study area with similar climatic con-
ditions and geological formations. As revealed by many 
scholars in the literature section, Landsat 8 OLI image has 
shown its relative efficiency in soil salinity estimation. This 
study demonstrates the importance of spectral enhance-
ments in mapping environmental parameters such as 
soil salinity and identifying pattern variations. Hence, the 
elevation is proved to have a statistical significance for soil 
salinity prediction, with a p-value equal to 0.002. Through-
out the combination of field measurements and spectral 
information, remote sensing represents an inexpensive 
and effective reliable tool to estimate soil salinity.

Future studies will focus on reducing spectral noise, 
improving the model’s predictive power, and investigat-
ing the role of environmental factors in salts distribution 
and movement.
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