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Abstract
During the last decades, digital image processing algorithms have been developed to measure external characteristics 
of agricultural products due to the great potential that these methods offer. So, in this research, the thermal images 
obtained from a thermographic camera were analysed considering two genotypes of maize seeds: crystalline and floury 
in their natural state, previously irradiated with a laser light source of 650 nm for exposure times of 15 s and 35 s. The 
methods applied in the analysis were: a) histogram to obtain the distribution of gray levels of images, b) mean value that 
indicates the brightness of images, c) variance which means the contrast of images, d) entropy applying both Shannon 
and Tsallis definitions, which provide the average self-information of images, e) estimation of the probability density of 
temperature variations on seeds to quantitatively characterize them from thermal images. Higher mean and variance 
were obtained from crystalline seeds indicating higher brightness and contrast. Furthermore, thermal images of floury 
seeds had higher entropy of Shannon indicating that images had greater disorder with respect to images of crystalline 
seeds. In the case of the entropy of Tsallis, the entropic index q could be used for characterization of seeds. Thermal 
images obtained from seeds with a floury structure provided a higher redundancy value for a shorter exposure time to 
laser light. Thus, the viability of the statistical methods of digital image processing applied to thermal imaging for the 
characterization of seeds is shown.

Keywords Image processing · Thermographic instrumentation · Thermal imaging · Corn seeds characterization · 
Entropy of images

1 Introduction

Image processing has found an important role in many 
applications including scientific, industrial, medical, agri-
culture, and so forth [1]. Digital image processing (DIP) is 
a subarea of digital signal processing (DSP) [2], which can 
be defined as the operation of images through computer 
in order to interpret some noticeable characteristics [3]. 
DIP has several advantages: for example, it allows a greater 
diversity of algorithms to be applied, reducing thus noise 

accumulation or distortion of the image [2]. Mathematical 
models are often used to describe images or other signals 
[4] so that images can be classified as either continuous, 
discrete or digital [5]. An example of a continuous image 
might be the one captured by a TV camera, which can be 
modeled as a continuous function of two variables f(x,y), 
where (x,y) are coordinates in a plane as shown in Fig. 1. 
Another important aspect is that images can be treated 
as deterministic and statistical. In deterministic image 
representation, a mathematical image function is defined 
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and point properties of the image are considered. For a 
statistical image representation, the image is specified by 
average properties [1].

Digital images are represented by a discrete data struc-
ture, such as a matrix. To generate a digital image from a 
continuous image f(x,y) captured by a sensor, it must be 
sampled. Perfect image sampling would be obtained by 
multiplying the image represented as a continuous func-
tion, by a sampling function composed of extensive Dirac 
delta functions arranged in a grid of spacing (Δx, Δy) given 
by Eq. 1 [1]:

Thus, the sampled image fs(x,y) can be represented by:

(1)s(x, y) =

∞
∑

m=−∞

∞
∑

n=−∞

�(x −mΔx, y − nΔy)

(2)

fs(x, y) = f (x, y)s(x, y)

=

∞
∑

m=−∞

∞
∑

n=−∞

f (mΔx, nΔy)�(x −mΔx, y − nΔy)

After the sampling, a quantization process is carried 
out, which assigns a discrete value (i.e., an integer) to 
each samples [4]. For a grayscale image, the integer values 
range from 0 (black) to 255 (white). So, a digital image can 
also be defined as a two-dimensional function that quanti-
fies the intensity of light [3]. The most common model of a 
digital image is through a matrix of M rows and N columns:

where each of its elements I(m,n) represents a pixel of 
the digital image as in Fig. 2.

The aforementioned aspects have allowed the devel-
opment of digital image processing (DIP) algorithms to 
objectively measure external characteristics of agricultural 
products, since their appearance considerably conditions 
the acceptance of the product. Typically, the physical 
characteristics are evaluated considering the size, shape, 
color, freshness and finally without visual defects [6]. These 
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Fig. 1  a Example of an image as a function. b Same image plotted as a function of two variables

Fig. 2  Example of a grayscale 
image and its corresponding 
numerical values
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algorithms are used by various materials characterization 
techniques in many knowledge areas of research and 
industry such as infrared (IR) and charge-coupled device 
(CCD) cameras, IR, Raman spectroscopy, Fourier transform-
near-infrared (FT-NIR), photoacoustic spectroscopy (PAS), 
among others [8–10] [7–9] and also with microscopies 
such as scanning electron microscopy (SEM), photoa-
coustic microscopy (PAM), image mapping spectrometer 
(IMS), etc. [10–12]. From the obtained data by using the 
above techniques, it is possible to extract useful infor-
mation regarding the analyzed samples. In [13], an algo-
rithm is proposed to analyze and classify both quickly and 
accurately, the quality of rice using DIP techniques with 
an automated software system. Other techniques used 
are computer vision, to classify wheat seeds according to 
their varieties [14]. The images were examined to assess 
the quality of the seeds based on texture characteristics, 
with an average classification precision of 98.15%. A sys-
tem for segmentation and classification of images based 
on particle swarm algorithm is proposed in [15] to detect 
sunflower leaf disease, obtaining an accuracy of classifica-
tion of 98% compared to other methods.

Additionally, the advances in statistical mechanics 
based on the concept of nonextensive entropy have inten-
sified the interest to investigate a possible extension of 
the entropy of Shannon [16], such as the entropy of Tsallis 
[17]. This interest is mainly due to the similarities between 
the entropy functions of Shannon and Boltzmann/Gibbs. 
The entropy of Tsallis is a definition that generalizes the 
entropy of Boltzmann–Gibbs to nonextensive physical 
systems. In this theory, a parameter q is introduced as a 
real number, which is associated with nonextensivity of 
the system and is system-dependent [18]. Authors in ref-
erences [18, 19] proposed a method for the segmenta-
tion of images based on the one-dimensional maximum 
entropy of Tsallis (1-DMTE) [20]. Since then, the entropy of 
Tsallis has become a popular tool for image segmentation 
[21]. A methodology to calculate the q parameter based 
on the maximization of the redundancy of the image and 
maximum entropy of the information theory is proposed 
in [22].

Considering the diversity and potentiality of digital 
image processing techniques, in the present research, col-
lections of thermal images in grayscale that are treated as 
a realization of random processes [1] are analyzed using 
the following statistical methods: histogram to obtain 
the gray levels distribution of images; the mean which 
is a measure of the image brightness; the variance that 
represents a measure of the image contrast, the entropy 
of both Shannon and Tsallis that indicate the average 
amount of self-information that contains the images and 
the probability density of the temperature variations for 
two genotypes of corn seeds: crystalline and floury in their 

natural state. The seeds were irradiated with laser light 
using a thermographic camera following the experiment 
described in [23], considering two exposure times: 15 and 
35 s, with the aim of characterizing them quantitatively 
from the thermal images.

2  Materials and methods

2.1  Biological materials

In this research, two genotypes of corn seeds are consid-
ered: crystalline and floury in their natural color. With large 
populations of seeds, accurate results can be obtained 
from samples that represents only a fraction of the whole 
population. In that sense, a simple random sampling was 
used, (i.e., a method of selecting n units out of N such that 
every one of the distinct samples has equal chance of 
being drawn). If the sample size n is less than 50 for the 
estimates, the confidence probability denoted as 1 − α 
may be taken from Student’s tα/2 table with n − 1 degrees 
of freedom, considering also finite population correction 
(fpc) factor [24]. Thus, for both genotypes of corn seeds, 
n = 10 seeds of each were randomly selected. A homogeni-
zation process was performed on the seeds, measuring the 
length and width using a vernier caliper gauge. After that, 
the seeds were numbered from 1 to 10 as shown in Table 1.

Figure  3 shows the optical images of the samples 
for both genotypes of corn seeds, and their respective 
numbering.

2.2  Experimental setup

The thermographic instrumentation used to obtain 
the thermal images was performed by using an IR cam-
era (i5 model; 6.8  mm lens; accuracy of ± 2%; thermal 

Table 1  Homogenization process of corn seeds

Number 
of sam-
ples

Crystalline seeds Floury seeds

Length (mm) Width (mm) Length (mm) Width (mm)

1 14 8 14.2 12
2 13 9 14 12
3 14 9 15 11.5
4 13 9 14 11
5 13.5 8 15 10.2
6 12 8.5 15 11
7 13.5 9.2 14.5 10
8 12.5 8 15 10
9 13 8 13 10
10 13 8.2 14.2 12
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sensitivity < 0.1 at 25 °C; 140 × 140 of thermal images reso-
lution and temperature range − 20 to 250 °C; FLIR Systems 
Wilsonville, OR, USA), and as excitation source was used a 
diode laser at 650 nm wavelength, 27 mW power, (Tyson 
Technology Co.) instrumentation is controlled by a digital 
timer. The samples were placed in a silicone net lying in an 
empty space on a plastic container. The distance between 
the laser and the corn samples was 0.228 m. The seeds 
were fixed on the side opposite the embryo and were sus-
pended in the air. The exposure times considered were 15 
and 35 s for both genotypes of corn seeds. During the 
experiment, the temperature and humidity conditions 
were recorded using a data acquisition system, which was 
implemented through the sensor DHT11 for Arduino free 
hardware platform. The DHT11 sensor can measure a tem-
perature range from 0 to 50 °C with a resolution of 0.1 °C 
and a relative humidity (RH) range from 20 to 90% with a 

resolution of 1% and a response time of 1 s. In Fig. 4, the 
experimental setup is shown.

2.3  Histogram of images

To obtain the histogram, the thermal images in grayscale of 
the 8-bit unsigned integer type (uint8) were used, so that the 
data that comprise them are in the range of [0,255] [5]. The 
histogram is a discrete function that counts the number of 
occurrences that each level of gray presents in an image. It 
is represented as a graph, where the axis of the abscissa is 
the gray level and the axis of the ordinates is the frequency 
of each gray level in the image. If the histogram is divided 
by the number of pixels that conform the image [MxN], the 
probability density function of each level of the image will 
be obtained [25]:

Fig. 3  Optical images of corn 
seeds samples. a Crystalline 
seeds. b Floury seeds

Fig. 4  Experimental setup of 
the thermographic instrumen-
tation used

Laser source at 650 nm
Time control

Thermographic camera
for image acquisition

USB mini-B for image transfer to PC

Corn seed sample

Temperature and humidity sensor 
DTH11 mounted on Arduino card  

PC for temperature - humidity
recording and image processing
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where h(i) is the number of occurrences of the ith gray 
level in the image, M is the number of rows of the image, 
N is the number of columns, p(i) denotes the probability 
that the ith gray level of the image occurs.

2.4  Mean of images

The brightness of the image is the average value of the 
image that matches the mean value of the histogram [25]:

where f(x,y) adopts the gray level of the pixel located in the 
coordinates (x,y), I are the number of gray levels that have 
been used in image quantization.

2.5  Variance of images

The variance of the histogram is also linked to the contrast 
of the image [25]:

The contrast shows the dispersion of gray levels in the 
image.

2.6  Entropy of Shannon and Tsallis for images

The entropy of Shannon is a concept developed in the infor-
mation theory [16], which represents the average self-infor-
mation that each pixel of the image carries and is defined as:

where b is the base of the logarithm. If b = 2, the units 
are bits/pixel; if natural logarithm is used, the units are 
nats/pixel. The entropy of Shannon is maximum, when all 
pixels of the image have the same probability.

The entropy of Tsallis allows describing extensive and 
nonextensive systems and is [20]:

where Ω represents the total number of accessible micro-
states of the system (i.e., total number of grayscale levels 

(4)P(i) =
h(i)

M ∙ N

(5)� =
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M
∑

x=1

N
∑

y=1

f (x, y) =

I−1
∑

i=0

i ⋅ p(i)

(6)�
2 =

1

M ⋅ N

M
∑

x=1

N
∑

y=1

[

f (x, y) − �
]2

=

I−1
∑

i=0

(i − �)
2
⋅ p(i)

(7)HS =

I−1
∑

i=0

p(i)logb

[

1

p(i)

]

(8)HT =
k

q − 1

(
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∑
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q

i

)

for images), each with probability pi where 1 ≤ i ≤ Ω) and 
all probabilities fulfill the condition:

The number q ε R is the entropic index, which character-
izes the nonextensivity of a particular system [17]. A system 
is said to be extensive if it satisfies Eq. (10):

and it is not extensive if it does not satisfy it. In Eq. (10), 
the term HBG represents the Boltzmann–Gibbs entropy 
given by

and k = 1.3806504 ×  10–23  J·K−1 is the Boltzmann’s 
constant.

Like the entropy of Shannon, the Tsallis one is maximum 
when all microstates are equally probable which is given 
by

To calculate the entropic index q, the methodology 
described in [22] is applied, where the image in grayscale is 
considered as a nonextensive system in order to maximize 
the q-redundancy of the image, defined as

From the point of view of information theory, the less 
redundancy, the greater the information of an image and 
vice versa. Redundancy is calculated as a function of the 
entropic index q, where q can be evaluated from − ∞ to ∞ 
since it is a real number.

3  Results and discussion

Figure 5 shows an example of the time series of tempera-
ture (T °C) and relative humidity (RH) conditions recorded 
during the experiment. It can be observed that practically, 
there were not variations of the environmental conditions, 
ensuring thus that all the seeds were evaluated under 
homogeneous temperature and humidity conditions. Dur-
ing the experiment, the average temperature and relative 
humidity of the environment were 22 °C and 38%, respec-
tively. All values of the environmental conditions were 
taken every second.

(9)
Ω
∑

i=1

pi = 1

(10)HBG(A + B) = HBG(A) + HBG(B)

(11)HBG = −k

Ω
∑

i=1

pi ln
(

pi
)

(12)HTmax = k
1 − Ω1−q

q − 1

(13)RT = 1 −
HT

HTmax
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All thermal images were edited and exported to CSV 
format, using the software of the thermographic cam-
era FLIR Tools, version 6.4.18039.1003. After that, all the 
exported images were processed for data analysis with the 
MATLAB package. Figure 6 shows a collection of thermal 
images obtained from both crystalline and floury seeds, 

considering exposure times of 15 s and 35 s, and their 
equivalent images in grayscale, with the purpose of mak-
ing the analysis more efficient from the computational 
point of view.

To investigate the gray-level distribution of collections 
of images, the corresponding histograms were obtained 

Fig. 5  Example of the time 
series of temperature and 
humidity conditions recorded 
during the experiment
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Fig. 6  Collection of thermal 
images and their grayscale 
equivalent of corn seed sam-
ples. a Crystalline seeds, expo-
sure time of 15 s. b Crystalline 
seeds, exposure time of 35 s. c 
Floury seeds, exposure time of 
15 s. d Floury seeds, exposure 
time of 35 s
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for crystalline and floury seeds after 15  s and 35  s of 
exposure times. In Fig. 7, the histograms of collections of 
images plotted as a function of the grayscale values are 
illustrated.

From Fig. 7, it can be observed that concerning crys-
talline seeds, for an exposure time of 15 s, the maximum 
value of histogram is obtained for the numerical value of 
192 of the grayscale, which occurs with a frequency of 316 
times of the total values. For the same sample of seeds, but 
now considering an exposure time of 35 s, the maximum 
value of the histogram is obtained for the numerical value 
of 191 of the grayscale, which occurs 296 times of the total 
values. In the case of floury seed samples, considering 
exposure times of 15 s and 35 s, the maximum values are 
obtained for the numerical values of 192 and 180 of the 
grayscale, with a frequency of 533 and 244 times of total 
values, respectively. That is, by increasing the exposure 
time of the seeds to laser light, the probability at which 
the maximum grayscale values occur in the range from 
180 to 192 (i.e., values near 255 corresponding to white) 
is reduced.

In all cases, it can be observed that the shape of the 
histogram tends to be preserved graphically. The changes 

are observed in the frequency at which the maximum val-
ues of the grayscale occur in each seed sample and are 
dependent of the genotype of seeds as well as of the expo-
sure times to laser light. These variations in the distribution 
of frequencies (i.e., the histogram) are due to the fact that 
seeds have complex and nonhomogeneous structures, so 
their thermal properties are also nonhomogeneous.

In Table 2, the numerical results of the mean, variance 
and entropy for all the collection of thermal images in 
grayscale, obtained for both genotypes of corn seeds and 
considering two exposure times, are shown.

According to the numerical results, it can be seen 
that the mean value of the grayscale thermal images is 
reduced when the exposure time to the laser light of the 
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Fig. 7  Histograms of thermal images in grayscale. a Crystalline seeds, exposure time of 15 s. b Crystalline seeds, exposure time of 35 s. c 
Floury seeds, exposure time of 15 s. d Floury seeds, exposure time of 35 s

Table 2  Mean and variance of the thermal images for both geno-
types of maize seeds

Genotype of 
corn seeds

Exposure time of 15 s Exposure time of 35 s

Mean Variance Mean Variance

Crystalline 169.055 797.298 164.312 837.030
Floury 164.702 684.751 157.281 761.837
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seed samples is increased. This is because the samples of 
the seeds increase their temperature by increasing the 
exposure time and this in turn reduces the brightness and 
increases the contrast of the image, which can be corrobo-
rated with the values of the variance that also increase 
with the exposure time. If the mean value of the thermal 
images in grayscale is compared, considering the same 
exposure time to the laser light of seed samples of differ-
ent genotypes, it is observed that in seeds with a floury 
structure, a smaller mean value is obtained, indicating thus 
less brightness of images; however, the variance is reduced 
indicating a reduction in the contrast of thermal images. 
For a confidence probability of 0.95 (i.e., α = 0.05) in the 
mean estimate of the image μ of crystalline seeds, with a 
sample size of n = 10, σ = 28.237, the value of tα/2 = 2.262 
with v = 9 degrees of freedom, considering exposure times 
of 15 s and 35 s the confidence intervals of the estimate are 
149.682 < μ < 188.428 and 144.462 < μ < 184.162, respec-
tively. Similarly, the confidence probabilities of 0.95 for the 
mean estimates in floury seeds are 146.748 < μ < 182.656 
and 138.344 < μ < 176.218 for 15 s and 35 s exposure times, 
respectively. It can be observed that different samples pro-
vide different values of the estimates and therefore will 
produce different confidence intervals. When the floury 
seeds are exposed to the laser during 15 s, a relatively 
narrow interval is obtained in comparison with the other 
cases, indicating that the mean has been rather precisely 
estimated due a lower value of the variance.

In order to make a comparison of the Shannon entropy 
and Tsallis entropy that is applied in the segmentation 

of images, the value of the entropic index q needs to be 
determined. In this research, the method described in 
[22] is applied, where grayscale images are considered as 
a nonextensive system to find the q value that maximizes 
the redundancy (Eq. 13) of images.

For the collection of ten grayscale images of crystalline 
and floury seeds with exposure times of 15 s and 35 s to 
the laser light, the values of the q index are determined 
when the maximum value of R is obtained. As it was afore-
mentioned, q can be evaluated from − ∞ to ∞ since it is a 
real number, but in this case, the q index has been limited 
to the range of values from − 2 to 10 [22] in steps of 0.01. In 
Fig. 8, a plot of normalized values of the entropy of Tsallis 
HT, normalized values of redundancy RT and the maximum 
values of the entropy of Tsallis HTmax as a function of the q 
index is shown. According to this plot, it can be observed 
that the maximum values of RT are obtained for values of 
q = − 0.14 and q = − 0.34 for the case of crystalline seeds for 
an exposure time of 15 s and 35 s, respectively. In Fig. 9, a 
comparison of the normalized values of entropy of Tsallis 
HT, the redundancy values RT and the HTmax values for the 
case of images of floury seeds is illustrated. It is observed 
that the maximum values of RT are obtained for values of 
q = − 0.28 and q = − 0.252 for exposure times of 15 s and 
35 s, respectively.

In Table 3, a comparison of the entropy values of both 
Tsallis and Shannon is shown. It can be seen that in gen-
eral terms, the Tsallis entropy provides a greater amount 
of information of images with respect to the Shan-
non entropy. As it was aforementioned, the q value is 

Fig. 8  Values of the normal-
ized entropy of Tsallis and 
redundancy as a function of 
the q index for the collection of 
thermal images of crystalline 
seeds for exposure times of 15 
and 35 s
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determined when the maximum redundancy RT of images 
is obtained, since under these conditions, the entropy of 
Tsallis is minimal, indicating that images have less disor-
der allowing thus a better identification of patterns. In 
the case of crystalline seeds, it can be observed that as 
the exposure time increases from 15 to 35 s, the q index 
decreases from − 0.14 to − 0.34 which in turn increases 
the redundancy of images. Considering floury seeds, it 
can be observed that as the exposure time increases from 
15 to 35 s, the entropic index q increases from − 0.280 to 
− 0.252 reducing the redundancy of images. In the case of 
seeds with a floury structure, a higher redundancy value 
is obtained for a shorter exposure time to laser light. It 
should be noted that the value of the entropic index q 
is characteristic of each collection of images so that this 
index could also be used for characterization of seeds.

Regarding the Shannon entropy of images, it is 
observed that the numerical values of entropy increase 
with the increase in the exposure time to the laser light, 

for seeds of the same genotype, which indicates that there 
is a greater disorder in the images, that is, more levels of 
grays participate in them. For the same exposure time, 
the numerical value of the Shannon entropy is greater for 
images of seeds with a floury structure, indicating that 
they present a greater disorder with respect to the images 
of crystalline seeds, because the molecular structure of the 
floury seeds is less organized [26].

In addition to the analysis of images obtained by the 
thermographic camera of crystalline and floury seeds at 
the grayscale level, it is proposed to analyze the collection 
of images through software MATLAB R2014a, considering 
the temperature values obtained by the FLIR Tools soft-
ware of the camera for the same exposure times of 15 s 
and 35 s in order to observe the irregular variations of the 
temperature of seeds, because these variations cannot be 
quantified from RGB imaging directly, since the analysis at 
either grayscale or RGB imaging is done at pixels level and 
is not performed with temperature values.

Fig. 9  Values of the normal-
ized entropy of Tsallis and 
redundancy as a function of 
the q index for the collection 
of thermal images of floury 
seeds for exposure times of 15 
and 35 s
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Table 3  Comparison of the 
Tsallis and Shannon entropies 
for collections of ten thermal 
images of crystalline and floury 
seeds for exposure times of 15 
and 35 s

Genotype of 
corn seeds

q HT nats/pixel HTmax nats/pixel R nats/pixel HS nats/pixel

Exposure time 15 s
Crystalline − 0.14 216.699 487.200 270.501 4.275
Floury − 0.28 368.123 944.013 575.89 4.354
Exposure time 35 s
Crystalline − 0.340 498.206 1.258 ×  103 759.790 4.345
Floury − 0.252 330.377 826.214 495.837 4.5061
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In Figs. 10 and 11, the temperature variations in °C 
are shown in each sample of crystalline and floury seeds 
considering an exposure time of 15 s. From the graphi-
cal results, it can be seen that due to the inhomogeneous 
structure in the thermal properties of seeds, the tempera-
ture values in each seed tend to vary irregularly.

To perform a quantitative comparison of the variations 
in the temperature by increasing the exposure time in the 
samples of each genotype of corn seeds, the probability 
density functions are estimated using the Gaussian ker-
nel functions [27] with an efficiency of 95.12% in density 
estimation [28], to obtain a continuous form of the den-
sity function for each collection of ten thermal images as 
shown in Figs. 12 and 13 as well as the statistical averages, 
such as the mean, variance and standard deviation.

In Table 4, the average values obtained for each case are 
shown, where it can be seen that for the case of crystal-
line seeds, when the exposure time is increased from 15 

to 35 s, the mean temperature increases from 22.3507 to 
22.5849 °C, respectively. For seeds with a floury structure, 
it can be seen that the mean temperature increases from 
21.9306 to 22.3284 °C for the same increase in the expo-
sure times, which indicates that for both cases, the mean 
temperature of seeds increases. When comparing the val-
ues of the mean temperature considering the same expo-
sure time, for example at 15 s, it can be seen that for the 
case of crystalline seeds, there is a higher average value 
(22.3507 °C) with respect to floury seeds (21.9306 °C); this 
is because the pericarp of crystalline seeds has a more 
organized molecular structure and greater thermal diffu-
sivity D = k/ρc (where k is the thermal conductivity, c is the 
specific heat and ρ is the density) and thermal conductiv-
ity according to the literature [26] compared to the peri-
carp of the floury seeds. Thermal diffusivity is a measure of 
how fast heat propagates through the material [29], which 
allows a higher temperature to be reached. Regarding the 

Fig. 10  Temperature varia-
tions T(x, y) °C at crystalline 
seeds as a function of the (x, y) 
coordinates after an exposure 
time of 15 s
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Fig. 11  Temperature variations 
T(x, ) °C at floury seeds as a 
function of the (x, y) coordi-
nates after an exposure time 
of 15 s
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Fig. 12  Probability density functions of temperature variations for 
crystalline seeds Fig. 13  Probability density functions of temperature variations for 

floury seeds
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values of the variance, it can be observed that as the expo-
sure time increases, the variance increases for both cases, 
being more noticeable in floury seeds, which indicates a 
greater variability in the values of the temperature, since 
the floury seeds have a more amorphous molecular struc-
ture with respect to crystalline seeds.

4  Conclusions

The thermal images of crystalline seeds presented greater 
mean and variance values, indicating higher brightness 
and contrast, respectively, for the same exposure times, 
with respect to thermal images obtained from floury 
seeds. The confidence intervals were estimated for a 0.95 
reliability in all cases because these intervals are inversely 
related to the precision level. That is, highly reliable inter-
val estimate may be imprecise due to the gain in reliability 
generates a loss in precision, so the 0.95 is a compromise 
between an acceptable confidence and precision levels in 
the estimation. When the floury seeds were exposed to the 
laser for 15 s, a relatively narrow interval was obtained in 
comparison with the other cases, indicating that the mean 
has been rather precisely estimated. However, thermal 
images obtained for floury seeds showed a higher entropy 
of Shannon, indicating that thermal images have a greater 
disorder with respect to thermal images of crystalline 
seeds, due to that the molecular structure is less organ-
ized. Considering thermal images of the same genotype 
of corn seeds, it is observed that when the exposure time 
increases, the average value is reduced; however, variance 
and entropy of Shannon increase, due to the increase in 
the temperature of the samples. In the case of the entropy 
of Tsallis, it is observed that it is dependent on the value 
of the entropic index q, which is determined when the 
maximum redundancy is obtained since in these condi-
tions, the entropy of Tsallis is minimal, indicating a smaller 
disorder in the images, which in turn facilitates the iden-
tification of patterns in images. In the case of seeds with 

a floury structure, a higher redundancy value is obtained 
for a shorter exposure time. Regarding the analysis of ther-
mal images considering the temperature values captured 
by the thermographic instrumentation, by applying the 
Gaussian kernels, an efficiency of 95.12% can be guaran-
teed in density estimation. From this analysis, it was found 
that increasing the exposure time increases the average 
value of the temperature, which is higher in the seeds with 
a crystalline structure due a higher thermal diffusivity in 
the pericarp, which allows the temperature in the seeds 
to increase. Thus, it was possible to show the viability of 
statistical methods of digital image processing applied to 
thermal images, for characterization of corn seeds.
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