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Abstract
Drought is a serious threat to agriculture in Ethiopia. This study examined the spatiotemporal variability of agricul-
tural drought and its association with climatic variables in the Upper Awash basin. Mann–Kendall (MK) trend test was 
employed to examine the drought trend while Sen’s slop estimator and pixel-based linear regression model were used 
to analyze the magnitude of drought changes. The association between agricultural drought and climatic variables was 
evaluated by the Pearson correlation coefficient (r). High spatiotemporal variability of drought was observed in Kiremit 
(June–September) and Belg (February–May) seasons. The Belg season spatial average vegetation condition index (VCI) 
trends were decreased insignificantly from 2001 to 2019 at a 5% significant level, whereas the spatial average VCI trends 
of Kiremit season were increased insignificantly. The return period of severe droughts during the Belg season was less 
frequent than the Kiremt season severe drought. The correlation between spatial average VCI and precipitation was 
positive for Belg and Kiremit seasons. Likewise, the correlation between average VCI and land surface temperature (LST) 
was negative in Belg and positive in Kiremit season. Moreover, the correlation between mean VCI and Pacific Ocean Sea 
Surface Temperature (SST) was positive for Belg and Kiremit seasons. The influencing factor of precipitation and LST on 
VCI during Belg season was higher than Kiremit season. The findings of this study are vital for decision-making systems 
and preparing plans to adjust sowing time, select drought-resistant crops, practice in situ water conservation, practice 
small-scale irrigation and diversify the income of smallholder farmers.
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1  Introduction

Drought is one of the most devastating natural hazards [1], 
which are affecting ecosystem functions and services [2, 3]. 
Depending on the duration and impact of the water cycle 
component, droughts can be classified into a meteoro-
logical drought (e.g., no precipitation over a long period), 
hydrological drought (e.g., insufficient surface and ground-
water water supply), and agricultural drought (e.g., lack of 
availability of water for a plant or vegetation growth) [4, 
5]. Drought can result in soil degradation, desertification, 
water shortages, plant death, and fires [6–8]. Drought can 

also affect crop development, agricultural and socio-eco-
nomic activities, and also contributes to social crises and 
political problems [9–11]. Drought-affected areas develop 
slowly as the signs of plant moisture stress often change 
gradually [12]. Thus, understanding the extent and fre-
quency of drought and its relationship with climatic vari-
ables is imperative to improve agricultural productivity 
and ensure sustainable socio-economic development [13].

Several methods are available in the literature for moni-
toring drought [14–16]. Of these methods, the traditional 
drought detection methods are based primarily on pre-
cipitation, soil moisture, temperature, evaporation, and 
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surface runoff [17]. In this case, spatial interpolation can be 
obtained from point data. However, several factors affect 
the interpolation process, so there may be some uncer-
tainty in the interpolation results. These include ques-
tions about sample size, spatial distribution, and missing 
data [13, 15, 16]. As a result, satellite remote sensing has 
become one of the important techniques for earth obser-
vation and drought monitoring and can provide compre-
hensive information on the dynamics and processes of ter-
restrial systems [18]. Recently, remote sensing is known to 
be a powerful tool for assessing the spatiotemporal vari-
ability of drought [19–21].

Globally, numerous remotely sensing vegetative 
drought indices have been established to monitor 
droughts, such as Normalized Difference Vegetation Index 
(NDVI), Vegetation Condition Index (VCI), and Vegetation 
Temperature Condition Index (VTCI) [22–26]. Of these 
indices, the NDVI is easy to calculate and can be used 
to consider long-term series. But it is less reliable when 
monitoring the drought in the heterogeneous area. This 
is due to the effect of geographical location, ecological 
system, and soil conditions [27, 28]. To overcome these 
problems, Kogan [27] developed VCI for a specific region. 
The VCI reflects the overall effect of rainfall, soil moisture, 
weather, and agricultural practices. Hence, in areas such 
as the Upper Awash basin, which has different ecosystems 
and heterogeneous topography, VCI is vital to compare 
the impact of weather in areas with different ecological 
and economic resources, as the index captures rainfall 
dynamics better than NDVI, particularly in geographically 
heterogeneous areas. For this reason, it is considered an 
ideal indicator for large-scale drought monitoring [22, 27, 
29]. In earlier times, VCI was applied in drought monitor-
ing and analysis [13, 30–33], and its reliability has been 
verified by many studies [16, 33–36]. As a result, VCI was 
used in this study as an indicator of drought [13]. The VCI 
can describe the spatiotemporal variation in land cover 
and vegetation. It also helps to distinguish meteorological 
impacts on vegetation [16].

In East Africa in general and in Ethiopia in particular, 
droughts have recurred in the last decades and is a major 
natural disaster that contributes to food insecurity and 
poverty [37–39]. In Ethiopia, the availability of drought has 
increased due to climate change and will cause a decline 
in water and agricultural production [40]. The economy 
of more than 85% of the Ethiopian population mainly 
depends on rain-fed agriculture, which is vulnerable to 
climate change [41]. According to Funk et al.[42], 2015 was 
the driest year in most parts of Ethiopia. As a result, the 
main rainy season was late and below normal [41]. The El 
Niño-Southern Oscillation (ENSO) was the ultimate cause 
of this drought. More specifically, the warmer stage (El 
Niño) is closely associated with reserve rainfall during the 

main rainy season in central Ethiopia, including the Upper 
Awash basin [43]. In such conditions, the moisture require-
ments of plants cannot be met, leading to a sharp decline 
in plant production. Drought is one of the most frequent 
environmental threats in the Upper Awash basin of Ethio-
pia [44]. Besides, Edossa et al. [45] has also reported the 
existence of extreme meteorological drought events in the 
Upper Awash basin. Based on the socio-economic analysis, 
Desalegn et al.[44] also indicated that the Upper Awash 
basin experiences drought every two years. However, the 
spatiotemporal variability of agricultural drought and its 
association with climatic variables are not well-understood 
in the Upper Awash basin. Besides, the spatial and tempo-
ral variation of agricultural drought across agro-ecological 
zones in the basin is not known. This type of study has 
immense importance for developing an understanding of 
the basics of basin vegetation dynamics and thus helps 
in policymaking. Evaluation of spatiotemporal variability 
of agricultural drought and its association with climatic 
elements is important for policy-makers and planners for 
establishing effective and comprehensive monitoring 
and early warning system to reduce the adverse impacts 
of drought. Therefore, this study was aimed to examine 
the spatiotemporal variability of agricultural drought and 
its association with climatic elements (such as precipita-
tion, LST and Pacific Ocean SST) in the Upper Awash basin 
of Ethiopia. Specifically, the objectives of this study were: 
i) to assess the spatiotemporal variability of agricultural 
drought, ii) to examine the frequency of agricultural 
drought, and iii) to evaluate the association between VCI 
and climatic variables in the Upper Awash basin.

2 � Materials and methods

2.1 � Description of the study area

The Upper Awash basin is found in the central part of 
Ethiopia mainly at the western margin of the Main Ethi-
opian Rift system. Geographically, the basin is located 
between 8°16′N—9° 18′ N and 37° 57′E—39°17′E, cover-
ing 10,640 km2. Its physical settings are characterized by 
the heterogeneity of the large natural systems such as 
orographic, the high plains, mountains, and plateaus [46]. 
The topography undulates between 1587 to 3561 m a.s.l. 
The climate of the study area is influenced by undulating 
mountain chains and the circulatory systems that interact 
with orography, cross-equatorial wind system, and the 
movement of the Inter-Tropical Convergence Zone (ITCZ) 
[46]. The basin’s climate is humid at the highlands and 
arid to semiarid in the escarpment and rift valley [47]. The 
land-use types are intensively cultivated (67%), moder-
ately cultivated (25.5%), bushland or shrubland or wooded 
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grassland (4.5%), and urban area and alpine vegetation 
(3%) [48]. Hence, agriculture is the main economic activ-
ity. The mixed crop-livestock system is the most important 
farming system in the plateau and the highland areas. This 
farming system is dominated by smallholder farmers in 
rain-fed agriculture with limited but complementary live-
stock production. Landholdings are generally small and 
are fragmented into many plots with different land uses. 
Besides, the main towns found in the Upper Awash basin 
are characterized by industry and agro-industry.

2.2 � Data types and sources

Different remotely sensed imageries were used in this 
study. The Shuttle Radar Topographic Mission (SRTM) Digi-
tal Elevation Model (DEM) was acquired from the United 
States Geological Survey (USGS) (https:/earthexplorer.
usgs.gov/). Land use land cover (LULC) data were obtained 
from Sentinel2 2016 product (http://​geopo​rtal.​rcmrd.​org/​
layers/​servir%​3Aeth​iopia_​senti​nel2_​lulc2​016). Composite 
Moderate Imaging Spectrometer (MODIS) Normalized Dif-
ference Vegetation Index (MOD13Q1) and Land Surface 
Temperature (MOD11A2)  data for 2001–2019 periods 
(19 years) were accessed from the Land and Atmospheric 
Archive System Distributed Active Archive Centre (LAADS 
DAAC) (https://​lpdaac.​usgs.​gov/​produ​cts/​mod44​bv006/#​
tools).

Furthermore, satellite precipitation data from Climate 
Hazards Group Infra-Red Precipitation with Stations 
(CHIRPS) was used. Monthly Pacific Ocean SST data in the 
NINO3.4 region was acquired from the National Oceanic 
and Atmospheric Administration (NOAA) Satellite Mission 
website (http://​www.​cgd.​ucar.​edu/​cas/​catal​og/​climi​nd/​
TNI_​N34/​index.​html). According to Babu [49] and Zaroug 
[50], the NINO 3.4 SST data has NINO3 and NINO4 charac-
teristics. Therefore, the Pacific Ocean SST of the NINO3.4 
area was also used to evaluate the relationship between 
the SST and the index of vegetative drought.

2.3 � Remote sensing data processing

The obtained MOD13Q1 and MOD11A2 data are sup-
ported with a sinusoidal projection method in the Hier-
archical Data Format (HDF). Through format conversion 
and reprojection using MODIS Reprojection Tool (MRT), 
these data were prepared for the Geographic Information 
System (GIS) program. Using metadata attributes stored 
in the dataset, the filtering of no data values and cloud 
deletion from the imagery was performed [51]. MODIS 
NDVI for sixteen days and MODIS LST datasets for eight 
days were composite of maximum daily values through-
out the year. The noise of these composite datasets was 
removed using the fast Fourier transform (FFT) algorithm 

[51]. Using the forward transformation process, the Fourier 
transform transforms the spatial domain image into a fre-
quency domain image. Then, using the frequency domain 
images filtered through the inverse Fourier transform (IFT), 
an enhanced noise-free image was created [52]. For the 
two-dimensional cases, the Fourier transform representa-
tion for the discrete f​unc​tio​ns i​s e​xpr​essed as the sum of 
sine and cosine weight and is given in Eq. 1:

where u and v are spatial frequencies, F(u, v) is a func-
tion  of  the  frequency  domain,  f(x,  y)  is a func-
tion of the spatial domain, i is 

√
−1 , N is the num-

ber of x-direction pixels, and M is the number of 
y-direction pixels.  X​  ranges  from  zero  to  N-1  and  ​
y ranges from zero to M-1. Fourier​ se​que​nces (Fu) have b​
een​ mu​ltipl​ied by a low pass filter (w), giv​ing​ th​e freque​
ncy domain a filtered signal (wFu). The enhanced image 
in the spatial domain was reconstructed using the inverse 
transform after filtering to remove noises related to high-
frequency components (Eq. 2):

The MODIS NDVI was converted into required NDVI 
values between −1 and 1 using the Arc GIS environment 
using a raster calculator by multiplying the improved 
image data with a scale factor (0.0001). The total numbers 
of NDVI images downloaded (2001–2019) for Belg (Feb-
ruary–May) and Kiremit (June–September) seasons were 
304. Since the MODIS data are available in every 16 days 
composite, it was converted into monthly solutions. Two 
16 days composite images were added and divided by two 
in the raster calculator to get the mean monthly NDVI for 
each season. Similarly, the LST of 2001–2019 periods for 
Belg and Kiremit seasons were derived from eight days 
of composite MOD11A2. The digital number (DN) of LST 
was converted to degree Celsius ( ◦C) by multiplying the 
input digital number (image) with a scale factor (0.02) and 
then subtracting 273.15 °C. A total of 608 LST images were 
acquired (2001–2019) during Kiremit and Belg seasons. 
Then, four eight-day composite images were added and 
divided by four in the raster calculator to get the mean 
monthly LST for each season.

Most precipitation data from in situ meteorological 
stations within the Upper Awash basin had an outsized 
percentage of missing data problems. Moreover, the spa-
tial distributions of stations were not evenly dispersed. 
During this case, the CHIRPS satellite (https://​data.​chc.​
ucsb.​edu/​produ​cts/​CHIRPS-​2.0/) is an important source of 
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precipitation data [53–56]. To determine the accuracy of 
the CHIRPS satellite precipitation data in the Upper Awash 
Basin, 19 meteorological gauge station data from the 
National Meteorological Service Agency (NMSA) of Ethio-
pia were used as references. The details of these stations 
are given in Table 1. By taking the average of the previous 
and subsequent months, monthly missing values were 
filled. However, those years with an entire missing data 
were omitted from the analyses [53, 57]. In this study, a 
surface map in the form of a grid precipitation map for 
the study area was constructed using the ordinary kriging 
geostatistical interpolation method. Ordinary kriging is the 
best linear unbiased estimator and was found to be the 
best method because it produces little root mean square 
error [58]. Besides, the Pearson correlation coefficient 
(r) was used to assess the efficiency of the areal average 
CHIRPS precipitation product by using the areal average 
interpolated meteorological rainfall [54, 59].

2.4 � Methods for identifying drought

The short (Belg) and main (Kiremit) rainy seasons deter-
mine rain-fed agricultural production in Ethiopia, includ-
ing the Upper Awash basin [60]. Almost 85% of the pop-
ulation in the study area practice rain-fed agriculture, 
which depends on the main and short rainy seasons. 
The seasonal characteristics of rainfall have a great influ-
ence on the production potential of crops in the rain-fed 
agricultural systems since the availability of water in the 

soil is essential for the growth of crops and vegetation. 
MODIS NDVI data were used to derive the Belg and Kire-
mit seasons VCI. VCI is most useful during the main grow-
ing (Kiremit) and short growing (Belg) seasons because it 
is a measure of vegetation vigor. The VCI was determined 
in Eq. 3 [61, 62] below:

where VCI is the vegetation condition index of the pixels, 
NDVIi is the NDVI value of the pixels, and NDVImax and 
NDVImin are the maximum and minimum NDVI values 
during 2001–2019 periods, respectively. The numerator 
refers to the difference between the actual value of the 
NDVI and the minimum value of the NDVI for a given time 
and is representative of the meteorological and vegeta-
tion data for a given time. The maximum and minimum 
denominator values represent the best and the worst veg-
etation growth conditions, respectively, and the difference 
of them reflects somewhat the local vegetation condition 
[22, 27, 28]. The VCI includes the NDVI with both real-time 
and historical details. VCI results range between zero and 
100, where lower VCI values imply poor growth of vegeta-
tion and higher drought levels [27, 28, 63, 64]. On the other 
hand, higher VCI values are an indicator of good vegeta-
tion conditions and characterize lower drought events. 
Based on VCI, droughts have been classified and the spatial 
and temporal variations of drought over 2001–2019 time 
spans were analyzed. In the present analysis, three forms 

(3)VCI = 100 x
NDVIi − NDVImin

NDVImax − NDVImin

Table 1   Characteristics of 
in situ meteorological stations

Station Name Elevation(m) Longitude (E) Latitude(N) Period

Abebe Keranso 2456 38.17° 8.98° 2001–2015
Addis Ababa Obs 2386 38.75° 9.02° 2001–2015
Addis Alem 2372 38.38° 9.04° 2001–2015
Akaki 2057 38.79° 8.87° 2001–2015
Alem Tena (Add) 1656 38.91° 8.29° 2001–2015
Asgori 2072 38.33° 8.79° 2001–2015
Boneya 2251 38.64° 8.78° 2001–2015
Chefedonsa 2392 39.12° 8.97° 2001–2015
Tulu Bolo 2190 38.21° 8.65° 2001–2015
Ginchi 2132 38.13° 9.02° 2001–2015
Dertu Liben 1991 38.12° 8.97° 2001–2015
Dilela 2429 38.04° 8.64° 2001–2015
Ejere 2254 39.26° 8.77° 2001–2015
Enchini 2687 38.36° 9.32° 2001–2015
Hombole 1743 38.77° 8.37° 2001–2015
Intoto 2903 38.72° 9.08° 2001–2015
Meki 1662 38.82° 8.15° 2001–2015
Mojo 1763 39.11° 8.61° 2001–2015
Addis Ababa Bole 2354 38.75° 9.03° 2001–2015
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of VCI drought classes that are defined by Kogan [28] were 
used (Table 2).

2.5 � Trend detection of the VCI drought index

The pixel-based linear regression model was used to 
analyze the spatial and temporal trends of VCI changes 
pixel-wise using the Belg and Kiremit seasons datasets 
(2001–2019) (Eq. 4). The positive VCI slope values repre-
sent an upward trend while the negative VCI slope values 
indicate a downward trend [33]. An upward trend of VCI 
indicates enhanced vegetation growth and drought reduc-
tion while a downward trend of VCI specifies a reduction 
of vegetation cover and increasing drought. The trend in 
the VCI was calculated using Eq. 4 [13, 65]:

where VCIi is the vegetation condition index for year i, n is 
the duration of the time series (n = 19), and ti is the index 
number for the years 2001 to 2019 (1–19).

In addition to the pixel-based linear regression model, 
Sen’s slope was used to estimate the magnitude of tempo-
ral shifts of the areal average VCI drought index. In contrast 
to linear regression, this approach is less affected by miss-
ing values and outliers [59, 66]. If there is a linear trend, the 
magnitude of the monotonous trend can be determined 
using the nonparametric slope estimator of Sen using Eq. 5 
[67]:

where β is the median value of the slope values between 
the yi and yj data measurements in phases i and j (i < j), 
respectively. The positive value of β reflects an upward 
trend, while a downward trend is shown by the negative 
value of β. The sign of β represents the course of the data 
trend, while its value shows the trend’s steepness.

The Mann–Kendall trend test was used to determine 
trends in the time series of areal average VCI values for the 
whole basin. This approach is less influenced by missing 
values and unequal distribution of data and less vulner-
able to outliers because the ranks of the observations are 

(4)Slope =
n ×

∑n

i=1
VCIi × ti − (

∑n

i=1
VCIi)(

∑n

i=1
ti)

n ×
∑n

i=1
ti2 − (

∑n

i=1
ti)2

(5)� = median

(
yj − yi

j − i

)

taken into account rather than their actual values [55, 68]. 
The null hypothesis ( H0) of no trend, that is, the Yi obser-
vations are randomly ordered in time, against the alterna-
tive hypothesis ( H1), according to the Mann–Kendall trend 
test, where a monotonic (increasing or decreasing) trend 
was checked in the time series. MK statistics S are com-
puted based on Yue et al. [68] and Mann [69] using Eq. 6:

where Yi and Yj are sequential data values for n-length 
data of the time series and

If the dataset is distributed identically and indepen-
dently, then S’s mean is zero, and S’s variance is given by 
Eq. 8:

where n is the dataset length, m is the number of tied 
groups in the time series (a tied group is a collection of 
sample data with the same value), and ti is the number of 
data points in the ith group.

The Z statistics are calculated using Eq. 9:

To test either an upward or downward monotone trend, 
a significance level alpha (α) was used. By comparing the 
computed Z with critical values, the decision for the two-
tail test was made. The null hypothesis is rejected if the 
computed Z absolute value is greater than the critical 
value, or if the p-value is less than the selected significance 
level (α = 0.05 or 0.1). The direction of trends is upward for 
positive Z-value and downward for negative Z-value when 
the null hypothesis is rejected [70]. The result is said to be 
statistically significant if the null hypothesis is rejected as 
in Figs. 1 and 2.

2.6 � Exceedance probability and return periods

Using Weibull’s frequency distribution equation, the 
VCI exceedance probability and return periods were 

(6)S =

n−1∑
i=1

n∑
j=i+1

Sign(yj − yi)

(7)Sign(yj − yi) =

⎧
⎪⎨⎪⎩

1 if (yj − yi) > 0

0 if (yj − yi) = 0

−1 if (yj − yi) < 0

(8)Var(S) =
1

18

[
n(n − 1)(2n + 5) −

m∑
i=0

ti(ti − 1)(2ti + 5)

]

(9)Z =

⎧⎪⎨⎪⎩

S+1√
Var (S)

for S < 0

0 for S = 0
S−1√
Var (S)

for S > 0

Table 2   VCI-based drought classification

Class Type VCI (%)

1 Normal  > 50
2 Drought 35–50
3 Severe Drought  < 35



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:465 | https://doi.org/10.1007/s42452-021-04471-1

determined [71]. The return period and the probability of 
exceeding each other are reciprocal (Eq. 10).

where p(xm) is the probability of exceedance, Tr is the 
return duration that implies an average number of years 
that will be equalled or exceeded during a given case, n 
is the total number of study years (19 years), and m is the 
rank of observations in descending order.

2.7 � Correlation analysis of the VCI and climate 
variability

The degree and direction of the relationship between 
two variables are expressed in the Pearson correlation 
coefficient (r) [33, 72]. The greater association between 
the two variables is demonstrated by a larger absolute 
value. To evaluate the relationship between drought and 
climatic factors (precipitation, LST, and SST), the Pearson 

(10)Tr =
n + 1

m
=

1

p(xm)

correlation coefficient was used. The coefficients of Pear-
son correlation were determined using Eq. 11 [73]:

where r is the coefficient of correlation, n is the time series 
duration and i is the number of years during the periods 
studied (1–19). Xi and Yi are the VCI and the value of cli-
mate variability in the year i, respectively, and X and Y are 
the mean VCI and the mean climate variability during the 
study periods, respectively.

3 � Results and discussion

3.1 � Evaluation of CHIRPS precipitation data

The results of the comparison between the areal average 
CHIRPS and areal average interpolated meteorological 

(11)r=

∑n

i=1
(Xi − X )

�
Yi − Y

�
�∑n

i=1
(Xi − X )2

∑n

i=1
(Yi − Y)2

Fig. 1   Location map of the study basin
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station rainfall during the Belg and Kiremit seasons for 
the periods 2001 to 2015 are shown in Fig. 3a and b. A 
very good agreement was observed between areal aver-
age observed rainfall and CHIRPS precipitation product 
(Fig. 3a and b). The findings of this study agreed with a 

study carried out by Ayehu et al. [74] in the Upper Blue 
Nile basin; Belay et al. [55] in the Beles basin; Alemu 
and Bawoke [59] in the Amhara regions of Ethiopia; and 
Dinku et al. [54] in Eastern Africa.
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Fig. 2   Methodological flowchart of the study

Fig. 3   Comparisons between 
the areal average CHIRPS and 
areal average interpolated 
meteorological station rainfall 
data during Belg (a) and Kiremit 
(b) seasons in the Upper Awash 
basin (2001–2015)

y = 1.0556x - 21.239
r² = 0.937
r = 0.968

p = < 0.0001

100

150

200

250

300

350

400

100 150 200 250 300 350 400

Be
lg

m
et

eo
ro

lo
gi

ca
l  

st
a�

on

Belg CHIRPS

(a)

y = 0.4019x + 417.02
r² = 0.442
r = 0.665
p = 0.007

550

600

650

700

750

800

850

400 500 600 700 800 900 1000

Ki
re
m
it

m
et

eo
ro

lo
gi

ca
l s

ta
�o

n

Kiremit CHIRPS

(b)



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:465 | https://doi.org/10.1007/s42452-021-04471-1

3.2 � Temporal variation of vegetation condition 
index (VCI)

3.2.1 � Belg and Kiremit seasons yearly variations of drought 
index (VCI)

The yearly variations of the VCI drought index from 2001 
to 2019 periods during the Belg and Kiremit seasons are 
shown in Fig. 4. The lines parallel to the X-axis in Fig. 4 
represent the threshold values of VCI for severe drought 
(VCI ≤ 35%) and drought (35% ≤ VCI ≤ 50%). During the 
Belg season, severe droughts occurred in the years 2008, 
2009, 2011, 2012, 2013, 2014, and 2015 while normal 
droughts were observed in 2002, 2016, and 2019 years 
(Fig. 4). The findings of this study were consistent with 
the years of historical drought in Ethiopia. Drought years 
in Ethiopia include 1984, 1987, 1991/1992, 1993/1994, 
2002, 2008/2009, 2011/2012, and 2015 [53, 66]. The 
year 2015 was the driest in most parts of Ethiopia as a 
result of El Niño [42]. Likewise, in the Kiremit season, the 
severe drought years were identified in the years 2003, 
2009, 2010, 2012, and 2014, whereas normal drought 
years were identified during 2001—2016 except 2003, 
2009, 2010, 2012, and 2014 years in the Upper Awash 
basin (Fig.  4). Similarly, Liou and Mulualem [40] find 
that 2002, 2004, 2008, 2009, 2012, 2014 and 2015 were 
severe drought years in the northern, central and eastern 

parts of Ethiopia during Kiremit season. The most severe 
drought years in the study basin were identified during 
the Belg season. On the other hand, during the Belg sea-
son, the maximum VCI (VCI > 70%) was observed in 2001 
and 2010 years. Likewise, the maximum VCI (VCI > 70%) 
was reported in 2017 in Kiremit season. Overall, VCI was 
enhanced from 2003–2007 and 2017–2019 during the 
Belg season. The enhancement of VCI was also observed 
from 2017–2019 during the Kiremit season (Fig. 4).

The Belg and Kiremit season spatial mean VCI from 
2001 to 2019 periods was 45.4% and 42.0%, respectively. 
The Kiremit season VCI was increased insignificantly at 
the rate of 0.395%yr−1 over the whole basin while Belg 
season VCI was decreased insignificantly at the rate 
of 0.693%yr−1 over the basin at a 5% significant level 
(Table 3). It indicates that the trend of drought in the 
Upper Awash basin was decreased and increased insig-
nificantly during Kiremit and Belg season, respectively. 
Similarly, Shen et al. [16] indicated that the mean annual 
VCI of China from 1982 to 2010 was slowly increased, 
indicating that the enhanced vegetation growth and 
the drought alleviated. Liang et al. [13] also reported 
the increased trend of VCI in China from 1981 to 2015 
during the spring, summer, and autumn seasons, indicat-
ing that drought was decreased in China during these 
periods(1981–2015). On the contrary, Gidey et a1 [75]. 
reported that the Vegetation Health Index (VHI) value in 

Fig. 4   Belg and Kiremit season 
yearly variations of drought 
index (VCI) in the Upper Awash 
basin during the study periods 
(2001- 2019)

Table 3   The Mann–Kendall 
trend analysis of areal average 
VCI (%) (2001–2019) during 
Kiremit and Belg seasons

α Kendall’s tau S p-value Trend Significance Sen’s 
Slope (%/
year)

Kiremit 0.05 0.099 17 0.576 Upward Insignificant 0.395
Belg 0.05  − 0.170  − 29 0.327 Downward Insignificant  − 0.693
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Raya (northern Ethiopia) was reduced significantly dur-
ing the Kiremit season from 2001 to 2015.

3.2.2 � Belg and Kiremit season yearly variation of vegeta‑
tion condition index (VCI) across agro‑ecological 
zones (AEZs)

Agro-ecological zoning can be characterized as a spa-
tial division of the landscape into comparatively similar 
agricultural and ecological features [76], providing a con-
text for understanding the complexity of agro-ecological 
systems [77]. Topography plays an important role in the 
agricultural zone in mountainous countries such as Ethio-
pia, where Africa’s most prominent mountain system is 
located [76]. The elevation-based agro-ecological zoning 
developed by Hurni [76] was therefore adopted to classify 
the basin into three agro-ecological zones (AEZs). These 
AEZs are locally referred to as Weyna Dega (subtropical) 
(1500–2300 m.a.s.l), Dega (temperate) (2300–3200 m.a.s.l) 
and High Dega (Alpine) (3200–3700 m.a.s.l) [76]. Because of 
its good vertical and horizontal precision, this classification 
was performed using a 30 m SRTM DEM spatial resolu-
tion [78]. To improve agricultural development planning, 
agronomic zoning is generally significant, as agronomic 
regions are heavily dependent on climatic parameters 
such as rainfall quantity and variability, temperature, and 

vegetation characteristics [76]. It is important to under-
stand the occurrence of drought in the key agronomic 
regions of the basin. This then helps to recognize the most 
drought-affected agro-ecological areas, which in turn will 
enable decision-makers to establish environmentally 
sound drought-friendly strategies.

Understanding the yearly variation of VCI distribu-
tions across agro-ecological zones (AEZs) enables us to 
identify areas experiencing severe droughts. The annual 
variation of vegetative drought index in different AEZs of 
Upper Awash basin during Belg season in the study peri-
ods (2001–2019) is shown in Fig. 5. In the Belg season, VCI 
was decreased insignificantly at the rate of 0.817%yr−1 
and 0.552%yr−1 in Woyna Dega and Dega AEZ, respec-
tively (Table 4). But VCI was decreased significantly at the 
rate of 2.174%yr−1 in High Dega AEZ (Table 4). During Belg 
season, the most severe drought years were identified in 
Woyna Dega AEZ while most none drought years were 
identified in High Dega AEZ. In Woyna Dega AEZ, severe 
drought years mainly occurred in 2002, 2008, 2009, 2011, 
2012, 2013, 2014, and 2015. In Dega AEZ, severe droughts 
were identified in 2008, 2009, 2011, 2012, and 2015 years. 
Similarly, in High Dega AEZ severe drought years were 
identified in 2008, 2012, and 2015 (Fig. 5).

Similarly, the temporal variation of vegetative drought 
index in different AEZs during Kiremit season from 2001 

Fig. 5   The Belg season yearly 
variations of drought index 
(VCI) in different AEZs of Upper 
Awash basin during 2001–2019 
periods

Table 4   The Mann–Kendall trend analysis of areal average VCI (%) (2001–2019) across AEZs

* significant at α = 0.05

Season AEZs α Kendall’s tau S p-value Trend Significance Sen’s slope(%/year)

Belg Woyna Dega 0.05  − 0.146  − 25 0.401 Downward Insignificant  − 0.817
Dega 0.05  − 0.135  − 23 0.441 Downward Insignificant  − 0.552
High Dega 0.05  − 0.462  − 79 0.006* Downward significant  − 2.174

Kiremit Woyna Dega 0.05 0.123 21 0.484 Upward Insignificant 0.729
Dega 0.05 0.146 25 0.401 Upward Insignificant 0.528
High Dega 0.05 0.275 47 0.108 Upward Insignificant 1.096
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to 2019 is shown in Fig.  6. In the Kiremit season, VCI 
was increased insignificantly at the rate of 0.528%yr−1, 
0.729%yr−1, and 1.096%yr−1 in Woyna Dega, Dega, and 
High Dega AEZs, respectively (Table 4). During the Kiremit 
season, the most severe drought years were identified in 
Woyna Dega and High Dega AEZs while most none drought 
years were identified in Dega AEZ. In the Kiremit season, 
severe droughts were identified in the year 2002, 2003, 
2006, 2008–2013, and 2014 in Woyna Dega AEZ and 2003, 
2004, 2005, 2007, 2009, 2010, and 2014 years in High Dega 
AEZ. Likewise, severe droughts in Dega AEZ occurred in 
the years 2003, 2009, 2010, 2012, and 2014 (Fig. 6).

3.3 � Spatial variation of VCI

The spatial and temporal distributions of pixel-based VCI 
over Belg and Kiremit seasons during 2001–2019 peri-
ods are shown in Figs. 7 and 8, respectively. The result 
indicated that severe droughts were characterized in the 
year 2002, 2008, 2009, 2011, 2012, 2013, 2014, and 2015 
during the Belg season with a mean VCI of less than 35% 
(Fig. 7). The drought years in Ethiopia include 1984, 1987, 
1991/1992, 1993/1994, 2002, 2008/2009, 2011/2012, 
2015 [53, 66]. These drought years either coincide or fol-
low El Nino events [53]. Likewise, severe droughts were 
identified in the year 2002, 2003, 2009, 2010, 2012, 2013, 
and 2014 during the Kiremit season (Fig. 8). The finding 
of this study aligned with Liou and Mulualem [40], who 
reported that 2002, 2004, 2008, 2009, 2012, 2014 and 
2015 were severe drought years in the northern, cen-
tral and eastern parts of Ethiopia during the growing 
(Kiremit) season. Measho et al. [79] also reported that 
the years of 2000, 2008, 2009, 2011, 2012, and 2015 were 
characterized by extensive agricultural droughts in the 
semiarid region of Eritrea during the main growing sea-
son. Besides, Edossa et al. [45] find that the year 2002 

was the worst drought year and about 99% of the total 
area of the Awash River basin was under meteorological 
drought.

The Belg and Kiremit seasons long-term (2001–2019) 
mean VCI spatial distribution is shown in Figs. 9 and 10, 
respectively. In the Belg season, severe droughts were 
observed in the central and southern parts of the basin 
(Fig. 9). Likewise, severe droughts in the Kiremit season 
were experienced in the central, eastern, and northeast-
ern parts of the study area (Fig. 10). Conversely, none 
drought areas were experienced in the northern and 
western parts during the Belg season and in the north-
ern, western, and southeastern parts in the Kiremit sea-
son. In Belg season, maximum severe drought areas 
were observed in Woyna Dega AEZ while most none 
drought areas were experienced in Dega and High Dega 
AEZs. Similarly, most severe drought vulnerable areas in 
the Kiremit season were observed in Woyna Dega AEZ 
whereas maximum none drought areas were identified 
in Dega AEZ.

Figure  11 shows the 2016 area coverage of VCI 
drought types during the Belg (a) and Kiremit (b) seasons, 
and the 2016 LULC (c) map of the Upper Awash basin. 
Integration of the results with the sentinel 2 LULC map 
revealed that forest, grassland, shrubland, crop, water, 
and built-up area with spatial average Belg VCI values of 
51.38%, 48.00%, 44.75%, 50.10%, 57.99%, and 41.83%, 
respectively. Likewise, the integration of the results with 
the sentinel 2 LULC map indicated that forest, grassland, 
shrubland, crop, water, and built-up area with areal 
average Kiremit VCI values of 50.87%, 45.03%, 42.05%, 
40.10%, 50.16%, and 35.23%, respectively. The areas 
identified with severe drought in the Kiremit season 
were mostly cropland areas while most severe drought 
areas were identified in most cropland and some built-
up areas during the Belg season.

Fig. 6   The Kiremit season 
yearly variations of drought 
index (VCI) in different AEZs 
of Upper Awash basin during 
2001–2019 periods
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3.4 � Spatial and temporal drought trends

The spatial VCI trend (2001–2019) of the Upper Awash 
basin in the Belg season was varied spatially from −6.4 to 

5.54 (Fig. 12). Negative VCI slope values were observed 
in the mid-northern (in and around Addis Ababa), south-
ern, southwest, and eastern parts of the study area due 
to the rapid expansion of anthropogenic influences such 

Fig. 7   The spatial and temporal distribution of pixel-based VCI over Belg season during 2001–2019 periods in the Upper Awash basin
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as vegetation degradation, urban and industrial expan-
sion. During the Belg season, the most negative VCI slope 
values were identified in the capital city of Ethiopia, Addis 

Ababa. Urban expansion due to higher population inva-
sion and rapid socio-economic development in Addis 
Ababa and neighboring cities inevitably reduces natural 

Fig. 8   The spatial and temporal distribution of pixel-based VCI over Kiremit season during 2001–2019 periods in the Upper Awash basin
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vegetation and cropland areas [80]. Shawul et al. [80] also 
reported reductions in forests and shrubland areas from 
1974 to 2014 in the Upper Awash basin. Besides, Shawul 
and Chakma [81] revealed a significant increase in the area 
of cropland and urban areas and a declining trend in for-
est and shrubland in the Upper Awash basin. In turn, the 

reductions in forest and shrubland areas have an impact 
on agricultural production, leading to climate change 
and agricultural drought. On the contrary, positive slope 
values have been identified in the central and northwest-
ern parts of the study basin. Likewise, during the Kiremit 
season, the VCI spatial trend (2001–2019) was varied from 

Fig. 9   The spatial distribu-
tion of Belg season long-term 
average (2001–2019) VCI of the 
Upper Awash basin

Fig. 10   The spatial distribution 
of Kiremit season long-term 
average (2001–2019) VCI of the 
Upper Awash basin
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−6.7 to 5.8 (Fig. 13). In the Kiremit season, the negative VCI 
slope values were observed in the mid-northern (in and 
around Addis Ababa) and northwestern parts because of 
urban and industrial expansion. In contrast, positive VCI 
slope values were experienced in the eastern and western 
parts of the area (Fig. 13). The highest negative VCI trends 
(−6.7–−2.5) were experienced in the northern parts of the 
basin, and it indicates the potential drought and drought-
vulnerable area due to reductions in forests and shrub-
land areas. In the Kiremit season, negative VCI slope values 
have been identified in the built-up area and grassland 
area while negative VCI slope values have been identified 
in the forest and built-up areas during the Belg season. 
On the contrary, positive VCI slope values were identified 
in most of the cropland areas during the Belg and Kiremit 
seasons. Similarly, Qian et al. [33] find that the VCI trend 
was increased in most agricultural areas of China from 
1982 to 2010. The negative VCI trend area coverage was 
higher in the Belg season than the Kiremit season in the 
Upper Awash basin. Therefore, most drought vulnerable 

areas were observed in the Belg season than Kiremit sea-
son during the study periods (2001–2019) of the Upper 
Awash basin. The Belg season VCI spatial average tempo-
ral trend was decreased from 2001 to 2019 (Table 3) and 
indicating the decline of vegetation growth and the rise 
of drought. On the contrary, the Kiremit season VCI spatial 
average temporal trend was increased through 2001 to 
2019 (Table 3) and indicating the enhancement of vegeta-
tion growth and the decline of drought in the study area.

3.5 � Exceedance probability and return periods

The probability of exceedance (P(xm)) of the Upper 
Awash basin areal average VCI equal to or greater than 
35% and 50% during the analyzed years (2001–2019) in 
Belg and Kiremit season is shown in Fig. 14. The Belg sea-
son VCI corresponded to P(xm) of 0.65 and 0.5, respec-
tively, equivalent to or greater than 35% and 50%. 
These findings indicate that in the Upper Awash basin 
there was a 35% chance of severe drought occurring 

Fig. 11   The 2016 VCI drought classifications in Belg (a) and Kiremit (b) seasons and the 2016 LULC map (c) of the Upper awash basin
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(VCI < 35%) and a 50% chance of normal drought occur-
ring (35% < VCI < 50%). Similarly, the average VCI equal 
to or greater than 35% and 50% corresponded to P(xm) 
of 0.7 and 0.2, respectively, in the Kiremit season, which 

forecasts the likelihood of severe drought occurring and 
normal drought to be 30% and 80%, respectively.

The return period of the spatial average Belg VCI is 
equivalent to or greater than 35% and 50%, respectively, 

Fig. 12   The Belg season VCI 
slope spatial distribution 
in the Upper Awash basin 
(2001–2019)

Fig. 13   The Kiremit season 
VCI slope spatial distribution 
in the Upper Awash basin 
(2001–2019)
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was 1.54 and 2 years. Similarly, the return periods dur-
ing the Kiremit season of severe drought (VCI < 35%) 
and normal drought (35% < VCI < 50%) were 1.43 and 
5 years, respectively. Similarly, Kogan et al. [82]] reported 
that droughts affected the Horn of Africa (including the 
Upper Awash basin) annually. Besides, Gidey et al. [75] 
find that, from 2001 to 2015, the incidence of agricultural 
drought events in the low land areas of Raya was 10–11 
times higher. Moreover, Edossa et al. [45] reported that 
meteorological droughts occurred once in two years in 
the Upper Awash basin (Nazareth Area), which is consist-
ent with the findings of this study. The normal drought 
return cycle (35% < VCI < 50%) during the Kiremit season 
was less frequent than the Belg season. On the other hand, 
the return period of severe drought (VCI < 35%) during the 
Belg season was less frequent than the Kiremt season.

3.6 � Association between VCI and climate variability

The Pearson correlation coefficient (r) between spatial aver-
age VCI and precipitation was 0.64 and 0.10 for Belg and 
Kiremit seasons, respectively (Table 5). The positive corre-
lation between spatial mean VCI and precipitation implies 
that enhanced precipitation supports vegetation growth 
and drought reduction [83]. Similarly, a study conducted 
by Tiruneh et al. [84] reported a strong positive correlation 
(r = 0.62) between NDVI and precipitation during the Belg 

season from 2001 to 2016 in the Upper Awash basin. The 
result of this study also reported a weak positive correlation 
(r = 0.10) between VCI and precipitation during the Kiremit 
season in the Upper Awash basin. This weak correlation 
between precipitation and VCI during the kiremit season 
may be due to the signal saturation of certain biomass val-
ues, the lack of solar radiation used for photosynthesis due 
to cloud. Liou and Mulualem [40] reported a strong positive 
correlation (r = 0.83) between NDVI and precipitation during 
the Kiremit season in Ethiopia from 2001 to 2018. Likewise, 
Measho et al. [79] reported that a strong positive correlation 

Fig. 14   The exceedance 
probability (P(xm)) of VCI of 
Upper Awash basin equal to or 
greater than 35% and 50% on 
Belg (a) and Kiremit (b) seasons 
during the analyzed years 
(2001–2019)

Table 5   Relationship between VCI and climatic factors (LST, SST 
and precipitation)

r p-value r2

Correlation coefficients between VCI (%) and precipitation 
(2001–2019)

Kiremit 0.104 0.671 0.0109
Belg 0.643 0.003 0.4138
Correlation Coefficients between VCI (%) and LST (2001–2019)
Kiremit 0.065 0.792 0.0042
Belg −0.774 0.0001 0.599
Correlation coefficients between VCI (%) and SST (2001–2019)
Kiremit 0.163 0.504 0.0266
Belg 0.319 0.183 0.1019
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between mean annual NDVI and mean annual total precipi-
tation in Eritrea from 2000 to 2017. Dutta et al. [85] find a 
good agreement between the VCI value and rainfall anomaly 
index in India. Similarly, Wan et al. [86] also reported that the 
linear correlation between vegetation temperature index 
and monthly precipitation in the southern Great Plains of 
the USA.

The correlation between spatial average VCI and land 
surface temperature (LST) was negative (r =−0.77) and posi-
tive (r = 0.06) during Belg and Kiremit seasons, respectively 
(Table 5). These results indicate that land surface tempera-
ture (LST) was the main influencing factor on spatial aver-
age VCI during the Belg season. Similar to the finding of this 
research, Tiruneh et al. [84] find that the negative (r =−0.67) 
and positive (r = 0.41) correlations between spatial average 
NDVI and LST during Belg and Kiremit season, respectively, 
in the Upper Awash basin of Ethiopia from 2001 to 2016. The 
positive correlation between spatial mean VCI and LST dur-
ing the Kiremit season indicated that an increase in land sur-
face temperature caused an upward trend in the VCI, which 
implies a decline in drought. The result of this study was also 
supported by Baniya et al. [83] and reported that a positive 
correlation between the spatial average VCI and tempera-
ture in Nepal from 1982 to 2015 during annual and seasonal 
monsoon time scales. A study undertaken by Qian et al. [33] 
also reported the strong positive correlation between VCI 
and mean annual temperature in the agricultural area of 
China from1982 to 2010. The increased land surface tem-
perature will enhance vegetation growth by an accelerated 
release of nutrients and improved availability from the soil 
until the optimum temperature for photosynthesis [83, 87]. 
A similar result was also reported in this study during the 
Kiremit season. On the contrary, Liou and Mulualem [40] 
reported a strong negative correlation (r =−0.76) between 
NDVI and LST during the Kiremit season in Ethiopia from 
2001 to 2018.

The Pearson correlation coefficient (r) between spatial 
mean VCI and SST was 0.32 and 0.106 for Belg and Kiremit 
seasons, respectively (Table 5). Likewise, Tiruneh et al. [84] 
find the positive correlation, r = 0.42 and r = 0.22, between 
the spatial mean NDVI and SST anomaly during Belg and 
Kiremit season, respectively, in the Upper Awash basin. 
Similar to the finding of this research, Philippon et al. [88] 
reported that a positive correlation between NDVI and 
NINO 3.4 SSTA in the autumn season over northwestern 
Africa.

4 � Conclusion

This study investigated the spatiotemporal variability 
of agricultural drought and its association with climatic 
variables in the Upper Awash basin of Ethiopia. High 

spatiotemporal variability of drought was observed across 
the study area during Kiremit and Belg seasons. The results 
of this study revealed that severe droughts occurred in 
the years 2008, 2009, 2011, 2012, 2013, 2014, and 2015 
while normal droughts were observed in 2002, 2016, and 
2019 years in the Belg season. Likewise, in the Kiremit sea-
son, the severe drought years were identified in the years 
2003, 2009, 2010, 2012, and 2014, whereas normal drought 
years were identified during 2001—2016 except 2003, 
2009, 2010, 2012, and 2014 years in Upper Awash basin. 
The Belg season spatial average VCI trends were decreased, 
whereas the Kiremit season spatial mean VCI trends were 
increased during the studied periods (2001–2019). How-
ever, the decreasing and increasing trends of VCI were 
not statistically significant at a 5% significant level. The 
decreasing trend of VCI in the Belg season indicates the 
increasing trend of agricultural drought while the increas-
ing trend of VCI in the Kiremit season shows the decreas-
ing trend of drought in the basin. In the Belg season, the 
most severe drought years were identified in Woyna Dega 
AEZ whereas most none drought years were found in High 
Dega AEZ. Similarly, during the Kiremit season, the most 
severe drought years were observed in Woyna Dega and 
High Dega AEZs, while most none drought years were 
experienced in Dega AEZ. In the Kiremit season, areas iden-
tified with severe droughts were mostly cropland areas, 
while in the Belg season, the most severe drought areas 
were identified in most cropland areas and some built-
up areas in the basin. The return period of severe drought 
(VCI < 35%) during the Belg season was less frequent than 
the Kiremt season. The correlation between spatial mean 
VCI and precipitation was 0.64 and 0.10 for Belg and Kiremit 
seasons, respectively. Likewise, the correlation between 
spatial average VCI and land surface temperature (LST) 
was negative (r =−0.77) for Belg and positive (r = 0.06) for 
the Kiremit season in the basin. Moreover, the correlation 
between spatial mean VCI and Pacific Ocean sea surface 
temperature (SST) was 0.32 and 0.106 for Belg and Kire-
mit seasons, respectively. Generally, precipitation and LST 
were the main influencing factors on VCI during the Belg 
season in the basin. Therefore, the findings of this study 
can be used as a useful information source on spatiotem-
poral variability of drought and its association with cli-
matic variables in the drought-prone areas of the Upper 
Awash basin for policy-makers and planners for establish-
ing effective and comprehensive monitoring and early 
warning system to reduce the adverse impacts of drought.

Funding  The research was fully self-funded.

Data availability  The data for this research can be accessed from. 
https://​lpdaac.​usgs.​gov/​produ​cts/​mod44​bv006/#​tools, http://​www.​

https://lpdaac.usgs.gov/products/mod44bv006/#tools
http://www.cgd.ucar.edu/cas/catalog/climind/TNI_N34/index.html


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:465 | https://doi.org/10.1007/s42452-021-04471-1

cgd.​ucar.​edu/​cas/​catal​og/​climi​nd/​TNI_​N34/​index.​html, andhttps://​
data.​chc.​ucsb.​edu/​produ​cts/​CHIRPS-​2.0/.

Declarations 

Conflicts of interest  The authors declare that there is no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as 
long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

	 1.	 Winkler K, Gessner U, Hochschild V (2017) Identifying droughts 
affecting agriculture in Africa based on remote sensing time 
series between 2000-2016: rainfall anomalies and vegetation 
condition in the context of ENSO. Remote Sens. https://​doi.​org/​
10.​3390/​rs908​0831

	 2.	 Heim RR (2002) A review of twentieth-century drought indices 
used in the United States. Bull Am Meteor Soc 83(8):1149–1165

	 3.	 Zhang A, Jia G (2013) Monitoring meteorological drought in 
semiarid regions using multi-sensor microwave remote sens-
ing data. Remote Sens Environ 134:12–23. https://​doi.​org/​10.​
1016/j.​rse.​2013.​02.​023

	 4.	 Sona NT, Chen CF, Chen CR, Chang LY, Minh VQ (2012) Moni-
toring agricultural drought in the lower mekong basin using 
MODIS NDVI and land surface temperature data. Int. J Appl 
Earth Ob Geoinf 18(1):417–427. https://​doi.​org/​10.​1016/j.​jag.​
2012.​03.​014

	 5.	 Udmale P, Ichikawa Y, Manandhar S, Ishidaira H, Kiem AS (2014) 
Farmers’ perception of drought impacts, local adaptation and 
administrative mitigation measures in Maharashtra State India. 
Int J Disaster Risk Reduct 10:250–269. https://​doi.​org/​10.​1016/j.​
ijdrr.​2014.​09.​011

	 6.	 AghaKouchak A, Feldman D, Hoerling M, Huxman T, Lund J 
(2015) Water and climate: recognize anthropogenic drought. 
Nature 524(7566):409–411. https://​doi.​org/​10.​1038/​52440​9a

	 7.	 Van Loon AF et al (2016) Drought in a human-modified world: 
Reframing drought definitions, understanding, and analysis 
approaches. Hydrol Earth Syst Sci 20(9):3631–3650. https://​doi.​
org/​10.​5194/​hess-​20-​3631-​2016

	 8.	 Guo E et al (2017) Assessing spatiotemporal variation of drought 
and its impact on maize yield in Northeast China. J Hydrol 
553:231–247. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2017.​07.​060

	 9.	 Cunha APM, Alvalá RC, Nobre CA, Carvalho MA (2015) Moni-
toring vegetative drought dynamics in the Brazilian semiarid 
region Agric For. Meteorol 214–215:494–505. https://​doi.​org/​
10.​1016/j.​agrfo​rmet.​2015.​09.​010

	10.	 Zhang J, Mu Q, Huang J (2016) Assessing the remotely sensed 
drought severity index for agricultural drought monitoring and 

impact analysis in North China. Ecol Indic 63:296–309. https://​
doi.​org/​10.​1016/j.​ecoli​nd.​2015.​11.​062

	11.	 Cong D, Zhao S, Chen C, Duan Z (2017) Characterization of 
droughts during 2001–2014 based on remote sensing: a case 
study of Northeast China. Ecol Inform 39:56–67. https://​doi.​org/​
10.​1016/j.​ecoinf.​2017.​03.​005

	12.	 Rulinda CM, Dilo A, Bijker W, Stein A (2012) Characterising and 
quantifying vegetative drought in East Africa using fuzzy model-
ling and NDVI data. J Arid Environ 78:169–178. https://​doi.​org/​
10.​1016/j.​jarid​env.​2011.​11.​016

	13.	 Liang L, Sun Q, Luo X, Wang J, Zhang L, Deng M et al (2017) 
Long-term spatial and temporal variations of vegetative 
drought based on vegetation condition index in China. Eco-
sphere. https://​doi.​org/​10.​1002/​ecs2.​1919

	14.	 Mendicino G, Senatore A, Versace P (2008) A Groundwater 
Resource Index (GRI) for drought monitoring and forecast-
ing in a mediterranean climate. J Hydrol 357(3–4):282–302. 
https://​doi.​org/​10.​1016/j.​jhydr​ol.​2008.​05.​005

	15.	 Mirabbasi R, Anagnostou EN, Fakheri-Fard A, Dinpashoh 
Y, Eslamian S (2013) Analysis of meteorological drought in 
northwest Iran using the Joint deficit index. J Hydrol 492:35–
48. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2013.​04.​019

	16.	 Shen Q, Liang L, Luo X, Li Y, Zhang L (2017) Analysis of the spa-
tial-temporal variation characteristics of vegetative drought 
and its relationship with meteorological factors in China from 
1982 to 2010. Environ Monit Assess. https://​doi.​org/​10.​1007/​
s10661-​017-​6187-9

	17.	 Han Y, Li Z, Huang C, Zhou Y, Zong S, Hao T et al (2020) Moni-
toring droughts in the greater changbai mountains using 
multiple remote sensing-based drought indices. Remote Sens. 
https://​doi.​org/​10.​3390/​rs120​30530

	18.	 Townshend JRG, Justice CO (2002) Towards operational moni-
toring of terrestrial systems by moderate-resolution remote 
sensing. Remote Sens Environ 83(1–2):351–359. https://​doi.​
org/​10.​1016/​S0034-​4257(02)​00082-2

	19.	 Johnson GE, Achutuni VR, Thiruvengadachari S, Kogan F (1993) 
The role of NOAA satellite data in drought early warning and 
monitoring: selected case studies”, in drought assessment. 
Manage, Plan: Theory Case Stud 1993:31–47

	20.	 Peters AJ, Walter-Shea EA, Ji L, Viña A, Hayes M, Svoboda MD 
(2002) Drought monitoring with NDVI-based standardized 
vegetation index. Photogramm Eng Remote Sens 68(1):71–75

	21.	 Choi M, Jacobs JM, Anderson MC, Bosch DD (2013) Evaluation 
of drought indices via remotely sensed data with hydrologi-
cal variables. J Hydrol 476:265–273. https://​doi.​org/​10.​1016/j.​
jhydr​ol.​2012.​10.​042

	22.	 Kogan FN (1990) Remote sensing of weather impacts on 
vegetation in non-homogeneous areas. Int J Remote Sens 
11(8):1405–1419. https://​doi.​org/​10.​1080/​01431​16900​89551​
02

	23.	 Hou YY, He YB, Liu QH, Tian GL (2007) Research progress on 
drought indices”. Chin J Ecol 26(6):892–897

	24.	 Tonini F, Lasinio GJ, Hochmair HH (2012) Mapping return levels 
of absolute NDVI variations for the assessment of drought risk 
in Ethiopia. Int J Appl Earth Obs Geoinf 18(1):564–572. https://​
doi.​org/​10.​1016/j.​jag.​2012.​03.​018

	25.	 Tadesse T et  al (2015) Assessing the vegetation condition 
impacts of the 2011 drought across the U.S. southern great 
plains using the vegetation drought response index VegDRI. J 
Appl Meteorol Climatol 54(1):153–169. https://​doi.​org/​10.​1175/​
JAMC-D-​14-​0048.1

	26.	 Skakun S, Kussul N, Shelestov A, Kussul O (2016) The use of satel-
lite data for agriculture drought risk quantification in Ukraine. 
Geomat Nat Hazards Risk 7(3):901–917. https://​doi.​org/​10.​1080/​
19475​705.​2015.​10165​55

http://www.cgd.ucar.edu/cas/catalog/climind/TNI_N34/index.html
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs9080831
https://doi.org/10.3390/rs9080831
https://doi.org/10.1016/j.rse.2013.02.023
https://doi.org/10.1016/j.rse.2013.02.023
https://doi.org/10.1016/j.jag.2012.03.014
https://doi.org/10.1016/j.jag.2012.03.014
https://doi.org/10.1016/j.ijdrr.2014.09.011
https://doi.org/10.1016/j.ijdrr.2014.09.011
https://doi.org/10.1038/524409a
https://doi.org/10.5194/hess-20-3631-2016
https://doi.org/10.5194/hess-20-3631-2016
https://doi.org/10.1016/j.jhydrol.2017.07.060
https://doi.org/10.1016/j.agrformet.2015.09.010
https://doi.org/10.1016/j.agrformet.2015.09.010
https://doi.org/10.1016/j.ecolind.2015.11.062
https://doi.org/10.1016/j.ecolind.2015.11.062
https://doi.org/10.1016/j.ecoinf.2017.03.005
https://doi.org/10.1016/j.ecoinf.2017.03.005
https://doi.org/10.1016/j.jaridenv.2011.11.016
https://doi.org/10.1016/j.jaridenv.2011.11.016
https://doi.org/10.1002/ecs2.1919
https://doi.org/10.1016/j.jhydrol.2008.05.005
https://doi.org/10.1016/j.jhydrol.2013.04.019
https://doi.org/10.1007/s10661-017-6187-9
https://doi.org/10.1007/s10661-017-6187-9
https://doi.org/10.3390/rs12030530
https://doi.org/10.1016/S0034-4257(02)00082-2
https://doi.org/10.1016/S0034-4257(02)00082-2
https://doi.org/10.1016/j.jhydrol.2012.10.042
https://doi.org/10.1016/j.jhydrol.2012.10.042
https://doi.org/10.1080/01431169008955102
https://doi.org/10.1080/01431169008955102
https://doi.org/10.1016/j.jag.2012.03.018
https://doi.org/10.1016/j.jag.2012.03.018
https://doi.org/10.1175/JAMC-D-14-0048.1
https://doi.org/10.1175/JAMC-D-14-0048.1
https://doi.org/10.1080/19475705.2015.1016555
https://doi.org/10.1080/19475705.2015.1016555


Vol.:(0123456789)

SN Applied Sciences (2021) 3:465 | https://doi.org/10.1007/s42452-021-04471-1	 Research Article

	27.	 Kogan FN (1995) Droughts of the late 1980s in the United 
States as derived from NOAA polar-orbiting satellite data. Bull 
Am Meteorol Soc 76(5):655–668. https://​doi.​org/​10.​1175/​1520-​
0477(1995)​076%​3c0655:​DOTLIT%​3e2.0.​CO;2

	28.	 Kogan FN (1995) Application of vegetation index and brightness 
temperature for drought detection. Adv Sp Res 15(11):91–100. 
https://​doi.​org/​10.​1016/​0273-​1177(95)​00079-T

	29.	 Liu WT, Kogan FN (1996) Monitoring regional drought using 
the vegetation condition index. Int J Remote Sens 17(14):2761–
2782. https://​doi.​org/​10.​1080/​01431​16960​89491​06

	30.	 Domenikiotis C, Spiliotopoulos M, Tsiros E, Dalezios NR (2004) 
Early cotton yield assessment by the use of the NOAA/AVHRR 
derived vegetation condition index (VCI) in Greece. Int J Remote 
Sens 25(14):2807–2819. https://​doi.​org/​10.​1080/​01431​16031​
00016​32729

	31.	 Quiring SM, Ganesh S (2010) Evaluating the utility of the veg-
etation condition index (VCI) for monitoring meteorological 
drought in Texas. Agric For Meteorol 150(3):330–339. https://​
doi.​org/​10.​1016/j.​agrfo​rmet.​2009.​11.​015

	32.	 Deng M, Di L, Han W, Yagci AL, Peng C, Heo G (2013) Web-
service-based monitoring and analysis of global agricultural 
drought. Photogramm Eng Remote Sens 79(10):929–943. 
https://​doi.​org/​10.​14358/​PERS.​79.​10.​929

	33.	 Qian X, Liang L, Shen Q, Sun Q, Zhang L, Liu Z et  al (2016) 
Drought trends based on the VCI and its correlation with climate 
factors in the agricultural areas of China from 1982 to 2010. Envi-
ron Monit Assess. https://​doi.​org/​10.​1007/​s10661-​016-​5657-9

	34.	 Kogan F, Salazar L, Roytman L (2012) Forecasting crop produc-
tion using satellite-based vegetation health indices in Kansas, 
USA. Int J. Remote Sens 33(9):2798–2814. https://​doi.​org/​10.​
1080/​01431​161.​2011.​621464

	35.	 Jiao W, Zhang L, Chang Q, Fu D, Cen Y, Tong Q (2016) Evalu-
ating an enhanced vegetation condition index (VCI) based on 
VIUPD for drought monitoring in the continental United States. 
Remote Sens. https://​doi.​org/​10.​3390/​rs803​0224

	36.	 Wang K, Li T, Wei J (2019) Exploring drought conditions in the 
three river headwaters region from 2002 to 2011 using multiple 
drought indices. Water (Switz). https://​doi.​org/​10.​3390/​w1102​
0190

	37.	 Ayana EK, Ceccato P, Fisher JRB, DeFries R (2016) Examining the 
relationship between environmental factors and conflict in pas-
toralist areas of East Africa. Sci Total Environ 557–558:601–611. 
https://​doi.​org/​10.​1016/j.​scito​tenv.​2016.​03.​102

	38.	 Gebremeskel G, Tang Q, Sun S, Huang Z, Zhang X, Liu X (2019) 
Droughts in East Africa: causes, impacts and resilience. Earth 
Sci Rev 193:146–161. https://​doi.​org/​10.​1016/j.​earsc​irev.​2019.​
04.​015

	39.	 Qu C, Hao X, Qu JJ (2019) Monitoring extreme agricultural 
drought over the Horn of Africa (HOA) using remote sensing 
measurements. Remote Sens. https://​doi.​org/​10.​3390/​rs110​
80981

	40.	 Liou YA, Mulualem GM (2019) Spatio-temporal assessment of 
drought in Ethiopia and the impact of recent intense droughts. 
Remote Sens 11(15):1–19. https://​doi.​org/​10.​3390/​rs111​51828

	41.	 Philip S, Kew SF, van Oldenborgh GJ, Otto F, O’Keefe S, Haustein 
K et al (2018) Attribution analysis of the Ethiopian drought 
of 2015. J Clim 31(6):2465–2486. https://​doi.​org/​10.​1175/​
JCLI-D-​17-​0274.1

	42.	 Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S 
et al (2015) The climate hazards infrared precipitation with sta-
tions - A new environmental record for monitoring extremes. 
Sci Data. https://​doi.​org/​10.​1038/​sdata.​2015.​66

	43.	 Camberlin P (1997) Rainfall anomalies in the source region of the 
Nile and their connection with the Indian summer monsoon. J 
Clim 10(6):1380–1392. https://​doi.​org/​10.​1175/​1520-​0442

	44.	 Desalegn CE, Babel MS, Das GA, Seleshi BA, Merrey D (2006) 
Farmers’ perception of water management under drought con-
ditions in the Upper Awash basin Ethiopia. Int J Water Resour 
Dev 22(4):589–602. https://​doi.​org/​10.​1080/​07900​62060​07797​
23

	45.	 Edossa DC, Babel MS, Gupta AD (2010) Drought analysis in the 
Awash River basin. Ethiopia Water Resour Manag 24(7):1441–
1460. https://​doi.​org/​10.​1007/​s11269-​009-​9508-0

	46.	 Abdisa A (2015) Seasonal climate prediction for rain-fed crop 
production planning in the Upper Awash Basin , central high 
land of Ethiopia. Unpubl Master thesis , Haramaya University

	47.	 Tesfamariam E (2016) Characterizing the Hydro-climatic 
Deficient Moisture to Monitor Agricultural Drought by Using 
Remote Sensing: The Case of Upper Awash Basin, Ethiopia. 
Unpubl Master thesis, Addis Ababa University

	48.	 Mengistu D (2008) Regional flood frequency analysis for Upper 
Awash Sub Basin (UPSTREAM OF KOKA). Unpubl Master thesis, 
Addis Ababa University

	49.	 Babu A (2009) The impact of Pacific sea surface temperature 
on the Ethiopian rainfall". Workshop on High Impact Weather 
Predictability Information Systemfor Africa and AMMA THORPEX 
Forecasters. Trieste, Italy: National Meteorological Agency

	50.	 Zaroug M (2010) The connections of Pacific SST and drought 
over East Africa". DEWFORA meeting at ECMWF, Improved 
Drought Early Warning and FORecasting to strengthen prepar-
edness and adaptation to droughts in Africa (DEWFORA), United 
Kingdom, 4–5 October

	51.	 Gella GW (2018) Impacts of integrated soil and water conser-
vation programs on vegetation regeneration and productiv-
ity as indicator of ecosystem health in Guna-Tana watershed: 
evidences from satellite imagery. Environ Syst Res 7(1):1–14. 
https://​doi.​org/​10.​1186/​s40068-​018-​0105-1

	52.	 Rocchini D, Metz M, Ricotta C, Landa M, Frigeri A, Neteler M 
(2013) Fourier transforms for detecting multitemporal land-
scape fragmentation by remote sensing. Int J Remote Sens 
34(24):8907–8916. https://​doi.​org/​10.​1080/​01431​161.​2013.​
853896

	53.	 Asfaw A, Simane B, Hassen A, Bantider A (2018) Variability and 
time series trend analysis of rainfall and temperature in north-
central Ethiopia: a case study in Woleka sub-basin. Weather Clim 
Extrem 19:29–41. https://​doi.​org/​10.​1016/j.​wace.​2017.​12.​002

	54.	 Dinku T et al (2018) Validation of the CHIRPS satellite rainfall 
estimates over eastern Africa. QJRMeteorol Soc 144:292–312. 
https://​doi.​org/​10.​1002/​qj.​3244

	55.	 Belay AS, Fenta AA, Yenehun A, Nigate F, Tilahun SA, Moges MM 
et al (2019) Evaluation and application of multi-source satellite 
rainfall product CHIRPS to assess spatio-temporal rainfall vari-
ability on data-sparse western margins of Ethiopian highlands. 
Remote Sens 11(22):1–22. https://​doi.​org/​10.​3390/​rs112​22688

	56.	 Dinku T, Funk C, Peterson P, Maidment R, Tadesse T, Gadain H 
et al (2018) Validation of the CHIRPS satellite rainfall estimates 
over eastern Africa. Q J R Meteorol Soc 144:292–312. https://​doi.​
org/​10.​1002/​qj.​3244

	57.	 Traore SS, Landmann T, Forkuo EK, Traore PCS (2014) Assessing 
long-term trends In vegetation productivity change over the 
Bani River basin in mali West Africa. J GeogrEarth Sci. https://​
doi.​org/​10.​15640/​jges.​v2n2a2

	58.	 Ly S, Charles C, Degré A (2011) Geostatistical interpolation of 
daily rainfall at catchment scale: the use of several variogram 
models in the Ourthe and Ambleve catchments, Belgium. 
Hydrol Earth Syst Sci 15:2259–2274. https://​doi.​org/​10.​5194/​
hess-​15-​2259-​2011

	59.	 Alemu MM, Bawoke GT (2019) Analysis of spatial variability 
and temporal trends of rainfall in Amhara region. J Water Clim 
Chang, Ethiopia. https://​doi.​org/​10.​2166/​wcc.​2019.​084

https://doi.org/10.1175/1520-0477(1995)076%3c0655:DOTLIT%3e2.0.CO;2
https://doi.org/10.1175/1520-0477(1995)076%3c0655:DOTLIT%3e2.0.CO;2
https://doi.org/10.1016/0273-1177(95)00079-T
https://doi.org/10.1080/01431169608949106
https://doi.org/10.1080/01431160310001632729
https://doi.org/10.1080/01431160310001632729
https://doi.org/10.1016/j.agrformet.2009.11.015
https://doi.org/10.1016/j.agrformet.2009.11.015
https://doi.org/10.14358/PERS.79.10.929
https://doi.org/10.1007/s10661-016-5657-9
https://doi.org/10.1080/01431161.2011.621464
https://doi.org/10.1080/01431161.2011.621464
https://doi.org/10.3390/rs8030224
https://doi.org/10.3390/w11020190
https://doi.org/10.3390/w11020190
https://doi.org/10.1016/j.scitotenv.2016.03.102
https://doi.org/10.1016/j.earscirev.2019.04.015
https://doi.org/10.1016/j.earscirev.2019.04.015
https://doi.org/10.3390/rs11080981
https://doi.org/10.3390/rs11080981
https://doi.org/10.3390/rs11151828
https://doi.org/10.1175/JCLI-D-17-0274.1
https://doi.org/10.1175/JCLI-D-17-0274.1
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1175/1520-0442
https://doi.org/10.1080/07900620600779723
https://doi.org/10.1080/07900620600779723
https://doi.org/10.1007/s11269-009-9508-0
https://doi.org/10.1186/s40068-018-0105-1
https://doi.org/10.1080/01431161.2013.853896
https://doi.org/10.1080/01431161.2013.853896
https://doi.org/10.1016/j.wace.2017.12.002
https://doi.org/10.1002/qj.3244
https://doi.org/10.3390/rs11222688
https://doi.org/10.1002/qj.3244
https://doi.org/10.1002/qj.3244
https://doi.org/10.15640/jges.v2n2a2
https://doi.org/10.15640/jges.v2n2a2
https://doi.org/10.5194/hess-15-2259-2011
https://doi.org/10.5194/hess-15-2259-2011
https://doi.org/10.2166/wcc.2019.084


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:465 | https://doi.org/10.1007/s42452-021-04471-1

	60.	 Tesfamariam BG, Gessesse B, Melgani F (2019) Characterizing 
the spatiotemporal distribution of meteorological drought as a 
response to climate variability: the case of rift valley lakes basin 
of Ethiopia. Weather Clim Extrem 26:100237. https://​doi.​org/​10.​
1016/j.​wace.​2019.​100237

	61.	 Mao K, Qin Z, Shi J, Gong P (2005) A practical split-window algo-
rithm for retrieving land-surface temperature from MODIS data. 
Int J Remote Sens 26(15):3181–3204. https://​doi.​org/​10.​1080/​
01431​16050​00447​13

	62.	 Mao K, Shi J, Li ZL, Tang H (2007) An RM-NN algorithm for retriev-
ing land surface temperature and emissivity from EOS/MODIS 
data. J Geophys Res Atmos. https://​doi.​org/​10.​1029/​2007J​
D0084​28

	63.	 Kogan FN (1997) Global drought watch from space. Bull Am 
Meteorol Soc 78(4):621–636. https://​doi.​org/​10.​1175/​1520-​0477

	64.	 Rimkus E, Stonevicius E, Kilpys J, MacIulyte V, Valiukas D (2017) 
Drought identification in the eastern Baltic region using 
NDVI. Earth Syst Dyn 8(3):627–637. https://​doi.​org/​10.​5194/​
esd-8-​627-​2017

	65.	 Zhang G, Xu X, Zhou C, Zhang H, Ouyang H (2011) Responses of 
grassland vegetation to climatic variations on different temporal 
scales in Hulun Buir Grassland in the past 30 years. J Geogr Sci 
21(4):634–650. https://​doi.​org/​10.​1007/​s11442-​011-​0869-y

	66.	 Mekonen AA, Berlie AB, Ferede MB (2020) Spatial and tempo-
ral drought incidence analysis in the northeastern highlands 
of Ethiopia. Geoenviron Disasters. https://​doi.​org/​10.​1186/​
s40677-​020-​0146-4

	67.	 Sen PK (1968) Estimates of the regression coefficient based on 
Kendall’s Tau. J Am Stat Assoc 63(324):1379–1389. https://​doi.​
org/​10.​1080/​01621​459.​1968.​10480​934

	68.	 Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and 
Spearman’s rho tests for detecting monotonic trends in hydro-
logical series. J Hydrol 259:254–271. https://​doi.​org/​10.​1016/​
S0022-​1694(01)​00594-7

	69.	 Mann HB (1945) Nonparametric tests against trend. Economet-
rica 13(3):245. https://​doi.​org/​10.​2307/​19071​87

	70.	 Hamlaoui-Moulai L, Mesbah M, Souag-Gamane D, Medjerab A 
(2013) Detecting hydro-climatic change using spatiotemporal 
analysis of rainfall time series in Western Algeria. Nat Hazards 
65(3):1293–1311. https://​doi.​org/​10.​1007/​s11069-​012-​0411-2

	71.	 Reddy A, PJR, (2008) Text Book of Hydrology. University Science 
Press, New Delhi

	72.	 Guo W, Ni X, Jing D, Li S (2014) Spatial-temporal patterns of veg-
etation dynamics and their relationships to climate variations in 
Qinghai Lake Basin using MODIS time-series data. J Geogr Sci 
24(6):1009–1021. https://​doi.​org/​10.​1007/​s11442-​014-​1134-y

	73.	 Mu S et al (2013) Spatio-temporal dynamics of vegetation cov-
erage and its relationship with climate factors in Inner Mongo-
lia. China. J Geogr Sci 23(2):231–246. https://​doi.​org/​10.​1007/​
s11442-​013-​1006-x

	74.	 Ayehu GT, Tadesse T, Gessesse B, Dinku T (2018) Validation of 
new satellite rainfall products over the Upper Blue Nile Basin. 
Atmos Meas Tech 11(4):1921–1936. https://​doi.​org/​10.​5194/​
amt-​11-​1921-​2018

	75.	 Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A (2018) 
Analysis of the long-term agricultural drought onset, cessation, 
duration, frequency, severity and spatial extent using Vegeta-
tion Health Index (VHI) in Raya and its environs. Environ Syst Res. 
https://​doi.​org/​10.​1186/​s40068-​018-​0115-z

	76.	 Hurni H (1998) Agroecological belts of Ethiopia explanatory 
notes on three maps at a scale of 1:1,000,000. Soil Conservation 
Research Programme Ethiopia Research Report, Addis Ababa

	77.	 Altieri MA et al (2015) Agroecology and the design of climate 
change-resilient farming systems: review article. Sustain Dev, 
Agron. https://​doi.​org/​10.​1007/​s13593-​015-​0285-2.​Sprin​ger

	78.	 Luana S, Hou X (2015) Wang Y (2015) Assessing the accuracy of 
srtm dem and aster dem datasets for the coastal zone of shan-
dong province. Eastern China Polish Maritime Res 22(86):15–20. 
https://​doi.​org/​10.​1515/​pomr-​2015-​0026,2015S1

	79.	 Measho S, Chen B, Trisurat Y, Pellikka P, Guo L, Arunyawat S 
et al (2019) Spatio-temporal analysis of vegetation dynamics 
as a response to climate variability and drought patterns in the 
Semiarid Region. Remote Sens, Eritrea. https://​doi.​org/​10.​3390/​
RS110​60724

	80.	 Shawul AA, Chakma S, Melesse AM (2019) The response of water 
balance components to land cover change based on hydrologic 
modeling and partial least squares regression (PLSR) analysis in 
the Upper Awash Basin. J Hydrol. Reg Stud 26:100640. https://​
doi.​org/​10.​1016/j.​ejrh.​2019.​100640

	81.	 Shawul AA, Chakma S (2019) Spatiotemporal detection of land 
use/land cover change in the large basin using integrated 
approaches of remote sensing and GIS in the Upper Awash 
basin. Ethiopia Environ Earth Sci 78(5):141

	82.	 Kogan F, Guo W, Strashnaia A, Kleshenko A, Chub O, Virchenko 
O (2016) Modelling and prediction of crop losses from NOAA 
polar-orbiting operational satellites. Geomatics Nat Hazards Risk 
7(3):886–900. https://​doi.​org/​10.​1080/​19475​705.​2015.​10091​78

	83.	 Baniya B, Tang Q, Xu X, Haile GG, Chhipi-Shrestha G (2019) Spa-
tial and temporal variation of drought based on satellite derived 
vegetation condition index in Nepal from 1982–2015. Sensors. 
https://​doi.​org/​10.​3390/​s1902​0430

	84.	 Tiruneh GB, Gessesse B, Besha T, Workineh G (2018) Evaluating 
the Association between Climate Variability and Vegetation 
Dynamics by Using Remote Sensing Techniques The Case of 
Upper Awash Basin Ethiopia. World J Agric Res, 6(4):153–66. 
https://​doi.​org/​10.​12691/​wjar-6-​4-6.

	85.	 Dutta D, Kundu A, Patel NR, Saha SK, Siddiqui AR (2015) Assess-
ment of agricultural drought in Rajasthan (India) using remote 
sensing derived vegetation condition index (VCI) and stand-
ardized precipitation index (SPI). Egypt J Remote Sens Sp Sci 
18(1):53–63. https://​doi.​org/​10.​1016/j.​ejrs.​2015.​03.​006

	86.	 Wan Z, Wang P, Li X (2004) Using MODIS land surface tempera-
ture and normalized difference vegetation index products for 
monitoring drought in the southern great plains. Int J Remote 
Sens 25(1):61–72. https://​doi.​org/​10.​1080/​01431​16031​00011​
5328

	87.	 Michaletz ST, Cheng D, Kerkhoff AJ, Enquist BJ (2014) Conver-
gence of terrestrial plant production across global climate gradi-
ents. Nature 512(1):39–43. https://​doi.​org/​10.​1038/​natur​e13470

	88.	 Philippon N, Martiny N, Camberlin P, Hoffman MT, Gond V 
(2014) Timing and patterns of the ENSO signal in Africa over 
the last 30 years: insights from normalized difference vegeta-
tion index data. J Clim 7(7):2509–2532. https://​doi.​org/​10.​1175/​
JCLI-D-​13-​00365.1

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.wace.2019.100237
https://doi.org/10.1016/j.wace.2019.100237
https://doi.org/10.1080/01431160500044713
https://doi.org/10.1080/01431160500044713
https://doi.org/10.1029/2007JD008428
https://doi.org/10.1029/2007JD008428
https://doi.org/10.1175/1520-0477
https://doi.org/10.5194/esd-8-627-2017
https://doi.org/10.5194/esd-8-627-2017
https://doi.org/10.1007/s11442-011-0869-y
https://doi.org/10.1186/s40677-020-0146-4
https://doi.org/10.1186/s40677-020-0146-4
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.1016/S0022-1694(01)00594-7
https://doi.org/10.1016/S0022-1694(01)00594-7
https://doi.org/10.2307/1907187
https://doi.org/10.1007/s11069-012-0411-2
https://doi.org/10.1007/s11442-014-1134-y
https://doi.org/10.1007/s11442-013-1006-x
https://doi.org/10.1007/s11442-013-1006-x
https://doi.org/10.5194/amt-11-1921-2018
https://doi.org/10.5194/amt-11-1921-2018
https://doi.org/10.1186/s40068-018-0115-z
https://doi.org/10.1007/s13593-015-0285-2.Springer
https://doi.org/10.1515/pomr-2015-0026,2015S1
https://doi.org/10.3390/RS11060724
https://doi.org/10.3390/RS11060724
https://doi.org/10.1016/j.ejrh.2019.100640
https://doi.org/10.1016/j.ejrh.2019.100640
https://doi.org/10.1080/19475705.2015.1009178
https://doi.org/10.3390/s19020430
https://doi.org/10.12691/wjar-6-4-6
https://doi.org/10.1016/j.ejrs.2015.03.006
https://doi.org/10.1080/0143116031000115328
https://doi.org/10.1080/0143116031000115328
https://doi.org/10.1038/nature13470
https://doi.org/10.1175/JCLI-D-13-00365.1
https://doi.org/10.1175/JCLI-D-13-00365.1

	Spatiotemporal variability of agricultural drought and its association with climatic variables in the Upper Awash Basin, Ethiopia
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Description of the study area
	2.2 Data types and sources
	2.3 Remote sensing data processing
	2.4 Methods for identifying drought
	2.5 Trend detection of the VCI drought index
	2.6 Exceedance probability and return periods
	2.7 Correlation analysis of the VCI and climate variability

	3 Results and discussion
	3.1 Evaluation of CHIRPS precipitation data
	3.2 Temporal variation of vegetation condition index (VCI)
	3.2.1 Belg and Kiremit seasons yearly variations of drought index (VCI)
	3.2.2 Belg and Kiremit season yearly variation of vegetation condition index (VCI) across agro-ecological zones (AEZs)

	3.3 Spatial variation of VCI
	3.4 Spatial and temporal drought trends
	3.5 Exceedance probability and return periods
	3.6 Association between VCI and climate variability

	4 Conclusion
	References




