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Abstract
Fossil fuels are being replaced by clean energy sources. Lignocellulosic biomass is considered an eco-friendly alternative, 
as it is a renewable raw material with high energy potential. In this context, the aim of this study was to determine the 
biomass energy properties of three bamboo species and mate. Thus, three species of bamboo (Bambusa vulgaris Var. 
Vittata, Dendrocalamus asper and Phyllostachys aurea) and Ilex paraguariensis co-products (branches and sticks) were 
performed. The particle size, basic density, moisture content volatiles content, ashes content, fix carbon, gross and net 
calorific value and energy density of these biomasses were evaluated. The biomasses analyzed here were considered 
suitable for energy purposes, in general, these presented volatile content between 75 and 85 %, fixed carbon content 
between 15 and 25% and ash content close to 1%. Average fix carbon content of all analyzed biomass was 16.13%. Ash 
content of Phyllostachys aurea, branches of Ilex paraguariensis and Dendrocalamus asper presented lower values, average 
of 1.63%. Bambusa vulgaris and Ilex paraguariensis sticks presented higher values, average of 2.65%. Phyllostachys aurea 
presented gross calorific value higher than, average of 19.35 MJ  kg− 1. Bambusa vulgaris, Dendrocalamus asper, Ilex para-
guariensis branches and sticks presented statistically equal values. Bambusa vulgaris, Dendrocalamus asper, Phyllostachys 
aurea showed net calorific value higher to the other analyzed materials and did not present statistical difference. Basic 
energy density of Phyllostachys aurea was higher to bamboo species. Ilex paraguariensis showed the lowest values with 
no statistical difference for branches and sticks.

Article highlights

• Knowledge of biomass properties enables the use of 
residues in bioenergy production as an eco-friendly 
alternative.

• Bamboo and Mate co-products have desirable charac-
teristics and potential to produce bioenergy.

• The energetic performance of bamboo biomass was 
superior when compared to the branches and sticks of 
Ilex paraguariensis.
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1 Introduction

Energy consumption has been increasing in recent dec-
ades across the globe and, due to the dependence on 
fossil-based fuels and its high emission of pollutants, 
the levels of greenhouse gases in the atmosphere also 
increase [1]. As an eco-friendly alternative, fossil fuels 
are being replaced by clean energy sources, encourag-
ing a search for more cost-effective renewable fuels and 
promoting sustainable development [2]. In this scenario, 
lignocellulosic biomass is considered as a renewable raw 
material with high energy potential[3].

Despite the bioenergy potential, lignocellulosic bio-
mass is still an unexplored resource. In some cases, if 
the destination is poorly conducted, it is considered a 
waste, causing environmental problems such as air pol-
lution (during open burning), water courses pollution 
and problems in industries, such as occupation of large 
areas [4]. According to Organization for Economic Coop-
eration and Development (OECD), Brazil ranked 13th in 
the  CO2 emitters list. Even with one of the best carbon 
monoxide compensation energy matrices in the world, 
the country has pledged to reduce its greenhouse gas 
(GHG) emissions by more than 35% until 2020 [5], by 
National Policy on Climate Change (PNMC).

Use of waste in sustainable energy production is an 
important part of future energy concept. Transforming 
biomass, an important renewable resource, into bioen-
ergy of low production cost and low emission of acid 
gases, provides a continuous source of energy, inde-
pendent of climatic and seasonal changes, in addition, 
it can be stored and used when needed [6–9].

Brazil has potential for biomass production as an 
energy source, with the most widely used raw materials 
being wood residues (shavings and sawdust). However, 
the proper use of biomass energy resources requires 
some precautions, such as the shape and size of its par-
ticles and biomass high moisture content [10]. Thus, bio-
mass from grass species, agricultural residues and resi-
dues from food industry become increasingly important 
[7], among which we can highlight bamboo species and 
co-products of mate.

Bamboo is a promising material for energy use [11]. 
In Brazil there are large commercial plantations, with 
emphasis on the northeast region and natural fragments 
in the Amazon interior. In addition, it can be processed 
with the same equipment used in tree species [12].

Mate (Ilex paraguariensis A. St. Hil.) is economically 
exploited in about 480 municipalities in Paraná states, 
Santa Catarina, Rio Grande do Sul and Mato Grosso do 
Sul. It occupies an area of more than 110 thousand hec-
tares, cultivated in approximately 180 thousand rural 

properties. This culture generates more than 700 thou-
sand jobs [13]; however, two types of waste are largely 
generated: (1) branches, from the pruning process [14]; 
(2) thin sticks, from the processing of raw material [15, 
16].

Brazilian production of fresh leaves in 2014 was 935 
thousand tons [17], around 7% of this material become 
a co-product of sticks at the end of processing in herba-
ceous industries. This represents approximately 65 thou-
sand tons per year, of which can be used as an alternative 
to biomass energy. Energetic properties of biomass are 
directly related to the energy potential. It is essential to 
know these properties to optimize production efficiency 
and improve the quality of the final product, highlighting: 
basic density, fix carbon content, volatile, ashes and gross 
calorific value, moisture and ash content, in addition to 
particle size and shape, moisture absorption capacity and 
resistance to processing [18, 19].

The energy potential is estimated through the gross 
calorific value (GCV) and the net calorific value (NCV). GCV 
is defined as the amount of energy released (per unit mass 
or volume) in stoichiometric combustion of a combustible 
material. It basically depends on the chemical composi-
tion of each fuel, in general, the higher the GCV, the more 
efficient the combustion. The study of material energetic 
properties can be useful in deciding how to use this waste, 
and suggest it as a potential alternative source of energy.

This study aimed to determine the biomass energy 
properties of bamboo species and the co-products of mate 
(branches and sticks of harvesting process).

2  Materials and methods

2.1  Bamboo chip production

Three species of bamboo were used, Bambusa vulgaris Var. 
Vittata, Dendrocalamus asper e Phyllostachys aurea. Thirty 
individuals were selected with uniformity in height, stem 
diameter and wall thickness, in addition to a straight geo-
metric shape (to facilitate the chip chipping process) to 
produce bamboo chips. Mature individuals were selected, 
aged between three and four years, estimated in their 
external appearance.

Final dimensions of bamboo chips were approximately 
3 mm × 20 mm × 40 mm (thickness, width and length). 
Subsequently, the material was dried in the open air, in 
a ventilated environment, until it reached the moisture 
content.

Figure  1 shows stems harvested, equipment used 
to produce bamboo chips and quantity of chips pro-
duced. Co-products of mate (Ilex paraguariensis) resulting 
from production of herb and/or compost for chimarrão 
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(Brazilian tea) were branches and sticks resulting from the 
processing of leaves and thin branches.

2.2  Material preparation

Material previously chopped was crushed in a hammer mill 
(Willye TE 650) and then used in analysis of particle size, 
proximate chemical analysis, gross and net calorific value 
and energy density. Three repetitions were performed 
for each biomass sample, totaling about 1 kg of material 
(Fig. 2).

2.2.1  Particle size analysis

Biomass of different materials was sieved and separated in 
three sizes by sieve meshes (< 35, 35–60, > 60 mesh). Mate-
rial used to determine proximate chemical analysis and 
calorific value was classified between 35 and 60 mesh, as 
determined by Brazilian Regulatory Standard (NBR) 6923 
[20].

2.2.2  Basic density

Basic density was determined by the hydrostatic method, 
by immersion in water, as described in NBR 11941 [21].

2.2.3  Moisture content

Samples were placed in an oven at 103 ± 2 °C until con-
stant mass. Moisture (Mc) content was obtained in Eq. (1), 
by difference between the wet mass (m1) and dry mass 
(m2) weight of samples. Moisture content of the samples 
was determined according to ASTM E 870-82 standard 
[22]. 

 Mc: Moisture content of biomass (%); m1: wet mass (g); 
m2: dry mass (g).

2.3  Proximate chemical analysis

Proximate chemical analysis was performed according to 
ASTM D 1762-84 standard [23] to determine the volatiles 
content, ashes content and fix carbon. Samples of 2.0 g 
were used in porcelain crucibles. All tests were performed 
in triplicate.

2.3.1  Volatile content

Volatile content was determined using dry samples, pre-
viously kept in oven (Ni 1384 model) for seven minutes at 

(1)Mc =
(m1 −m2)

m1
x100

Fig. 1  Bamboo chip production process. a Bamboo stems (thirty units); b Forest Chipper coupled to the hydraulic system of a farm tractor 
used to cut bamboo stems into chips; c total volume of chips produced

Fig. 2  Alternative materials used in the experiment. Bamboo: Bambusa vulgaris. Var. Vittata (a), Dendrocalamus asper (b), Phyllostachys aurea 
(c); mate (Ilex paraguariensis): branches (d) and thin sticks (e)
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950 °C. Subsequently, samples were cooled in a desiccator 
and then weighed.

2.3.2  Ash content

Ash content was determined according to ASTM D 1762-
84 [23] standard with the same material used in analysis of 
volatile content, which were taken to the oven at tempera-
ture of 750 ºC, until it reaches constant mass. At the end of 
this process, it is assumed that only ashes remain inside the 
crucible, result of combustion of organic components and 
oxidation of inorganic.

2.3.3  Fix carbon content

Fix carbon content (Fcc) was determined by the difference 
between values of volatile content and ash content.

2.4  Energetic analysis

Gross calorific value (GCV) was determined according to 
ASTM D240 [24], using IKA WORKS digital calorimetric bomb, 
model C 5000. The measurements were taken in duplicates, 
using an analytical balance for weighing. Net calorific value 
(NCV) was determined by GCV subtracting the energy used 
to evaporate the hydrogen constituting the fuel in the form 
of water.

2.4.1  Energy density

Energy density was determined by the relationship between 
the value of gross calorific value and the basic density of 
analyzed materials, by Eq. (2). 

 BED: Basic energy density (GJ  m− 3); GCV: gross calorific 
value (MJ  Kg− 1); Db: basic density (kg  m− 3).

2.5  Data analysis

Assumptions of data normality and homogeneity of vari-
ance were tested, considering the average values obtained 
from physical, energetic properties and proximate chemical 
analysis of five alternative lignocellulosic materials, in three 
repetitions. ANOVA and Tukey mean comparison test at 5 % 
probability of error were performed in a completely rand-
omized design.

(2)BED =
(GCV )

Bd
÷ 1000

3  Results and discussion

Granulometric distribution varied between bamboo and 
mate species (Table 1). All materials analyzed had volumes 
between 58.6 and 66.2 % in recommended granulometry. 
Granulometry in class above 60 mesh showed variation 
between species, with higher values   for Ilex paraguarien-
sis sticks and Phyllostachys aurea, and the lowest value for 
Ilex paraguariensis branches. Highlighting the influence of 
materials size on the biomass density. 

3.1  Basic density, moisture content and proximate 
chemical analysis

The data relating to basic density, moisture content and 
approximate analysis are shown in Table 2. It was observed 
in this study that the biomasses of Bambusa vulgaris and 
Phyllostachys aurea had similar basic density, average 
of 0.624 g  cm− 3. Followed by Dendrocalamus asper with 
0.543 g  cm− 3. Branches and sticks of Ilex paraguariensis 
show similar density, average of 0.406 g  cm− 3. 

Bamboo density average observed in this study cor-
roborate those found by Vale et al. [25] who analyzed B. 
vulgaris in different positions (bottom, middle and top) 
with one and three years of age. The authors obtained 
mean values   varying between 0.505 and 0.609 g  cm− 3 
over height, individuals were studied at three years of age, 
while Brito et al. [26] reported density 0.687 g  cm− 3. Bernd-
sen et al. [27] observed that the basic density of bamboo 
varied with age and position along the stalks, despite its 
height and total diameter being reached in a short period 
of time. Melo et al. [28] in a study with Bambusa vulgaris in 
stems, approximately four years old, observed density val-
ues   close to 0.630 g  cm− 3. Santos et al. [18] found for Bam-
busa vulgaris var. Vittata 0.462 g  cm− 3, while for Dendro-
calamus asper, the values   were 0.604 g  cm− 3. Santin et al. 
[29] found mean values   close to 0.400 g  cm− 3 for basic 
density of mate pruning branches aged 12–36 months. 

Table 1  Distribution of different biomasses in granulometric 
classes (%)

a 35 and 60 mesh materials are recommended for chemical analysis, 
NBR 6923 [20]

Raw material Mesh

< 35 35–60a > 60

Bambusa vulgaris 16.2 66.2 17.6
Dendrocalamus asper 18.1 65.5 16.4
Phyllostachys aurea 8.3 64.2 27.5
Ilex paraguariensis (branches) 30.0 58.6 11.4
Ilex paraguariensis (sticks) 12.3 60.8 26.9
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Carvalho et al. [14] observed a density of approximately 
0.400 g  cm− 3 of mate branches.

In comparison with wood species used for energy gen-
eration, the density of Bambusa vulgaris is similar to those 
reported by [4], ranging from 0.471 to 0.619 g  cm− 3 for 
different species of Eucalyptus. Santos et al. [18] observed 
basic density of 0.482 g  cm− 3 for E. urograndis, values 
higher than those verified in this study for mate branches 
and sticks.

Average moisture content of different materials was 
9.27%. All the analyzed materials showed moisture con-
tent below 11% and can be used for energy generation 
[30]. Statistical differences were found between the mois-
ture content in the different species. Lowest moisture con-
tent was observed for Bambusa vulgaris. Mate branches 
showed statistically higher humidity values.

However, when analyzing the use of wood residues 
for energy generation, mean values   of moisture content 
of 16.12% were found for Pinus spp wood shavings [31]. 
Rousset et al. [32] in a study performed with mature culms 
of Bambusa vulgaris species, over three years old. The 
authors reported values   of 20.2% humidity. Lin et al. [33] 
found values   between 6.98 and 7.9% of TU for dry bamboo 
residues of the genus Phyllostachys.

Average fix carbon content of all analyzed biomass 
was 16.13%. Among the species, there was variation in fix 
carbon content between species, Dendrocalamus asper 
showed a value significantly higher than other materi-
als and 1.5% higher than the average. Ilex paraguariensis 
(branches) showed a significantly lower value, 2.3% below 
the average.

Amount of heat generated by waste is determined by 
fix carbon content. In general, the higher the fix carbon 
content, the better the quality of material for burning, as 
this fuel will burn more slowly and with less flame forma-
tion [18, 26]. Rambo et al. [11], Vale et al. [25] and Rousset 
et al. [32] found a fix carbon content of 17.20, 17.66 and 
17.75%, respectively, in different bamboo species.

Value of fix carbon content of Bambusa vulgaris and 
Phyllostachys aurea observed in this study corroborates 
those found in the literature [34]. Sette Junior et al. [35] 

evaluated hybrid of Eucalyptus grandis × Eucalyptus uro-
phylla and found fix carbon content of 17.5%. These results 
suggest proximity between the results of fix carbon found 
in the literature for tree species used in energy forests and 
the data found in this study, highlighting the biomass of 
Dendrocalamus asper.

Volatile content was higher for mate branches, 83.26%, 
compared to the sticks, 80.80%. Average values   of the 
different bamboo species did not differ statistically from 
those found in mate sticks. Bamboo species showed 
higher volatile content, when compared to the values   
observed by Rambo et al. [11], Vale et al. [25] and Rousset 
et al. [32], the authors found values   of 81.08, 78.14 and 
80.13%, respectively. Sette Junior et al. [35] found 82.2% 
volatile content for the sample of Eucalyptus grandis x 
Eucalyptus urophylla hybrid.

Volatiles play an important role during the initial stages 
of combustion, biomass with a high volatile content is 
easier to ignite and burn. Biomass generally presents high 
levels of volatile materials [36], despite these combustion 
advantages, this characteristic can make it difficult to con-
trol the combustion process. Pyrolysis and carbonization 
processes can decrease the volatile content of a biomass. 
Increase in carbonization temperature favors the mainte-
nance of lower final levels of volatile [37].

Ash content formed two groups. Biomass of Phyllos-
tachys aurea, branches of Ilex paraguariensis and Den-
drocalamus asper composed the group with lowest ash 
content, with an average of 1.63%. The averages of these 
materials did not differ statistically. The second group was 
composed of Bambusa vulgaris and Ilex paraguariensis 
sticks, an average of 2.65%.

Mate biomass sticks had 2.76% ash content, considered 
high for an arboreal species. This greater amount of ash 
can be explained by the young material, presenting a high 
content of inorganic mineral constituents, necessary for 
the nutrition of plant portions with intense physiological 
activity.

Rambo et al. [11] and Rousset et al. [32] in a study with 
biomass of bamboo species observed ash contents of 
1.71 and2.12%, respectively. Moreira (2012) [38] found 

Table 2  Average values of 
basic density, moisture content 
and proximate analysis

Bd  basic density (g  cm− 3), Mc moisture content (%), Fcc fixed carbon content (%), Vc volatile content (%), 
Ac ash content (%). Averages followed by the same letter do not differ by Tukey test, at 5% probability of 
error

Materials Bd Mc Fcc Vc Ac

Bambusa vulgaris 0.602 a 8.50 a 16.03 ab 81.42 ab 2.55 b
Dendrocalamus asper 0.543 b 8.93 ab 17.16 a 81.04 a 1.80 a
Phyllostachys aurea 0.647 a 9.25 b 15.94 ab 82.61 ab 1.45 a
Ilex paraguariensis (branches) 0.422 c 10.67 c 15.08 b 83.26 b 1.66 a
Ilex paraguariensis (sticks) 0.391 c 8.99 b 16.44 ab 80.80 a 2.76 b
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ash content increasing with age, due to the accumulation 
of siliceous bodies. Santin et al. [29] in a study with mate 
branches found mean ash content close to 3.9%. High ash 
content contributes to the reduction of biomass HCV, con-
sidering that it is a mineral content not activated in the 
combustion process [39]. Sette Junior et al. [35] evaluated 
hybrids of Eucalyptus grandis × Eucalyptus urophylla and 
found ash content close to 0.3%, this value   corroborates 
those found by Santos et al. [18].

Biomass with a high ash content can cause corrosion on 
the inner wall of boilers, resulting in higher maintenance 
costs [40]. High ash content decreases calorific value and 
causes energy loss [41]. Firewood is the solid fuel most 
used in boilers, with around 1% ash content, a good index 
for not damaging boilers and furnaces [42].

Knowledge of the proximate chemical analysis compo-
sition of biomass provides the material’s characteristics as 
a fuel. Fuels with a low fix carbon content and a high con-
tent of volatile materials burn quickly, requiring a short 
period of time for integral decomposition. Although the 
ash content has a negative correlation with biomass calo-
rific value [43].

3.2  Energetic analysis

Energy potential was assessed by biomass combustion. 
Gross calorific value (GCV) and net calorific value (NCV) 
were estimated. Basic energy density (BED) can also be 
an indicator of biomass energy potential and corresponds 
to the product between the gross calorific value and the 
basic density. Table 3 shows values of the energetic prop-
erties of the different biomasses analyzed. 

Phyllostachys aurea presented gross calorific value 
(GCV) superior to other biomasses analyzed, average of 
19.35 MJ  kg− 1. Followed by Bambusa vulgaris, Dendrocala-
mus asper, Ilex paraguariensis branches and sticks, these 
values did not differ statistically.

Bambusa vulgaris, Dendrocalamus asper, Phyllos-
tachys aurea showed NCV superior to the other analyzed 
materials and did not present statistical difference. Ilex 

paraguariensis sticks and branches showed the lowest 
NCV values, with an average of 16.28 and 16.13 MJ  kg− 1, 
respectively.

Basic energy density (DEb) of Phyllostachys aurea was 
superior to the other analyzed materials, followed by bam-
boo species Bambusa vulgaris and Dendrocalamus asper, 
which did not present statistical difference. Smallest DEb 
was observed for Ilex paraguariensis, with no statistical dif-
ference for branches and sticks.

GCV average value corroborates the results found in 
the literature. Rambo et al. [11], Guarnetti and Coelho [12], 
Vale et al. [25] and Brito et al. [26] observed values   close 
to 18.32, 16.74, 18.24 and 17.65 MJ  kg− 1. The found GCV 
average of 18.94 MJ  kg− 1 for mate pruning branches [29].

Coniferous forest species generally present superior 
GCV, this occurs due to the higher contents of resin, waxes 
and oils and mainly of lignin [44]. Wood shavings from 
Pinus sp. and A. angustifolia species presented mean GCV 
values of 17.23 and 17.32 MJ  Kg− 1, respectively [45].

Biomass GCV correlates with the data obtained from 
proximate chemical analysis [46]. In general, with the 1% 
increase in the fix carbon content, there is GCV increase 
of 0.39 MJ  kg− 1. In addition, with an increase of 1% in ash 
content, GCV reduces by 0.2 MJ  kg− 1 [1, 36].

These results help to understand the higher ash con-
tent of Bambusa vulgaris, which has the lowest GCV. The 
mineral elements of this species do not contribute to the 
combustion process, reducing its efficiency. A similar con-
dition is observed in relation to mate sticks.

The found an average NCV value of 17.00 and 16.91 MJ 
 kg− 1 for A. Angustifolia and Pinus sp. species, respectively 
[45]. Observed an average NCV of 18.20 MJ  kg− 1 in saw 
dust, costan and refills from Pinus taeda L. (residues from 
wood processing) [47].

DEB values observed in this study corroborate the 
results found in the literature. Santin et al. [29] in a study 
with mate pruning branches found DEB of 7.57 GJ  m− 3. 
Santos et al. [18] in a study with bamboo species and wood 
of the Eucalyptus grandis × Eucalyptus urophylla hybrid 
found an average DEB value of 9.68 GJ  m− 3 and 9.80 GJ 
 m− 3, respectively. Moura et al. [47] in a study with harvest 
residues and wood processing from Pinus taeda L. (saw-
dust, costan and refill), found an average DEB value of 2.98 
and 4.81 GJ  m− 3, respectively.

Biomasses considered suitable for energy purposes, in 
general, have volatile content between 75 and 85%, fix car-
bon content between 15 and 25% and ash content below 
1% [34, 42]. Bamboo biomass has the potential to produce 
bioenergy, with high calorific value and low moisture con-
tent [11].

The biomasses analyzed in this study showed higher 
ash content, however adequate values of volatile mate-
rial and fix carbon, equivalent to that observed for wood 

Table 3  Average values of the energetic properties of the different 
biomasses analyzed

GCV gross calorific value (MJ.Kg− 1), NCV Net calorific value (MJ 
 Kg− 1), BED basic energy density (GJ  m− 3)

Treatment GCV NCV BED

Bambusa vulgaris 17.99 b 16.42 a 10.83 b
Dendrocalamus asper 18.70 ab 16.47 a 10.15 b
Phyllostachys aurea 19.35 a 16.47 a 12.52 a
Ilex paraguariensis (branches) 18.69 ab 16.13 c 7.89 c
Ilex paraguariensis (sticks) 18.75 ab 16.28 b 7.33 c
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from different forest species. These materials tend to have 
rapid combustion, where most of their mass is burned in 
the gases form and the lowest proportion in solid form 
(residual carbon), providing satisfactory energy potential. 
To reduce the ash content, an alternative is the addition of 
materials from the wood productive chain in the process 
of burning, such as forest (harvest) and industrial residues 
(sawdust, shavings, charcoal fines, etc.).

4  Conclusions

Basic density and fixed carbon content were higher at 
the bamboo species than in mate biomass. Compared to 
wood, the average values of the biomasses studied was 
similar for fixed carbon content and volatile content, on 
the other hand, it was higher for basic density (only for 
bamboo species), moisture content and ash content.

Biomasses analyzed here were considered suitable for 
energy purposes, with values of the main properties close 
to the energy biomasses found in the literature. Energy 
analysis showed that the gross calorific value was similar 
for all biomasses, while net calorific value and basic energy 
density were higher for bamboo species. Compared to 
wood species, basic energy density was higher for bamboo 
and lower for sticks and branches of mate.
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