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Abstract
The present article focuses on the analytical approach to discuss the thermo–vibrational convection in a suspension 
of the active (gyrotactic) swimmers. The onset of instability criterion is investigated for the stationary and oscillatory 
modes of convection in a shallow fluid layer with no–slip and rigid–free walls. The eigenvalue problem is tackled by 
Galerkin scheme to get the desired stability diagram and the correlation between the critical Rayleigh numbers. The 
overstability in suspension is possible when the unstable density gradient of the gyrotactic particles is opposed by the 
density variation due to thermo–vibrational influence. The suspension is destabilized due to gyrotactic up–swimming 
while the increase in Péclet number stabilizes the system. The stabilizing influence of vertical vibration is considerably 
affected due to thermal gradient which destabilizes the suspension. An interesting result of this study is the influence of 
thermo–vibrational parameter which is associated with applied thermal and vibrational properties. We reported that the 
destabilizing nature of thermo–vibrational parameter becomes thermally or vibrationally governed when the suspension 
is heated or cooled from below. When compared to the rigid–rigid boundaries, the displayed profiles for rigid–free walls 
yielded less stableness in the suspension.

Keywords Overstability · Thermo–vibrational bioconvection · Vertical vibration · Gyrotactic · Rigid–free boundaries

1 Introduction

Bioconvection in a suspension of swimming active parti-
cles is the emerging phenomena that have significantly 
attracted the scientific community to put a considerable 
interest in the development of mesoscopic/microscopic 
pattern formations [1–4]. Bioconvection illustrates a mech-
anism for inducing the mass transfer mixing in the fluid 
micro–volumes and is potentially applicable in several 
pharmaceutical and bioengineering technologies [5, 6]. A 
numerical computation for three dimensional gyrotactic 
plumes in a rectangular chamber with free–free sidewalls 
with their structural formations was scripted by Ghorai 
and Singh [7]. A classical linear stability theory is available 

on spheroidal orientations for uniform gyrotactic biocon-
vection [8]. For a uniformly sheared and down–flowing 
suspension Hwang and Pedley analyzed the gyrotactic 
bioconvection in a two dimensional vertical flow [9, 10]. 
Bio–thermal convection, unlike the conventional biocon-
vection, is induced by the self–propulsion of swimming 
micro–organisms and the imposed thermal gradient 
across the fluid medium [11]. Convective modeling of 
vertically oscillated systems of various active swimmers 
is an area of considerable interest which has motivated 
the researchers due to its enormous application in vibra-
tion production processes in specific oil industries [12, 
13]. Zen’kovskaya and Simonenko studied the thermal 
vibrational convection and derived the time averaged 
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equations for the system [14]. A classical theory of the 
dynamically stabilized viscous fluid–gas interface for a 
vertically oscillated fluid was presented by Wolf [15]. It 
was established that viscous properties of the interface 
exerts the stabilizing action for the short wave lengths. 
Lyubimov reported the impact of vibration on the con-
vection excitation in the homogeneous fluid and dis-
covered the stabilizing impact of vibration to the system 
[16]. The organized description for thermo–vibrational 
modeling and their stability results for Newtonian fluid 
can be found in the classical monograph of Gershuni and 
Lyubimov [17]. Zen’kovskaya and Novosiadliy reported the 
high–frequency vibrational analyses for the case of immis-
cible two layer suspension [18]. Recently, an influence of 
time periodic alternating acceleration on the dynamics of 
Rayleigh–Taylor convection is carried out by Boffetta and 
co–workers where they utilized the numerically simulated 
Boussinesq equations [19].

The modeling and solution of the linear stability prob-
lem of a vertically vibrated system of negatively geotac-
tic swimmers in a dilute shallow medium is investigated 
by Kuznetsov [20]. Nield and Kuznetsov represented the 
extensive report on the oscillatory instability of bio–ther-
mally stratified binary fluid with cooling surfaces [21]. 
Sharma and Kumar revisited and completed the analysis 
by discussing the problem of oscillatory convection in 
a porous saturated gyrotactic particles comprised with 
negative thermal gradient [22]. An overstability analysis 
of bio–thermal convection combining the nanoparticles 
and the gyrotactic swimmers is studied by Kuznetsov [23]. 
Furthermore, Sharma and Kumar expended the study 
by reporting the analytical computations for a vertically 
vibrated aqueous and porous suspension of the gyro-
tactic swimmers in the absence of the thermal effect [24, 
25]. Becker and co–workers presented the experimental 
results to demonstrate the collective swimming of the 
bodies due to their flow mediated reaction [26]. A com-
prehensive review for the self propelled interactions of the 
active particles in a crowded and complex environment 
was reported by Bechinger and co-workers [27]. Uddin 
and co–workers discussed the nonlinear computations 
for the nanofluidic bioconvection affected by the multi-
ple slips and Stefan blowing saturated by porous media 
[28]. Lovecchio et al. [29] studied the thermally stratified 
suspension of gyrotactic particles in a free surface turbu-
lent channel and reported the various stability regimes 
numerically [29]. A nanofluidic bioconvection comprising 
of the variable viscosity and thermal conductivity within 
a rotating framework was investigated by Shuo and 
co–workers [30]. Moli Zhao and co–workers restudied the 
linear stability theory of thermo–bioconvection compris-
ing the gyrotactic swimmers by utilizing the probabilis-
tic continuum approach [31]. A numerically simulated 

gyrotactic reorientation affected by the wind–induced 
shear in free–surface turbulence was reported Mashayekh-
pour and co-workers [32]. Marchioli et al. [33] revisited and 
discussed the dynamics of gyrotactic swimmers in open 
channel turbulence using the Eulerian–Lagrangian simula-
tions [33]. Nayak and co–workers performed the computa-
tions for the three–dimensional slip profiles of gyrotactic 
swimmers in the existence of chemically reacted nanofluid 
[34]. A detailed review addressing the successive develop-
ments and advances of the bioconvection theory is avail-
able in the literature [35].

From the above review of literature it is observed that 
there are no reports that describe the overstability results 
for the bio–thermal suspension of gyrotactic swimmers 
affected by the vertical vibration. Unstable density strati-
fication and the applied temperature gradient across the 
vertically vibrated layer causes an interesting research 
problem making the suspension closer to the real flow 
problems. In this paper, a deterministic continuum 
approach for a binary gyrotactic bioconvection; located 
between two infinite horizontal surfaces, is extended to 
include the effect of thermal gradient and vertical vibra-
tion. This work is an augmentation to one of the author’s 
previous reported study in the absence of thermal stratifi-
cation, oscillatory convection and the rigid–free bounda-
ries [24]. The adopted model consists of a shallow fluid 
layer and the physical mechanisms such as Boussinesq 
approximation are considered with no–slip and rigid–free 
boundaries. A detailed linear stability analysis describes 
a significant physical and mathematical insight to this 
thermo-vibrational convection. The intercession of the 
competing effects such as cooling from below, density 
distribution and the imposed vertical oscillations leads to 
the possibility of oscillatory convection. The dependency 
of bioconvection and wavelength profiles on the existing 
parameters provides the further discussion at the onset of 
instability problem.

2  Formulation of the problem and analysis

We assume an incompressible, electrically insulated, 
aqueous suspension of gyrotactic swimmers, restricted 
between infinite horizontal layers, z = 0 and z = d . A high 
frequency low amplitude vibrational force acting vertically 
to the boundaries such that it doesn’t affect the swimming 
speed and propulsion of the gyrotactic swimmers is con-
sidered. At the lower surface ( z = 0 ) the temperature T  
is kept at T0 + ΔT  while at the upper surface ( z = d ) it is 
maintained at T0 , which are assumed to be uniform. The 
considered intensity of thermal gradient is sufficiently 
weak so that the self–propelling nature of the swimmers 
remains unaltered. Cartesian system is adopted with 
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assuming that layer is infinite in horizontal directions. The 
presented model is the deterministic continuum model 
developed for the gyrotactic swimmers [2]. The averaged 
equations for vibrational bioconvection in the high–fre-
quency estimation were discussed and formulated [17, 24, 
25]. In the present model, the conservation of momentum 
is supported by additional terms like vibrational and buoy-
ancy forces resulted from the impacts of the vertical vibra-
tions and thermal gradient. Under these approximations, 
we developed differential forms of physical laws of con-
servation of mass, momentum, number density concen-
tration of the swimmers and the energy, respectively, as:

Here � , �0 are the fluid convection velocity and density 
of the base fluid; t  is the time; p, � are excess pressure and 
the dynamic viscosity; n, � are concentration of active par-
ticles and average volume of an active particle; 
Δ� = �c − �0, � are the density difference between parti-
cles and base fluid and the coefficient of volumetric ther-
mal expansion (of base fluid); �, b̂ are gravity vector and 
amplitude of vertical oscillation; �, � are angular fre-
quency of oscillation and the vertically upward unit vector 
in z-direction; qc , �̂ denote swimming speed of active par-
ticles and the vector indicating the swimming path; Dc , cp 
are diffusivity of active swimmers and the specific heat of 
fluid medium; and � is the thermal conductivity. High–fre-
quency oscillations with uniform/non-uniform thermal 
fields are known to exert a thermo convective vibrational 
flow in which all the physical variables are sought to be 
separated into two distinct components [14, 16]. One part 
fluctuates quickly with time while the other one changes 
slowly with time. In order to obtain the theoretical forms 
of time averaged equations, certain approximations have 
to be validated [36]. The frequency of oscillation is consid-
erably high which makes the period of vibration (over a 
specified period � = 2�∕� ) small compared to all the 

(1)∇ ⋅ � = 0

(2)𝜌0

[

𝜕�∕𝜕t + (� ⋅ ∇)�
]

= −∇p + 𝜇∇2
� +

[

n𝜃Δ𝜌 − 𝛽
(

T − T0
)

𝜌0

]

� +
[

n𝜃Δ𝜌 + 𝛽
(
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𝜌0

]

(b̂𝜔2 cos𝜔t)�

(3)𝜕n∕𝜕t = −div
[

n� + nqc�̂ − Dc∇n
]

(4)cp�0
[

�T∕�t + (� ⋅ ∇)T
]

= �∇2T

c h a r a c t e r i s t i c  t i m e s  s c a l e s  i . e . 
𝜏vibration<< Min

(

𝜏viscous, 𝜏buoyancy , 𝜏convective
)

 [24]. The ampli-
tude of vibration is sufficiently low which ultimately makes 
the quickly varying velocity components (in the inertial 
terms) negligibly small i.e., b̂ ≪ d

/

𝜃ΔT𝛽
(

n1 − n2
)(

Δ𝜌∕𝜌0
)

[37]. The quantity 
(

n1 − n2
)

 refers to the concentration dif-
ference of the active swimmers across the surface thick-
ness and ΔT  is the temperature difference at the bounda-
ries [17]. Under these conditions one set of equation 
describes the pulsation field while other one stands for the 
mean flow of the suspension. The time averaged equations 
for the mean flow is achieved by performing the order 
magnitude technique which enables the transformation 
of the rapid field variables to mean variables [36, 37]. The 

constructed time averaged system (governing the flow) 
for the mean components are as follows:

The quantities with over bar refer to the mean variables. 
Here, the last two terms in Eq. (6) stands for the averaged 
volumetric and convective forces of vibrational character 
[17]. The vectors �1 and �2 are the solenoidal component 
of the vectors quantities n� and T� , respectively, and are 
supposed to satisfy the Helmholtz decomposition [37]:

For a rigid–rigid suspension the conditions are � = �, 
� ⋅ � = �1 ⋅ � = �2 ⋅ � = 0,T = T0 + ΔT  at  the  lower 
surface ( z = 0 ) and � = �, � ⋅ � = �1 ⋅ � = �2 ⋅ � = 0,

T = T0 on the upper surface ( z = d ). Also for a rigid–free 
suspension boundary conditions at the top layer are 
[
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2
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= 0 , � ⋅ � = 0, � ⋅ � = �1 ⋅ � = �2 ⋅ � = 0,

T = T0 . The quantity j(= n� + nqc�̂ − Dc∇n ) represents 
total flux of active particles across the surface which is 
exerted due to advection, self–propulsion and diffusion 
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[2]. The base state is motionless and is obtained as follows 
[11, 24]:

The subscript ′o′ refers to the fundamental state. 
Here nav refers to the average cell concentration, con-
stant � defines the basic cell concentration at the bot-
tom surface and Pe is the Péclet number [20–22]. In 
order to accomplish linear stability results, the small 
perturbations are applied to the basic variables. The 
coupled system of equations for the perturbations 
�
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and n∗ , which refers to the perturbations to fluid veloc-
ity, vibrogenic body force, vibrogenic convective force, 
pressure, average swimming direction, temperature and 
number density of the gyrotactic swimmers, respectively, 
are rewritten as:

Applying � ⋅ curl curl and � ⋅ curl on Eqs. (12) and (15), 
respectively:

Here,∇1 = �
2
/
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/

�y2 and �̂∗ is the mean swim-
ming direction of gyrotactic swimmers. It is understood 
that all the cells are symmetrical about �̂∗ and possesses 
the changeless velocity qc�̂∗ . For the unit vector �̂∗ , the fol-
lowing relations along with their theoretical explanations 
are available in literature [2]:
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The parameters B, 𝛼
⊥
, h, 𝛼0, a and b are having their 

standard meanings and are utilized by authors in previ-
ous studies [2, 20–22]. Using Eq. (18) in to Eq. (13):

Transforming the disturbances into normal modes:
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The dimensionless quantities and parameters used 
above are defined as follows:

Here, Rb=
(

g��Δ�d3
/

�Dc

)

 is the bioconvection Rayleigh 
number, ℧ is the density measure of gyrotactic swimmers, 

Pr is the Prandtl number, G is the gyrotactic number, Le is 
the Lewis number, Ra = �
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tional parameter. Here, R̃b = PeRb is the modified (ana-
logues) bioconvection Rayleigh number. To obtain the 
solutions of the Eqs.  (21)–(24), we apply the Galerkin 
method of weighted residuals [39]. For the trial functions 
satisfying the dimensionless boundaries the following 
expressions are formed:

Substituting Eq. (26) into system of Eqs. (21)–(24) and 
applying the standard procedure we get a coupled system 
of 5M equations in 5M variables Aj , Bj ,Cj ,Dj and Ej . A non 
trivial solution of this homogeneous system of equations 
leads to an eigenvalue equation.

2.1  Case I: rigid upper and rigid bottom walls

For this case the top and lower surfaces are considered to 
be rigid. The single term Galerkin scheme is invoked and 
the dimensionless boundaries are given as follows
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The suitable test solutions satisfying the boundaries 
(27) are chosen as follows:

Replacing the above test functions [Eq. (28)] into Eqs. 
(21)–(24) and applying the one term Galerkin scheme the 
eigen value relation takes the form:

Here, Ravb =
(

℧RaRvb
/

R̃b
)

 and �  is a functions of 
�1,�2, a

♢, �0,G and �1,�2,�3 are functions of Pe only. These 
are explicated in Appendix 1 [Eqs. (51)–(54)]. At the onset 
of oscillatory convection substituting � = i� into Eq. (29), 
where � is the dimensionless frequency (real) of vibra-
tional amplitude. Rearranging and rewriting Eq. (29) the 
stability boundary is then given by:

The expressions for the symbols �i , �i(i = 1, 2, ...7) , are 
defined in the Appendix 1 [Eqs. (55)–(60)].

2.1.1  Non‑oscillatory convection

For this case, substituting � = 0 in Eq. (30), it gives

(27)

at z
♢ = 0, 1; U

♢

3
= 0, DU

♢

3
= 0,

PeN
♢

3
= DN

♢

3
, Θ♢ = 0, V

♢

13
= 0, V

♢

23
= 0

(28)

�

U♢

3

�

1
= z♢

2�

1 − z♢
�2
,

�

N♢

3

�

1
= 2 − Pe

�

1 − 2z♢
�

− (Pe)2
�

z♢ − z♢
2
�

�

V♢

23

�

1
=
�

z♢ − z♢
2
�

,
�

Θ♢
�

1
= z♢

�

1 − z♢
�

,
�

V♢

13

�

1
=
�

z♢ − z♢
2
�

⎫

⎪

⎬

⎪

⎭

(29)

28

(

10 + a
♢2

)(

10 + a
♢2

+ 𝜎 Pr

)[(

a
♢4

+ 24a
♢2

+ 504

)

+ 𝜎

(

12 + a
♢2

)][

(

120 − 10(Pe)2 + (Pe)4
)

(

𝜎PrLe + a
♢2

)

+ 10(Pe)4
]

=
[

1260a
♢2

𝜒

(

10 + a
♢2

)

(

28 − 3(Pe)2
)

(

10 + a
♢2

+ 𝜎 Pr

)]

R̃b +
[

529200𝜒𝜒3a
♢4(

10 − (Pe)2
)

(

10 + a
♢2

+ 𝜎 Pr

)]

Rv

+ 27a
♢2

[(

𝜎 Pr Le + a
♢2

)

(

120 − 10(Pe)2 + (Pe)4
)

+ 10(Pe)4
][(

10 + a
♢2

)

Ra − a
♢2

Ra
vb

]

(30)

(

𝛼
1
+ i𝜔𝛽

1

)

R̃b +
(

𝛼
2
+ i𝜔𝛽

2

)

Ra +
(

𝛼
3
+ i𝜔𝛽

3

)

Rv

−
(

𝛼
4
+ i𝜔𝛽

4

)

Ra
vb

=
(

𝛼
5
+ i𝜔𝛽

5

)(

𝛼
6
+ i𝜔𝛽

6

)(

𝛼
7
+ i𝜔𝛽

7

)
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The stationary stability boundary is then given by the 
relation

Here the quantities �5�6�7∕�1 = Rb0 , �5�6�7∕�2 = Ra0 , 
�5�6�7∕�3 = Rv0 and �5�6�7∕�4 = Ravb0 are the new 
denominations introduced. The critical bioconvection 

Rayleigh number for the stationary convection is then 
given by:

In the limiting case when Pe tends to zero, G tends to 
zero and in the absence of vibration effect Eq. (32) col-
lapse to:

Equation (34) is the same expression as reported by 
Kuznetsov for the case of thermal suspension of gyrotac-
tic swimmers in the non–existence of the vertical vibration 
[11]. The limiting values for Rb0, Ra0, Rv0 and Ravb0 as Pe → 0 
and G → 0 are given in Appendix 1 [Eqs. (61)–(62)]. Also in 
the absence of thermal gradient Eq. (32) can be re–caste 
as:

From the second equation in Eq.  (35), it is obtained 
that R̃bcr = 720 , for the corresponding value of criti-
cal wave number a♢

cr
= 0 (in the absentia of vibrational 

impact). These values match exactly with those reported 
by Sparrow and co–workers for the case of rigid–rigid 
surfaces [40]. Equations (35) give the stationary instability 
boundary and the critical strength of bioconvection for 

(31)𝛼1R̃b + 𝛼2Ra + 𝛼3Rv − 𝛼4Ravb = 𝛼5𝛼6𝛼7

(32)
(

R̃b
/

Rb0 + Rv∕Rv0
)

+
(

Ra∕Ra0 − Ravb
/

Ravb0

)

= 1

(33)R̃bcr = Min
a♢≥0

[

(

Rb0∕2
)

√

{

Ra∕Ra0 + Rv∕Rv0 − 1
}2

+
(

4℧RaRvb
/

Rb0Ravb0

)

−
(

Rb0∕2
)(

Ra∕Ra0 + Rv∕Rv0 − 1
)

]

(34)R̃b
/

720 + Ra∕1750 = 1

(35)R̃b
/

Rb0 + Rv∕Rv0 = 1, and R̃bcr = Min
a♢≥0

[

10
(

a♢
4

+ 24a♢
2

+ 504
)/

7
]

negatively geotactic swimmers. These equations agree 
completely with the result obtained by researchers [20, 
24].

2.1.2  Oscillatory convection

For oscillatory convection the imaginary and real com-
ponents of Eq. (30) are considered for the elimination of 
frequency of vibration which gives:

and the boundary of oscillatory instability is

Clearly, in order to possesses a real �(� ≠ 0 ), the ther-
mal stratification and bioconvection strength must be 
opposite in nature. Since a negative R̃b is meaningless 
physically, therefore in order to have a possible oversta-
bility Ra must be negative. To simplify Eq. (37), setting the 

notations Λi = �i∕�i , (i = 1, 2, ...7) and using the identities 
Λ1 = Λ3 = Λ7 and Λ2 = Λ4 = Λ6 , the oscillatory instability 
boundary takes the form:

and the frequency of vibration can be recast as:

In the limiting case when Pe → 0 and G → 0 , values 
Λi (i = 1, 2, ...7) are defined in Appendix 1 [Eq. (63)].

(36)𝜔
2 =

[(

𝛼
5
𝛼
6
𝛽
7
+ 𝛼

5
𝛼
7
𝛽
6
+ 𝛼

6
𝛼
7
𝛽
5
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− 𝛽
1
R̃b − 𝛽

2
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3
Rv + 𝛽

4
Ra

vb

]/

𝛽
5
𝛽
6
𝛽
7

=
(

𝛼
5
𝛼
6
𝛼
7
− 𝛼

1
R̃b − 𝛼

2
Ra − 𝛼

3
Rv + 𝛼

4
Ra

vb

)/(

𝛽
5
𝛽
6
𝛼
7
+ 𝛽

6
𝛽
7
𝛼
5
+ 𝛽

5
𝛽
7
𝛼
6

)

(37)
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𝛼
7
𝛽
1
𝛽
5
𝛽
6
+ 𝛼

6
𝛽
1
𝛽
5
𝛽
7
+ 𝛼

5
𝛽
1
𝛽
6
𝛽
7
− 𝛼

1
𝛽
5
𝛽
6
𝛽
7

)

R̃b

+
(

𝛼
7
𝛽
2
𝛽
5
𝛽
6
+ 𝛼

6
𝛽
2
𝛽
5
𝛽
7
+ 𝛼

5
𝛽
2
𝛽
6
𝛽
7
− 𝛼

2
𝛽
5
𝛽
6
𝛽
7

)

Ra

+
(

𝛼
7
𝛽
3
𝛽
5
𝛽
6
+ 𝛼

6
𝛽
3
𝛽
5
𝛽
7
+ 𝛼

5
𝛽
3
𝛽
6
𝛽
7
− 𝛼

3
𝛽
5
𝛽
6
𝛽
7

)

Rv

+
(

𝛼
4
𝛽
5
𝛽
6
𝛽
7
− 𝛼

7
𝛽
4
𝛽
5
𝛽
6
− 𝛼

6
𝛽
4
𝛽
5
𝛽
7
− 𝛼

5
𝛽
4
𝛽
6
𝛽
7

)

Ra
vb

=
(

𝛼
5
𝛼
6
𝛽
7
+ 𝛼

5
𝛼
7
𝛽
6
+ 𝛼

6
𝛼
7
𝛽
5

)(

𝛽
5
𝛽
6
𝛼
7
+ 𝛽

5
𝛽
7
𝛼
6
+ 𝛽

6
𝛽
7
𝛼
5

)

−
(

𝛼
5
𝛼
6
𝛼
7
𝛽
5
𝛽
6
𝛽
7

)

(38)

Λ1

(

1∕Λ2 + 1∕Λ5

)(

R̃b
/

Rb0 + Rv∕Rv0
)

+ Λ2

(

1∕Λ1 + 1∕Λ5

)

(

Ra∕Ra0 − Ravb

/

Ravb0

)

=
(

Λ1 + Λ2 + Λ5

)(

1∕Λ1 + 1∕Λ2 + 1∕Λ5

)

− 1

(39)
𝜔
2 =

[

1 −
(

R̃b
/

Rb
0
+ Rv∕Rv

0

)

−
(

Ra∕Ra
0
− Ra

vb

/

Ra
vb0

)]/(

Λ
1
Λ

2
+ Λ

2
Λ

5
+ Λ

1
Λ

5

)

=
[(

Λ
1
+ Λ

2
+ Λ

5
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− Λ
1

(

R̃b
/

Rb
0
+ Rv∕Rv

0

)

− Λ
2
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Ra∕Ra
0
− Ra
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/
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vb0
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Λ
1
Λ

2
Λ

5
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2.2  Case II: rigid lower and stress–free upper 
surfaces

In this case, the lower surface satisfies the no–slip condi-
tion and the upper wall is considered to be stress free. The 
conditions for non–dimensionalized lower wall are:

When the upper boundary is stress free, the second con-
dition in Eq. (40) is removed and put back with D2U♢

3
= 0 at 

z♢ = 1 . The preferable test functions satisfying Eq. (40) are:

Putting, Eq. (41) into Eqs. (21)–(24) and invoking the 
standard Galerkin scheme the characteristic equation 
takes the form:

Quantity, Ravb =
(

℧RaRvb
/

R̃b
)

 is same as defined for 
the rigid–rigid case and the symbol �  is a functions of 
�1, �2,G, �0  and the wave number a♢ . Functions �1, �2 and 
�3 are depending on Pe only and their detailed expressions 
are given in Appendix 2 [Eqs. (64)–(67)]. At the onset of 
overstability in the system; analyzing Eq. (42) for � = i� , 
( � is real) the equation for the stability boundary may be 
written as:

The detail of the symbols �1i , �1i (i = 1, 2, ...7) , are given 
in the Appendix 2 [Eqs. (68)–(73)].

2.2.1  Non‑oscillatory convection

Setting � = 0 in Eq. (43), for the onset of non–oscillatory 
convection, we obtain:

(40)at z♢ = 0; U♢

3
= 0, DU♢

3
= 0, PeN♢

3
= DN♢

3
, Θ♢ = 0, V♢

13
= 0, V♢

23
= 0

(41)

�

U♢

3

�

1
= z♢

2�

3 − 2z♢
��

1 − z♢
�

,
�

N♢

3

�

1
= 2 −

�

z♢ − z♢
2
�

(Pe)2 −
�

1 − 2z♢
�

Pe

�

V♢

13

�

1
= z♢

�

1 − z♢
�

,
�

V♢

23

�

1
=
�

z♢ − z♢
2
�

,
�

Θ♢
�

1
= z♢

�

1 − z♢
�

⎫

⎪

⎬

⎪

⎭

(42)
28

(

10 + a
♢2

)(

10 + a
♢2

+ 𝜎 Pr

)[(

a
♢2

+ 𝜎 Pr Le

)

(

120 − 10(Pe)2 + (Pe)4
)

+ 10(Pe)4
]

×
[

19

(

a
♢4

+ 𝜎a
♢2

)

+ 216

(

2a
♢2

+ 𝜎

)

+ 4536

]

=

[

1260a
♢2

𝜁

(

10 + a
♢2

)2
(

126 + 7Pe − 13(Pe)2
)

(

10 + a
♢2

+ 𝜎 Pr

)

]

R̃b

+
[

529200𝜁𝜁3a
♢4(

10 − (Pe)2
)

(

10 + a
♢2

+ 𝜎 Pr

)]

Rv + 507a
♢2

[(

𝜎 Pr Le + a
♢2

)

(

120 − 10(Pe)2 + (Pe)4
)

+ 10(Pe)4
]

[(

10 + a
♢2

)

Ra − a
♢2

Ra
vb

]

(43)(

𝛼
11
+ i𝜔𝛽

11

)

R̃b +
(

𝛼
12
+ i𝜔𝛽

12

)

Ra +
(

𝛼
13
+ i𝜔𝛽

13

)

Rv −
(

𝛼
14

+ i𝜔𝛽
14

)

Ra
vb

=
(

𝛼
15

+ i𝜔𝛽
15

)(

𝛼
16
+ i𝜔𝛽

16

)(

𝛼
17
+ i𝜔𝛽

17

)

Then the non–oscillatory instability boundary may be 
written as:

The  new  denominat ions  being used are 
�15�16�17∕�11 = Rb1 , �15�16�17∕�12 = Ra1  , 
�15�16�17∕�13 = Rv1 and �15�16�17∕�14 = Ravb1 . The asso-

ciated critical bioconvection Rayleigh number with the 
monotonic convection is then given by:

In the situation when there is no vibration in the system, 
Eq. (45) reduces to R̃b

/

Rb1 + Ra∕Ra1 = 1 . In the limiting 
case when Pe tends to zero and when there is no gyrotaxis, 
this relation yields R̃bcr = 320 , which is being attained at 

a♢
cr
= 0 . Also for the traditional thermal convection ( Rb = 0 

i.e., when there are no active swimmers) the reported 
value for the lower bound of thermal Rayleigh number is 
Racr = 1139 and the respective critical wave number is 
a♢
cr
= 2.67 . These values match exactly with those achieved 

in [23]. Thus in a restricted environment (for regular 

(44)𝛼15𝛼16𝛼17 = 𝛼11R̃b + 𝛼12Ra + 𝛼13Rv − 𝛼14Ravb

(45)
(

R̃b
/

Rb1 + Rv∕Rv1
)

+
(

Ra∕Ra1 − Ravb
/

Ravb1

)

= 1

(46)

R̃b
cr
=Min

a♢≥0

[

(

Rb
1
∕2

)

{

(

Ra∕Ra
1
+ Rv∕Rv

1
− 1

)2
+
(

4℧RaRv
b

/

Rb
1
Ra

vb1

)

}1∕2

−
(

Ra∕Ra
1
+ Rv∕Rv

1
− 1

)(

Rb
1
∕2

)]
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thermal convection of binary fluid) the values Racr = 1139 
and a♢

cr
= 2.67 are simply 3.48 % bigger than and 0.45 % 

slighter than the respective accurate values reported for 
the same quantities ( Racr = 1100.65 and a♢

cr
= 2.682 ) [38]. 

This accomplishes an approximation of the anticipated 
precision of the single–term Galerkin scheme for the cur-
rent study. When there is no thermal effect, Eq. (45) col-
lapses to R̃b

/

Rb1 + Rv∕Rv1 = 1 . When there is no vibration, 
the lower bound for the modified bioconvection Rayleigh 
number is R̃bcr = Min

a♢≥0

[

40
(

19a♢
4

+ 432a♢
2

+ 4536
)/

567
]

 . 

Also in the limiting case, (i.e., when Pe → 0 and G → 0 ), the 
estimated values of Rb1 , Ra1 , Rv1 and Ravb1 are given in 
Appendix 2 [Eqs. (74)–(75)].

2.2.2  Oscillatory convection

For the onset of overstability in the system the real and 
imaginary components of Eq. (43) should be considered 
and the elimination of frequency � gives:

The boundary for the oscillatory convection becomes

To simplify above equation, introducing the new nota-
tions Λ1i = �1i∕�1i , (i = 1, 2, ...7) and using the identities 
Λ11 = Λ13 = Λ15 and Λ12 = Λ14 = Λ17 . Then the oversta-
bility boundary becomes

and the vibrational frequency is given by:

For the limiting case, when G → 0 and Pe → 0 , the val-
ues of Λ1i(i = 1, 2, ...7) are specified in Appendix 2 [Eq. (76)].

(47)
𝜔
2 =

(

𝛼
15
𝛼
16
𝛼
17
− 𝛼
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R̃b − 𝛼

12
Ra − 𝛼

13
Rv + 𝛼

14
Ra
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)/(

𝛽
15
𝛽
16
𝛼
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+ 𝛽

16
𝛽
17
𝛼
15
+ 𝛽

15
𝛽
17
𝛼
16

)

=
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𝛼
15
𝛼
16
𝛽
17
+ 𝛼

15
𝛼
17
𝛽
16
+ 𝛼

16
𝛼
17
𝛽
15

)

− 𝛽
11
R̃b − 𝛽

12
Ra − 𝛽

13
Rv + 𝛽

14
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]/

𝛽
15
𝛽
16
𝛽
17

(48)

(

𝛼17𝛽11𝛽15𝛽16 + 𝛼16𝛽11𝛽15𝛽17 + 𝛼15𝛽11𝛽16𝛽17 − 𝛼11𝛽15𝛽16𝛽17

)

R̃b

+
(

𝛼17𝛽12𝛽15𝛽16 + 𝛼16𝛽12𝛽15𝛽17 + 𝛼15𝛽12𝛽16𝛽17 − 𝛼12𝛽15𝛽16𝛽17

)

Ra

+
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Rv

+
(
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1
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/
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)

=
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Λ
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+ Λ
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+ Λ
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)(
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− 1

(50)𝜔
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)

− Λ
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(
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/
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)]/(

Λ
11
Λ
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=
[

1 −
(

R̃b
/
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+ Rv∕Rv

1
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−
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− Ra
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/
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)]/(

Λ
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3  Results and discussions

In this section the variation of typical parameters such as 
Péclet number, gyrotactic numbers, vibrational Rayleigh 
number and thermo–vibrational parameter over the 
instability regions of the oscillatory and stationary modes 
of convections have been discussed and compared in 
detail. The results are plotted to study the dependence 
of the controlling parameters such as modified critical 
bioconvection Rayleigh number R̃bcr , thermal Rayleigh 
number Ra and the critical wave number a♢

cr
 for the vary-

ing fixed values cell eccentricity �0 , gyrotactic number 
G , Péclet number Pe , vibrational Rayleigh number Rv 
and thermo–vibrational parameter Rvb . Especially, for 
the swimmers like Chlamydomonas nivalis, the feasible 
and estimated ranges of these parameters exist in the 
literature and are utilized by numerous authors in their 
respective studies [2, 11, 21, 22, 24]. The bioconvection 
Rayleigh number R̃bcr is the dimensionless quantity which 

characterizes and controls the stability criterion in the sus-
pension. Increase or decrease in its magnitudes leads to a 
stabilizing or destabilizing behavior of the suspension. At 
a specific negative price of Ra , the R̃bcr in stationary mode 
surpasses the corresponding R̃bcr in oscillatory mode and 
thus the sufficiently large negative Ra leads to the occur-
rence of overstability [20].

In Fig. 1a–c; the simultaneous critical values of R̃bcr cor-
responding to the thermal variation are plotted for oscil-
latory and non–oscillatory modes of convection, when 
the boundaries of the considered layer are rigid–rigid. We 
show the results of calculation for the representative val-
ues Pr = 7 , �0 = 0.2 and Le = 0.33 of the parameters [21, 

22]. Growing the thermal effect across the layer it is dis-

played that R̃bcr suppresses for both the modes of convec-
tion. Therefore, due to presence of vibration, the increase 
in thermal variation overturns the bioconvection for the 
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vertically oscillated system. For the large Péclet number 
( Pe = 1 ); It is found that, the slope of the R̃bcr curves is 
sharper (with higher magnitudes) when the gyrotactic 
number is smaller ( G = 0.1 ) (Fig. 1a, c). Therefore R̃bcr is 
suppressed with increase in gyrotaxis and this demon-
strate the unstableness of a uniform gyrotactic suspension 
for G > 0 [2, 11]. Gyrotactic number defines the particles’ 
swimming deviation from the vertical direction hence 
a growth in gyrotaxis prompts the development in the 
convective instability [21]. On the other hand; for higher 
gyrotaxis ( G = 1 ), the corresponding values on R̃bcr axis 
decreases sharply, for smaller Péclet number ( Pe = 0.1 ) 
(Fig. 1a, b). The Péclet number stands for the fractional 
quantification of the speed of active particles over the 
speed of bulk fluid motion. Therefore a suspension hav-
ing moderate active particles is less stable than the system 
containing the expeditious active swimmers [22].

Figure 2a–c, display the similar study (as Fig. 1) for the 
case of rigid–free boundaries. It is displayed that for a ver-
tically oscillated system the increment in thermal gradient 

across the rigid–free layers leads to reduction in intensity 
of bioconvection. It is found that for higher values of Péclet 
and gyrotactic numbers the amplitude of R̃bcr is observed 
to be smaller than the amplitude of R̃bcr for the smaller 
values of these parameters. Therefore a stabilization 
and destabilization in the system is displayed due to the 
advancement in Péclet number (Fig. 2a, b) and gyrotactic 
number (Fig. 2a, c) respectively. The stabilizing nature of 
Péclet number is induced by the vibrational force which 
thrusts the mean flow field to work in direction of den-
sity homogeneities and the overall fluid circulation grow 
weaker with increase in oscillations [24, 36]. It is demon-
strated that the system with stress–free top surface is less 
stable in comparison to the rigid–rigid suspension [23].

In Fig. 3a–c, dependency of the critical wave number 
a♢
cr

 on the thermal Rayleigh number Ra are depicted for 
the non-oscillatory and oscillatory modes of convections, 
simultaneously. In these figures the results are shown for 
rigid–rigid boundaries and graphs are displayed for typi-
cal values of gyrotactic and Péclet numbers. In Fig. 4a–c, 

Fig. 1  The case of rigid upper and lower surfaces: a–c Boundaries of Stationary and oscillatory instability modes of convections in the 
(

Ra, R̃b
cr

)

 plane for the distinct values of Péclet number Pe and Gyrotactic number G
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similar studies and results thereof are shown for the 
both modes of convection for the rigid–free boundary 
case. For the higher gyrotaxis effect a marginal growth is 
reported in a♢

cr
 as gyrotactic number G increases within the 

considered range, in contrast to the values of R̃bcr which 
reduces sharply for the larger gyrotaxis ranges. Moreover, 
the growth in Péclet number is found to be sustaining 
the marginal changes in the wave numbers when these 
plots are compared (Figs. 3, 4). Overall the displayed criti-
cal wave numbers are smaller in magnitude for the oscil-
latory convection when compared to that of monotonic 
modes for the similar values of Ra [22]. At the cross–over 
points (Figs. 1, 2), bounces are reported in the correspond-
ing wave numbers (Figs. 3, 4) which clearly demarcates the 
bioconvection and traditional double diffusive convection 
where in the latter no jumps are there in the wave length 
or frequency [21, 41].

Figures  5 and 6, illustrate the variation of vibra-
tional parameter for the non–oscillatory and oscillatory 

modes on the 
(

Ra, R̃bcr
)

 planes. In Fig. 5a, b the results 
are depicted for the rigid–rigid boundary case while 
Fig. 6a, b, display the similar studies for a suspension with 
stress–free upper wall. Within the considered range of the 
other parameters the curves are traced out for the growing 
vibrational Rayleigh number ( Rv = 0, 1000, 5000 ). For both 
cases the bigger vibrational number exerts the higher 
magnitudes of R̃bcr . This establishes the stabilizing nature 
of the high frequency vibration on the system [24]. Com-
paring the rigid–rigid and rigid–free cases (Figs. 5, 6), it is 
noticed that the strength of bioconvection remains almost 
unaltered irrespective of the modes of convection. Moreo-
ver, for increasing temperature gradient the slopes of the 
corresponding curves in the stationary modes are slightly 
quicker than the oscillatory modes of instability [21].

In Figs.  7 and 8, the results on the 
(

Ra, R̃bcr
)

 planes 
are displayed for the rigid–rigid boundary and the 
rigid–free surfaces, respectively. For the increasing Rvb , in 
the rigid–rigid case, the instability curves in the Fig. 7a, 

Fig. 2  The case of rigid lower and stress free upper surfaces: a–c Boundaries of Stationary and oscillatory instability modes of convections in 
the 

(

Ra, R̃b
cr

)

 plane for varying values of Péclet number Pe and Gyrotactic number G
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b are referred to the stationary and oscillatory modes of 
convection, respectively. In Fig. 8a, b, the similar curves 
are depicted for the rigid–free boundaries. The parameter 
Rvb defines the thermal and vibrational properties of the 
suspension jointly. For large negative Ra , the observed 
R̃bcr suppresses with increase in Rvb values. However, for 
the positive values of Ra the higher values of Rvb , corre-
sponds to the higher magnitudes of R̃bcr . Therefore, it is 
established that for the negative thermal gradient the 
suspension is dominated by the thermal properties of 
Rvb while for the positive values of Ra its vibrational part 
becomes significantly dominant. Overall, varying the ther-
mal effect Rvb induces the destabilizing behavior to the 
system. On comparing the Figs. 7 and 8; it is reported that 
the values of R̃bcr are considerably deviated (irrespective 
of trends) for both the modes of convections. Particularly, 

for the positive thermal gradient ( Ra > 0 ) the slopes of the 
corresponding curves in stationary modes are found to be 
considerably quicker than the oscillatory modes of con-
vection. This significance of the thermal and vibrational 
effects is supported by earlier published studies [21, 24].

In Fig. 9, the dependence of the frequency of oscillation 
� on Ra is displayed for the growing gyrotactic number 
(for fixed Pe = 0.1 ). Figure 9a, b refers to the rigid–rigid and 
rigid–free modes of boundaries, respectively. In both of 
the cases, it is observed that for the increasing negative Ra , 
the frequency � gets bigger from a finite value. On com-
paring Fig. 9 a, b the magnitudes of frequency � slightly 
strengthens with the increase in gyrotaxis effect, for the 
similar thermal variation across the suspension. There-
fore, for the slower swimmers the frequency of oscillation 

Fig. 3  The case of rigid upper and rigid lower walls: a–c Variation of thermal Rayleigh number verses critical wave number for the non–oscil-
latory and oscillatory modes of instability for the different values of Péclet number Pe and Gyrotactic number G



Vol:.(1234567890)

Research Article SN Applied Sciences           (2021) 3:612  | https://doi.org/10.1007/s42452-021-04545-0

Fig. 4  The case of rigid lower and stress free upper walls: a–c Variation in thermal Rayleigh number verses critical wave number for the non–
oscillatory and oscillatory modes of instability for the different values of gyrotactic number G and Péclet number Pe

Fig. 5  The case of rigid upper and rigid lower surfaces: a, b Boundaries of stationary and oscillatory instabilities in the 
(

Ra, R̃b
cr

)

 plane for 
the varying values of vibrational Rayleigh number Rv
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Fig. 6  The case of rigid lower and stress free upper surfaces: a, b Boundaries of stationary and oscillatory convections in the 
(

Ra, R̃b
cr

)

 plane 
for the varying values of vibrational Rayleigh number Rv

Fig. 7  The case of rigid lower and rigid upper surfaces: a, b Boundaries of stationary and oscillatory modes of convections in the 
(

Ra, R̃b
cr

)

 
plane for the various values of thermo–vibrational parameter Rv

b

Fig. 8  The case of rigid lower and stress free upper surfaces: a, b Boundaries of stationary and oscillatory modes of convections in the 
(

Ra, R̃b
cr

)

 plane for the various values of thermo–vibrational parameter Rv
b
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corresponds to the marginal deviation subjected to the 
variation in gyrotactic number [21].
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5  Conclusions

We have performed an overstability analysis of a 
thermo–vibrational convection with a clear physical and 
mathematical context to describe the heat transfer phe-
nomena in a gyrotactic suspension. The results display the 
influence of vertical vibration and thermal gradient on the 
gyrotactic patterns analytically. For a negative thermal gra-
dient with a nonzero Péclet number overstability occurs as 
a special mode of convection. Thermal variation across the 
surfaces prompts the reduction in the bioconvection and 
thus the system is destabilized in both of oscillatory and 
non–oscillatory modes of convection. The reported R̃bcr is 
superior for higher values of Péclet number whose stabi-
lizing effect is pronounced. Gyrotaxis prompts the dimi-
nution in the critical bioconvection Rayleigh number and 
consequently destabilizes the system. The bioconvection 
strength is found higher for the bigger vibrational Rayleigh 
number and thus stabilization is provoked by induced 
vibration. The destabilizing impact of the thermo–vibra-
tional parameter is due to its thermal properties for a 
suspension cooling from below. Moreover, an adequate 
stabilizing nature is also depicted due to its vibrational 

component when the thermal stratification is positive. It is 
summarized that the suspension with rigid–rigid bounda-
ries is more stable than the one with stress–free top layer. 
Future development of this research should address a 
more rigorous weakly nonlinear convection.
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Appendices

Appendix 1

The functions � ,�1,�2 and �3 defined in Eq. (29) are

(51)� =
(

1 + a♢
2(

1 − �0

)

G
)

�1 −
(

1 + �0

)

G�2

Fig. 9  The case of rigid–rigid and rigid–free walls: a, b Boundaries of oscillatory mode of instability in the (Ra,�) plane for the various values 
of gyrotactic number G and Péclet number Pe
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The symbols �i , �i(i = 1, 2, ...7) defined in Eq. (30) are as 
follows

The closed forms of the expressions Rb0,Ra0 , Rv0 and 
Ravb0 defined in Eq. (32) as Pe → 0 and G → 0 are:

For the limiting when Pe → 0 and G → 0 , the values of 
Λi(i = 1, 2, ...7) defined in Eq. (38) are given as:

(52)�1 =
(

52
/

(Pe)3 + 528
/

(Pe)5
)
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4
/
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/
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Appendix 2

The functions � , �1, �2 and �3 defined in the eigenvalue 
Eq. (42) are

The functions �1i , �1i(i = 1, 2, ...7) defined in Eq. (43) are:

The closed form of the expressions Rb1,Ra1 , Rv1 
and Ravb1 defined in Eq.  (45) as Pe → 0 and G → 0 are 
g i v e n :  Rb
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For the limiting when Pe → 0 and G → 0 , the values of 
Λ1i(i = 1, 2, ...7) defined in Eq. (50) are given as
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