
Vol.:(0123456789)

SN Applied Sciences (2021) 3:562 | https://doi.org/10.1007/s42452-021-04550-3

Research Article

Green synthesis of single phase hausmannite  Mn3O4 nanoparticles 
via Aspalathus linearis natural extract

A. Diallo1,2,3,4  · N. Tandjigora2,3 · S. Ndiaye3,4 · Tariq Jan5 · I. Ahmad2,6 · M. Maaza2,3

Received: 28 September 2020 / Accepted: 31 March 2021

Published online: 17 April 2021
© The Author(s) 2021  OPEN

Abstract
Nowadays, green synthesis of nanoparticles using plant precursors has been extensively studied. However, less attention 
has been given to  Mn3O4. This contribution validates the synthesis of single-phase Hausmannite  Mn3O4 nanoparticles by a 
green approach without using any standard acid/base compounds, surfactants, and organic/inorganic dissolving agents. 
The chemical chelation of the Mn precursor was performed via bioactive compounds of the Aspalathus Linearis’ extract, 
an African indigenous plant. Annealing at 400 °C for ~ 1 h was required to crystallize the small amorphous nanoparticles 
with an initial bimodal size distribution peaking at ⟨�

1
⟩ ~ 4.21 nm and ⟨�

2
⟩ ~ 8.51 nm respectively. Such annealing lead 

to increase in the diameter of the nanoparticles from 17 to 28 nm.The morphological, structural, vibrational, surface, and 
photoluminescence properties of the single-phase Hausmannite nanoparticles were comprehensively investigated by 
High Resolution Transmission Electron Microscopy(HRTEM),Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffrac-
tion (XRD), Raman and X-rays Photoelectron Spectroscopy (XPS), spectroscopy as well as room temperature photolumi-
nescence. Structural and morphological investigations revealed the formation of quasi-spherical nanoparticles having 
a single phase Hausmannite  Mn3O4 crystal structure. XPS results also validated the XRD results about the formation of 
Hausmannite  Mn3O4 nanoparticles. Raman investigations allowed a crystal-clear distinction between the  Mn3O4 nature 
of the nanoparticles from the potential γ -Mn2O3 phase as both phases belong to the same space group and both assume 
tetragonally-distorted cubic lattices of nearly similar dimensions. The optical studies of the single phase Hausmannite 
crystalline nanoparticles exhibited a broad photoluminescence in the spectral range of 300–700 nm, which is ideal for 
emission devices.
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efficient catalyst for the decomposition of waste gas of NOx 
[6]. Manganese oxide has been used as a raw material for 
fertilizer and as a mineral supplementation in animal feed 
for pharmaceutics in recent years. Synthesizing high-qual-
ity nanoparticles and researching the relationship between 
characteristics, size, and morphology is one of the keys to 
realizing these applications. As a result, scientists are con-
stantly coming up with new preparation methods. Rela-
tively to the most common Manganese oxide phases i.e. 
Pyrolusite  MnO2, Bixbyite  Mn2O3, and Manganosite  Mn1-xO, 
the Hausmannite  Mn3O4 is a high-temperature most stable 
phase. More precisely, it is generally produced by elevated 
calcination temperature above 1000 °C. Consequentially, 
the investigation of the low-temperature routes for the 
synthesis of the Hausmannite  Mn3O4 is of a special inter-
est. Few attempts to synthesize  Mn3O4 at low temperature 
regimes are reported in the literature. Among the explored 
routes, two have been found promising: sol–gel process-
ing of Manganese alkooxides, and controlled oxidation of 
aqueous suspensions of Mn(OH)2. The synthesis mecha-
nism of  Mn3O4 could be classified into two principal groups. 
The primary group is the oxidative pyrolysis of manganese 

1 Introduction

The Manganese oxide system exhibits a rich range of stoi-
chiometric and crystallographic phases including β-MnO2, 
γ-MnO2, α-Mn2O3, γ-Mn2O3, α-Mn3O4,  andMn5O8 where 
the Manganese atoms are obtained in different oxidation 
states. While burned in the air, such MnOx compounds 
undergo various electronic and/or crystallographic phase 
transformations. In the heat ranging from 500–600 °C, 
 MnO2 is converted to  Mn2O3 and to  Mn3O4 above 890 °C 
[1]. Depending on the environment, Mn may expect low 
or high oxidation states. The capacity to change within 
such oxidation states together with defects allows the 
well-established oxygen storage capacity of Mn oxides [2]. 
Manganese oxides in general and MnO,  MnO2, and  Mn3O4 
especially are attractive systems with potential applications 
in microwave absorption materials, sensors, supercapaci-
tors, anode materials, water splitting and antimicrobial 
therapeutics [3–5].  Mn3O4 could potentially be employed 
as precursors for the synthesis of  LiMn2O4 which is used 
for battery manufacturing. Also,  Mn3O4 is known to be an 
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salts, for instance, the calcination and the thermal decom-
position methods [7, 8]. These methods require expensive 
manganese precursors and are also energy waste inten-
sive. The second category is the oxidation of intermediate 
manganese hydroxide (Mn(OH)2), such as solvothermal, 
refluxing, hydrothermal, and the self-assembly methods 
[9–12].Yet cost effective, these processes are relatively time 
consuming in general. This is because the  Mn3O4 nanopar-
ticles are achieved through a low dynamic gas–solid reac-
tion within  O2 and Mn(OH)2. As summarized in Table 1, yet 
very effective, the bulk of physical and chemical routes 

to synthesize  Mn3O4 nanoparticles seem not be green 
processes in regard of the rules of green chemistry. There 
are many physical and chemical methods for synthesis of 
nanoscale materials, but the ones that use green chem-
istry and eco-friendly techniques are the most suitable. 
The synthesis of nanoparticles using green technologies is 
highly needed for the rapid translation of nanostructures 
to real-world applications [5, 15].This is because the pro-
cess of formation of the nanoparticles does not require any 
toxic stabilizing, reducing, and oxidizing agents and can 
be done under ambient temperature and pressures. Three 

Table 1  Some details of synthesis procedures of Mn3O4 nanoparticles

Synthesis method Synthesis 
temp. (°C)

Synthesis 
time (h)

Precursor materials Particles 
size (nm)

ref

Calcination method 800 3 Mn(CH3COO)2.4H2O, Mn(acetylacetonate) and egg white 60 [7]
Thermal method 260 1 Bis(2-hydroxy-1 naphthaldehydato) manganese(II) 9–24 [8]
Solvothermal method 160 24 MnCl2, NaOH and 1, 10-phenanthroline 60 [9]
Refluxing method 100 4 Mn hydroxide and gel 50 [10]
Hydrothermal method 200 24 Mn(NO3)2 sol. (50 wt%) 26 [11]
Selfassembly method 60 24 KOH–C2H5OH &Mn(CH3COO)2.  4H2O–C2H5OH, 5.5 [12]
Gas–liquid reaction 50  ~ 0.1 Mn(CH3COO)2  4H2O, Ethanol and  NH3·H2O (25–28 wt%) 24.4 [13]
Microwave Irradiation 80  ≤ 0.1 Manganese nitrate, ethanolamine, ethylenediamine and ethanol 10 [14]

Fig. 1  A schematic diagram of a possible mechanism for the formation of nanoparticles by Aspalathus linearis extract
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methods of green synthesis using plant extracts, green 
synthesis using microorganisms, and lower-temperature 
synthesis have been explored for  Mn3O4 and other nano-
particles green synthesis [16–19]. However, a very limited 
number of green synthesis methods using plant extracts as 
chelating agents have been reported. The plant extract can 
be used as a valuable source for bioreduction of metallic 

ions and nanoparticle development because of its potent 
antioxidants [20]. Prasad [21] reported the green synthe-
sis of  Mn3O4 nanoparticles (44–66 nm) using Adalodakam 
leaf extract and NaOH. Asaikkutti [22] used Ananas comosus 
(L.) peel extract and ethanol in their experimental protocol 
to prepare  Mn3O4 nanoparticles having a particle size of 
40–50 nm. [23] utilized Azadirachta Indica leaf extract as 
a reducing and capping agent for the synthesis of  Mn3O4 
nanoparticles (18.2–30 nm) at 400 °C for 2 h. Synthesis of 
 Mn3O4 nanoparticles (15 nm) at500 °C for 2 h using Sima-
rouba Glauca leaf extract and ethanol, was reported by 
Sreekala et al. [24]. Yet economically of interest, compared 
to the traditional methods, which use toxic organic sol-
vents or precursors, these processes are relatively energy-
consuming in general.

Herein, single phase Hausmannite  Mn3O4 nanopar-
ticles are synthesized via Aspalathus linearis by a green 
approach. The process of formation of nano-scaled  Mn3O4 
particles does not require any standard acid/base com-
pounds, neither surfactants nor organic/inorganic dis-
solving agents. As one could conclude later, it allows the 
synthesis of the ultrafine nanoparticles with an initial size 
distribution of 4.21–8.51 nm at the lowest temperature. 
The morphological, structural, vibrational, surface, and 
photoluminescence properties of the nano-scaled parti-
cles investigated by HRTEM, EDS, XRD, Raman, XPS, and 
PL are presented.

Fig. 2  HRTEM of the Manga-
nese oxide nanoparticles with 
size-frequency and SAED
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Fig. 3  EDS spectrum of the Manganese oxide nanoparticles syn-
thesis nanoparticles at 400 °C
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2  Materials and methods

2.1  Green synthesis of manganese oxide 
nanoparticles via Aspalathus Linearis

Aspalathus Linearis, known as Rooibos, is a plant native of 
Southern Africa which has great importance in the syn-
thesis of nanoparticles. Its leave extract contains phenolic 
compounds with a higher anti-oxidant potential and, as 
a result, a significant metal ion reduction capacity, mak-
ing green synthesis of nanoparticle possible. Additionally, 
the high protein, lipid, and amino acid content aids in the 
stabilization of nanoparticles growth while preventing 
agglomeration [25–27]. For the synthesis of Manganese 
oxide nanoparticles, 8 g powders of dried A. linearis leaves 
from its primary geographical region, i.e. the Cederberg 
region-South Africa, were cleaned and added to 300 ml 
of de-ionized water at Room Temperature for 48 h. The 
filtrated solution was mixed with 3  g of  MnCl2.4H2O 

(Sigma-Aldrich, purity 99.99%) as a demonstration of the 
idea of green synthesis of Hausmannite  Mn3O4 nanoparti-
cles at low temperatures and by an entirely green process. 
As swirling the solution, the precursor was seen to dissolve 
entirely in the solution, provoking a color turn from brown 
to greyish-brown. Following such a phase, a gray colored 
precipitate (Presumably MnO and/or Mn (OH)2 based 
mixture) was observed throughout 48 h. The precipitates 
were collected and dried at ~ 100 °C to remove any extra 
water content. Figure 1 depicts a schematic diagram of a 
potential mechanism for A. linearis extract-induced nano-
particle formation. In the formation of the nanoparticles, 
the plant extract acts as a reducing agent as well as a cap-
ping or binding agent. However, the interpretation and 
final chemical reactions taking place are expected to be 
challenging.The nanoparticles were annealed in air at 
400 °C for 1 h to induce their crystallization, as described 
in Sect. 3.

2.2  Characterization techniques

Various characterizations were conducted to study various 
properties of the synthesized nanoparticles. For morphol-
ogy and electron microscopy investigations the HRTEM, a 
Jeol JEM 4000EX electron microscopy unit with a resolu-
tion limit of about 0.12 nm, equipped with a Gatan digital 
camera, was utilized. The EDS spectrum was collected with 
an Oxford instruments X-Max solid-state Silicon drift detec-
tor operating at 20 keV. The structural properties of the 
annealed nanoparticles were characterized by using XRD 
Model Bruker AXS D8 Advance using radiation of Cu  (Kα 
Having wavelength of 1.5406 Å) and a Jobin–Yvon-SPEX 
integrated Raman spectroscopy with excitation wave-
length of 632.8 nm. For the XPS, a VG Scientific LAB MK-II 
spectrometer with an Mg–Ka X-ray source (1253.6 eV) was 
used. The photoluminescence properties were analyzed 
at 250 nm using Horiba Jobin Yvon Fluorolog III modular 
spectrofluorometer.
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Fig. 4  XRD spectrum of the Manganese oxide nanoparticles syn-
thesis nanoparticles at 400 °C

Table 2  X-ray diffraction parameters and extracted nanoparticles’ characters

(hkl) θexp (rad) dhkl
Exp (Å) dhkl

Bulk (Å) Δdhkl /
dhkl

Bulk 
(%)

FWHM (rad) 〈ϕparticle (nm) Sizeaverage 〈ϕparticle (nm) 〈aExp (Å) 〈cExp (Å)

(112) 0.253 3.077 3.089033 – 5.0 0.3149 26.05 23.70 5.756 9.406
(200) 0.271 2.878 2.880995 – 1.0 0.2972 27.74
(103) 0.284 2.754 2.768005 – 1.9 0.3411 24.25
(211) 0.316 2.481 2.486999 – 1.9 0.4129 20.24
(004) 0.334 2.351 2.366977 – 4.7 0.3158 26.62
(220) 0.388 2.086 2.036904 – 0.3 0.4807 17.85
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3  Results and discussion

3.1  Morphology and electron microscopy 
investigations

Morphology of the un-annealed sample, i.e. the isolated 
precipitates dried at ~ 100 °C was analysed with the TEM. 
Figure  2a indicates that the dried precipitate consists 
of dispersed quasi-spherical nanoparticles. Following a 
digitization analysis from multiple TEM images, the nano-
particles’ size was found to obey a bi-modal distribution 
with average diameters peaking at ⟨�

1
⟩ ~ 4.21 nm and 

⟨�
2
⟩ ~ 8.51 nm respectively (Fig. 2b). Of those views in 

different areas of the sample, it was found that the initial 
dried precipitate consists of amorphous nanoparticles 
(Fig. 2c).

3.2  Elemental analysis

Figure  3 displays the EDS spectrum of the initial pre-
cipitates dried at ~ 100 °C. In addition to the expected 
peaks of Mn (0.63, 5.90 and 6.49 keV) and O (0.52 keV), 
3 supplementary peaks matching Au, Pd and K can be 
seen. Except for the detected K (3.31 keV), the Au and Pd 
peaks originate both from the Au–Pd coating which was 
done to minimize surface electron charging via the EDS 

elemental investigations. The presence of Potassium can 
be related to the Aspalathus linearis’sextract. The support 
for such a conclusion is justified by the high grade of the 
chemical Mn precursor (99.99% Sigma Aldrich) and the 
fact that all required precautions during the synthesis 
were considered. As no other elements were detected in 
the EDS spectrum, this suggests the chemical formation 
of an  MnxOy or a slightly hydrated phase such as MnO or 
Mn(OH)2 respectively, but certainly no  MnCl2 as there is 
no trace of chlorine.

3.3  Structural and crystallographic analysis

Following the thermogravimetry and differential calorim-
etry preliminary investigations, it was found that a heat 
treatment above 371 °C is required to crystallize the ini-
tially amorphous  MnxOy. Hence, the initial precipitates 
were dried at ~ 100 °C and thereafter annealed at about 
400 °C for 1 h. The duration of 1 h was the optimum time 
extent of annealing to avoid significant sintering. In terms 
of crystallographic structure, Hausmannite  Mn3O4 exist 
into two forms: low-temperature tetragonal and high-
temperature cubic structure by a transition happening 
at around 1170 ◦C [28]. Likewise, it is established that the 
cubic  Mn3O4 structure stabilizes toward ambient tempera-
ture in films produced by MOCVD on single-crystal (100) 
MgO substrate [29]. Figure 4 exhibits an XRD pattern of 
the annealed nanoparticles (400 °C, 1 h) in air. The pattern 
of the annealed powder is indexed as pure Hausmannite 

Fig. 5  Raman spectrum of the Manganese oxide nanoparticles syn-
thesis nanoparticles at 400 °C

Fig. 6  XPS of the Hausmannite nanoparticles
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 Mn3O4 structure with average values of lattice parameters 
〈anano ~ 5.756 Å (〈abulk = 5.76210 Å) and 〈cnano ~ 9.406 Å 
(〈cbulk = 9.46960  Å) matching the Joint Committee on 
Powder Diffraction Standards (JCPDS) card no 24-0734 
related to body-centered tetragonal  Mn3O4 phase. These 
results are in good agreement with the green synthesis of 
Hausmannite  Mn3O4 by [23, 30]. No additional Bragg peaks 
from pure Mn or other Mn–O phases have been detected 
(At least within the XRD detection limit).The relative Bragg 
peaks broadness means that the nanocrystalline nature of 
the tetragonal  Mn3O4 powder is conserved in subsequent 
heat treatment. Debye Scherrer equation (〈ϕparticles ~ 0.9 λ/
(Δθ1/2 cos(θB)) permits estimating the medium diameter of 
the  Mn3O4 nanocrystals 〈ϕparticles which was found in the 
range 17–28 nm as listed in Table 2. Further, data in Table 2 
reveals that the quotient  (dhkl

Exp-dhkl
Bulk)/dhkl

Bulk ranges 
between 5.0–0.3% each h,k,l indices. This variation sug-
gests the existence of compressive strain in the annealed 
powder [31]. In fact, more accurate analysis of the JCPDS 
database shows that the pattern assignable to the tetrago-
nal Hausmannite  Mn3O4 can also be assigned to γ-Mn2O3 
if one considers the bar-errors on the lattice parameters. If 
so, the XRD can not easily distinguish between Hausman-
nite  Mn3O4 and γ-Mn2O3 because both materials belong 
to the same space group and both assume tetragonally-
distorted cubic lattices of nearly similar dimensions. Con-
sequentially, it is necessary to carry out at least Raman 
studies as the vibrational characteristics of the Hausman-
nite  Mn3O4 and γ-Mn2O3 are indeed different.  

3.4  Vibrational properties

Hausmannite belongs to the  I41/amd–D4h
19 space group 

with Z = 4 [32–35] for which the group theory predicts 
the vibrational representation of a primitive cell as 
ΓD4h =  2A1g(R) +  2A1u(IN) +  A2g (IN) +  4A1u(IR) +  3B1g(R) +  2
B1u(IN) +  B2g(R) +  4B2u(IN) +  4Eg(R) + 6Eu (IR), where “R”, “IR” 
and “IN” means Raman, IR, and inactive lattice vibrations. 
Following [32] vibrational spectra of Manganese oxides 
can be divided into 3 regions at 750–600, 600–450, and 
450–200  cm_1, where stretching, bending and wagging 
vibrations of  MnxOy units take place respectively. The 
most discernible modes in Raman are vibrations centered 
at 660, 370, and 318  cm−1. As it was demonstrated in sev-
eral forms of the tetragonal Hausmannite  Mn3O4, i.e. bulk, 
thin films, nanocrystals, nanorods and nano-powdered 
forms, these are 3 main active Raman modes [6, 36–40]. 
Figure 5 reports the Raman spectrum of the nanoparti-
cles (~ 400 °C, 1 h). As one could observe, it constitutes 
a relatively intense peak at 657.6  cm−1 and two smaller 
peaks centered at around 308.1 and 365.8  cm−1. These 
three Raman bands are consistent with the green synthe-
sis of  Mn3O4 nanoparticles using plant precursor by [23]. 
The appearance of three Raman bands is attributed to the 
crystalline Hausmannite structure [41, 42] of greenly syn-
thesized nanoparticles, without any other oxides phase. 
The three Raman band are ascribed to the A1g, Eg, and 
T2g respectively. The relatively intense Raman peak i.e., 
the A1g (657.6  cm−1) is the fingerprint of the Hausman-
nite with the spinel structure characterizing the unique 
Hausmannite Mn–O stretching vibrational mode of the Mn 
ions in the tetrahedral coordinating. If the positions of 3 
Raman modes are compared to the bulk values of pure 
tetragonal Hausmannite  Mn3O4, they are red-shifted. The 
corresponding shift is about 2.4, 4.2 and 9.9  cm−1 for 660, 
370, and 318  cm−1 modes respectively. This shift can be 
assigned rather to a size effect than to an oxygen defi-
ciency as reported by Zuo et al. in nano-scaled  Mn3O4 
particles synthesized by γ-radiolysis [40]. More precisely, 
as proposed by Zuo et al. and other researchers in their 
studies [43–45], the observed spectra can be explained 
by the phonon confinement effect. The phonon confine-
ment model is based upon the fact that while in an infinite 
crystal, only phonons near the center of the Brillouin Zone 
i.e. q ~ 0 contribute to the Raman spectrum in view of the 
momentum conservation between phonons and probing 
light (Raman peaks are sharp), the phonons are confined 
in space by crystal boundaries or defects in a finite crys-
tal such as nano-scaled particles (〈ϕparticle < λIncident). This 
results in uncertainty in the phonon momentum, allow-
ing phonons with q#0 to contribute to the Raman spec-
trum. This uncertainty is larger for smaller particles, and 
hence induces the red shift as well as the broadening of 

Fig. 7  Room Temperature PL of the Hausmannite nanoparticles
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the Raman peak. From this section, one can deduce that 
the synthesized Manganese oxide nanoparticles are not 
γ-Mn2O3 but pure Hausmannite  Mn3O4 exhibiting a pho-
non confinement due to size effect.

3.5  Surface properties

To support the XRD and Raman studies, XPS investigations 
of annealed were conducted at room temperature. Fig-
ure 6 displays the XPS spectrum of synthesized nanopar-
ticles (annealed at 400 °C for1 hour). More specifically, it 
describes the  Mn2p peaks and equivalent binding energies. 
The  2p1/2 and  2p3/2 are collected at 641.3 and 653.2 eV. The 
observed spin–orbit splitting is ~ 11.9 eV, which is in good 
comparison with that of Manganese oxides [14, 46]. The 
binding energy values from the Mn  2p3/2 (641.3 eV) and 
spin–orbit splitting (11.9 eV) were in good agreement with 
those related values of Manganese oxides. Thus, the XPS 
analysis confirms the Hausmannite  Mn3O4 phase of the 
synthesized nanoparticles.

3.6  Photoluminescence properties

Figure 7 depicts the room temperature photolumines-
cence spectrum of the synthesized single-phase Haus-
mannite  Mn3O4 nanoparticles using 250 nm excitation 
wavelength within the spectral range of 160–950 nm; 
under the conditions which are similar to those of [47]. 
One can distinguish five major emissions centered at 
327.6, 386.6, 469.4, 562.6 and 659.1 nm with the follow-
ing width at half maximum Δ1/2: 62.9, 61.9, 87.8, 92.5 and 
77.4 nm respectively. Yet with slight spectral shift, this pho-
toluminescence response is very close to that obtained by 
Toufiq et al. for hydrothermally-grown single-crystalline 
tetragonal  Mn3O4 nanoparticles using similar Mn precur-
sor  MnCl2.4H2 O [47]. The UV emission bands located at 
327.6 nm and 386.6 nm correspond to the recombination 
and emission of free excitons through an exciton–exciton 
collision process near band edges of the well crystallized 
crystals [48, 49]. The most intense blue emission collected 
at 469.4 nm could be ascribed to the radial recombination 
of the photo-generated hole with an electron resulting in 
singly ionized oxygen vacancy-related defects. The yellow 
emission located at 562.6 nm can be assigned to the d–d 
transitions involving  Mn3+ ions [50]. The combined emis-
sion covering a large spectral range from the UV to NIR 
(300–700 nm) could be of interest for technological appli-
cations in ultraviolet and visible light emission devices.

As it is highlighted in Sect. 1, green synthesis using 
Adalodakam leaf extract and NaOH resulted in forma-
tion of nanocrystalline  Mn3O4 (44–66 nm) (Prasad et al.). 
The XRD analysis confirmed the formation of  Mn3O4 in a 
tetragonal body-centered lattice system. Asaikkuti et al. 

used Ananas comosus (L.) peel extract and ethanol to pro-
duce spherical  Mn3O4 nanoparticles with average particle 
size of 40–50 nm for dietary supplementation. The forma-
tion of  Mn3O4 nanoparticles was further validated by SEM 
and EDS. However, NaOH solutions can decompose pro-
teins and lipids in living tissues, which consequently cause 
chemical burns and may induce permanent blindness 
upon contact with the eye. Ethanol can lead to malnutri-
tion, and can exert a direct toxicological effect due to its 
interference with hepatic metabolism and immunological 
functions. [23] utilized Azadirachta Indica leaf extract as 
a reducing and capping agent for the green synthesis of 
 Mn3O4 nanoparticles having particles size of (18.2–30 nm) 
annealed at 400 ºC for 2 h. Synthesis of  Mn3O4 nanoparti-
cles (15 nm) at annealed at 500 °C for 2 h using Simarouba 
Glauca leaf extract and ethanol, was reported by Sreekala 
et al. However, in comparison to the above green protocol 
which uses harmful organic or inorganic precursors, these 
protocols are relatively energy-consuming. Obviously, the 
current green synthesis protocols characterization stud-
ies have many advantages over the previous works, such 
as the synthesis of ultrafine non-agglomerated nanopar-
ticles having a size distribution of 4.21–8.51 nm at lower 
temperature, lower cost, use of Aspalathus Linearis extract, 
which possesses anti-oxidant, antiaging, anticancer, anti-
diabetic and anti-inflammatory properties [51]. In addi-
tion, the nano scaled feature of the synthesized particles 
was demonstrated by TEM, and XRD investigations, and 
the combined XRD, EDS, Raman, and XPS spectroscopy 
studies verified the nature and/or single-phase formation 
of the  Mn3O4 nanoparticles.

Likewise, there is a need to identify the mechanism 
of the green synthesis and related various physical and 
chemical reactions so to derive a likely universal model of 
green synthesis of nano-oxides [52–60]. Also, it is expected 
to demonstrate this procedure for the green synthesis of 
other functional simple monoxides [61], bioxides [62, 63] 
and nanocomposites [64, 65].

Taking into the observed physical responses, and as 
a follow up study of the current nanoscale single phase 
Hausmannite, it is intended to carry out the following 
studies: UV response [66], hydrophobicity [63, 67], antibac-
terial [68] as well as their doping with rare earth elements 
[69, 70]. Likewise, the mechanism of the green synthesis 
will be investigated to identify the bioactive compounds 
involved in the chelation process [31, 52, 71].

4  Conclusions

It was demonstrated that pure and nano-scaled Haus-
mannite  Mn3O4 can be synthesized by a green chemistry 
approach using A. linearis natural extract. Comparatively 
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to the literature, this process allows the synthesis of the 
smallest Hausmannite nanoparticles in size and pre-
pared to lowest temperature. While the kinetics of their 
formation is relatively slow, their initial size distribution 
is bimodal, peaking at 〈ϕ1 ~ 4.21 nm and 〈ϕ2 ~ 8.51 nm 
respectively. An annealing at 400 °C for 1 h approximately 
is required to induce their crystallization which provokes a 
sintering phenomenon as their average diameter reaches 
17–28 nm. The broad photoluminescence generated by 
the single phase Hausmannite crystalline nanoparticles 
in the 300–700 nm spectral range is ideal for emission 
devices. It is intended to carry out studies to shed-light 
on the mechanism of formation of such Hausmannite 
 Mn3O4 nanoparticles and the evolution of their surface 
coordination. More precisely, it is hoped that the ongo-
ing investigations will allow us to identify the bioactive 
compounds which react with the Mn precursor as well as 
the various chemical phases through which the reaction 
is taking place.
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