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Abstract
In this paper, a new nature-inspire meta-heuristic algorithm called future search algorithm (FSA) is proposed for the first 
time to solve the simultaneous optimal allocation of distribution generation (DG) and electric vehicle (EV) fleets consid-
ering techno-environmental aspects in the operation and control of radial distribution networks (RDN). By imitating the 
human behavior in getting fruitful life, the FSA starts arbitrary search, discovers neighborhood best people in different 
nations and looks at worldwide best individuals to arrive at an ideal solution. A techno-environmental multi-objective 
function is formulated using real power loss, voltage stability index. The active and reactive power compensation limits 
and different operational constraints of RDN are considered while minimizing the proposed objective function. Post 
optimization, the impact of DGs on conventional energy sources is analyzed by evaluating their greenhouse gas emission. 
The effectiveness of the proposed methodology is presented using different case studies on Indian practical 106-bus 
agriculture feeder for DGs and 36-bus rural residential feeder for simultaneous allocation of DGs and EV fleets. Also, the 
superiority of FSA in terms of global optima, convergence characteristics is compared with various other recent heuristic 
algorithms.

Keywords  Electric distribution networks · Loss minimization · Voltage stability enhancement · Distributed generation · 
Electric vehicle fleet · Greenhouse gas emission minimization

1  Introduction

The exhausting fuel sources for conventional energy 
sources (CES), non-expanding transmission and distribu-
tion networks and ever increasing demand for electric-
ity have made the power system operation and control 
very complex. On the other side, the dependency on CES 
is considerably high for energy balance and causing for 
greenhouse gases (GHG) emission and consequently con-
tributing for environment pollution significantly. Under 
these circumstances, integration of renewable energy 

sources (RES) and adoption of electric vehicle (EV) tech-
nology have become mandatory in various power grids 
and transportation sectors across the world respectively 
[1]. As per International Renewable Energy Agency (IRENA) 
statistics released in March 2019, the total RE integration 
in 2018 has been reached to 2364.4 GW including off-grid 
across the world [2]. In 2018, the global electric car fleet 
exceeded 5.1 million and the growth is almost double as 
compared with 2017 statistics [3]. From these statistics, it 
can be said that these two exponential trends are getting 
high attention across the world due to their potential for 
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reducing GHG emission and contributing towards sus-
tainable practices. However, the intermittent nature of 
RES and unpredictable nature of EV load pattern needs 
to be addressed potentially for avoiding the possible 
operational and controlling issues in power systems. By 
integrating RES and EV charging stations (CSs)/parking lots 
(PLs)/ fleets at improper locations, the expected technical 
benefits to the power system can become negative. In this 
era, performance analysis of RDNs w.r.t. different type of 
loads such as residential, industrial, commercial, agricul-
ture and electric vehicle etc., is inevitable and preventive 
measures for ensuring high reliable supply are needed to 
focus much.

As known, the major weak segment in power systems 
is the distribution system and optimization of its perfor-
mance is always an important criterion in power system 
operation and control. Optimal network reconfiguration 
(ONR), installation of capacitor banks (CBs), and integra-
tion of distribution generation (DGs) are some of the reme-
dial ways for some extent to improve the performance of 
radial distribution networks (RDN). The major objective 
of optimal allocation of DGs problem is to improve the 
performance of the distribution system and maximization 
of economic benefits to the utilities. In literature, optimal 
allocation of DGs has been addressed highly by various 
traditional (non-heuristic) and non-traditional (heuristic) 
approaches, whereas optimal allocation of EV infrastruc-
ture or charging stations (CSs) is also getting high atten-
tion among the researchers in recent times. Over the past 
few decades, numerous methodologies have been pro-
posed by different researchers for allocating the DGs in 
distribution system optimally [4, 5]. Although the optimal 
allocation of DGs problem in RDNs is widely addressed 
in literature, sufficient research is not focused consider-
ing emerging electric vehicle load penetration. In order 
to provide charging infrastructure, optimal allocation of 
EV fleets is an important factor since there is a possibil-
ity for degrading the performance of RDNs due to their 
integration at inappropriate locations. The methodologies 
can be classified like non-heuristic approaches (NHA) and 
heuristic approaches (HA). In comparison, HAs are simpler, 
derivative-free and easy to implement for solving the com-
plex, non-linear optimization problems than NHAs and 
hence some of the recent HAs applied for solving the DGs 
allocation problem have been discussed here.

In [6], chaotic stochastic fractal search (CSFS) algorithm 
is applied to solve DG allocation for real power loss mini-
mization. In [7], spring search algorithm (SSA1) and in [8], 
gbest-guided artificial bee colony (GABC) algorithm are 
proposed for solving the simultaneous allocation of DGs 
and CBs by aiming techno-economic-environment ben-
efits in network operation. In [9], considering real power 
loss minimizations the DGs are integrated optimally using 

teaching–learning based optimization (TLBO) algorithm. 
In [10], bacterial foraging optimization algorithm (BFOA) 
is proposed for simultaneous allocation of DGs and CBs 
towards loss minimization and voltage profile improve-
ment. Hybrid grey wolf optimizer (HGWO) is proposed for 
loss minimization via optimal allocation of multi-type DGs 
in 33-, 69- and Indian 85-bus systems [11]. In [12], multi-
type DGs and CBs are optimized using optimal power flow 
(OPF) embedded with generic analytical expressions for 
determining the sizes. In [13], an enhanced genetic algo-
rithm (EGA) is proposed for minimizing the real power 
losses via allocating simultaneous DGs and CBs in the net-
work. In [14], war optimization algorithm (WOA), particle 
swarm optimization (PSO), cuckoo search algorithm (CSA), 
firefly algorithm (FA) and bat algorithm (BA) are applied for 
sizing the multiple solar PV systems towards loss minimiza-
tion. In [15], weight improved particle swarm optimization 
algorithm (WIPSO) and self adaptive differential evolution 
algorithm (SADE) have been proposed for solving the 
simultaneous allocation of renewable type DGs and CBs 
by minimizing the multi-objective function formed using 
real and reactive power losses and voltage profile. In [16], 
ant lion optimization (ALO) algorithm is proposed for mini-
mizing the multi-objective function using real power loss, 
voltage profile and voltage stability via optimally locating 
and sizing the renewable DGs. In [17], grasshopper optimi-
zation algorithm (GOA) is adopted for allocating multiple 
DGs, fixed and switched CBs for minimizing real power 
losses. In [18], PSO is adopted for sizing the multiple DGs 
and CBs for minimizing the economic aspects at network 
operation and planning stages. In [19], a shuffled frog 
leaping algorithm (SFLA) is applied for minimizing real 
power loss and consequently economic efficiency of dis-
tribution system operation is evaluated via allocating the 
multiple DGs. In [20], a multi-objective whale optimization 
algorithm (MOWOA) is applied for identifying the locations 
and sizes of solar PV and wind turbine systems considering 
different types of load models. The objective function is 
formulated for optimizing the real power loss index, volt-
age index and cost benefit indices simultaneously. Salp 
swarm algorithm (SSA2) [21] and water cycle algorithm 
(WCA) [22] are proposed for attaining techno-economic-
environmental benefits via simultaneous allocation of DGs 
and CBs. In [23], hybrid approach using grasshopper opti-
mization algorithm (GOA) and cuckoo search algorithm 
(CSA) is proposed for allocating the multi-type multiple 
DGs towards technical benefits. In [24], hybrid approach 
using fuzzy logic controller (FLC), ALO and PSO is proposed 
for solving the renewable type DG integration problem 
towards technical benefits. In [25], elephant herding opti-
mization (EHO) algorithm is applied for determining single 
multi-type DG location and size considering techno-eco-
nomic aspects. In [26], ALO is proposed for optimal sizing 
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of DGs considering techno-economic benefits. In [27], a 
multi-objective PSO (MOPSO) is applied for solving opti-
mal allocation of renewable DGs and CBs.

Recently, the optimal allocation of DGs problem is 
addressed using quasi-oppositional chaotic symbiotic 
organisms search (QOCSOS) algorithm by aiming for 
reduction in real power loss, improvement in voltage 
profile and enhancement in voltage stability [28, 29]. The 
study revealed that the DGs with non-unity power factor 
can improve RDNs performance significantly than the DGs 
with unity power factor. Coyote optimization algorithm 
(COA) [30] is proposed for optimal integration of DGs in 
RDNs considering multi-objective function, formed using 
real power loss, operating cost and voltage stability. In 
[31], an improved variant of COA as enhanced coyote 
optimization algorithm (ECOA) is proposed for solving 
simultaneous optimal network reconfiguration and DG 
allocation problem. In [32], harmony search algorithm 
(HSA) is pursued for solving simultaneous optimal network 
reconfiguration and DG allocation problem in unbalanced 
RDNs. In [33], chaotic sine cosine algorithm (CCSCA) and 
in [34], an improved raven roosting optimization (IRRO) 
algorithm are introduced for solving multi-objective opti-
mal allocation of multiple DGs problem. In similar to [35], 
a new pathfinder algorithm (PFA) is proposed for obtain-
ing simultaneous optimal network reconfiguration and DG 
allocation. Similarly, hybrid genetic particle swarm optimi-
zation (HGPSO) [36], stochastic fractal search optimization 
algorithm (SFSOA) [37] and biogeography-based optimi-
zation (BBO) [38] are some of such recent meta-heuristic 
approaches for solving optimal allocation of DGs problem 
considering technical aspects. Further, the reader can also 
find recent reviews on distribution system performance 
improvement via optimal allocation of DGs, CBs and net-
work reconfiguration and their combination [39–42]. At 
this stage, it can be concluded that the performance of 
RDNs can be improved significantly via optimal allocation 
of DGs and/or ONR problem.

On the other side, optimal allocation of EV charging 
infrastructure has been motivated and attracted by vari-
ous researchers in recent times. According to the survey 
presented in [43], optimal allocation of EV charging infra-
structure problem has been solved in three categories, (1) 
transportation-network, (2) distribution-network and (3) 
transportation-distribution-networks. Considering the 
possibility of degradation in the performance of RDNs 
due to EV fleet load, integration of EV charging stations 
at optimal location is essential. In line to the DGs alloca-
tion methods referred above, distribution-network based 
optimal allocation of EV fleets along with DGs alloca-
tion is proposed in this paper and claimed as one of the 
major contributions in this paper. Notably, the optimal 
allocation of DGs problem is a non-linear multi-objective 

optimization problem which needs to be solved for dis-
crete and continuous variables simultaneously. In addition, 
the problem can become more complex for simultaneous 
allocation of DGs and EV fleets in large-scale RDNs and 
needs large computational time. According to the no-free-
launch theorem [44], there is no single specific heuristic 
algorithm which can solve all type of optimization prob-
lems. Hence, the researchers are still inspiring to introduce 
new heuristic algorithms and applying them to different 
optimization problems.

In the above reviewed literature, there are many such 
heuristic and meta-heuristic algorithms that have been 
used for solving optimal allocation problem. To the best 
of authors’ knowledge, future search algorithm (FSA) [45] 
has not been applied for solving the either optimal allo-
cation of DGs problem and/or optimal allocation of EV 
fleet problem in RDN. In addition, most of the works have 
been analyzed considering multi-objective function for 
techno-economic aspects, but limited numbers of works 
have been only focused on techno-environmental aspects 
in the DG allocation problem [7, 21, 22]. Also, the charg-
ing infrastructure required for serving the emerging EV 
load demand is not focused much. In competition to the 
existing literature works, FSA is first applied for solving 
only DGs allocation problem alone and later simultane-
ous allocation of DGs and EV fleets is proposed as a coun-
termeasure to the degrading performance of RDN w.r.t. 
EV fleet allocation.

Rest of the paper is organized as follows: Sect.  2 
addressed the modeling of DGs and EV fleet load. In 
Sect.  3, a multi-objective optimization problem con-
strained by various technical, operational and planning 
issues is presented. In Sect.  4, the mathematical rela-
tions of FSA and the steps used in solving the formulated 
multi-objective problem is explained. In Sect. 5, various 
case studies on practical agriculture and rural residential 
feeders are presented. The major contributions, research 
findings and the superiority of proposed FSA approach 
over existing algorithms is concluded in Sect. 6.

2 � Modeling of relevant concepts

In this section, static modeling of DGs and EV fleet load are 
explained considering RDN load flow study.

2.1 � Distribution generation

The electric power generation sources in different forms 
placed near to the load centres and integrated directly to 
the distribution networks are known as DGs. As per the 
active and/or reactive power compensation, these DGs 
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can be modeled as negative loads and their classification 
along with modeling as follows:

2.1.1 � Type‑1 DG (active power compensation sources)

Photovoltaic, micro turbines and fuel cells which are incor-
porated into the main grid with the help of converters/
inverters are good examples of real power compensation 
sources. In this model, the real power load at bus-i will be 
reduced by an amount equal to DG’s real power output 
with unity power factor (upf ) and is given by:

2.1.2 � Type‑2 DG (reactive power compensation sources)

Shunt CBs (in either fixed or/and switched form) are the 
best examples for reactive power compensation sources 
particularly at the distribution network. In this model, the 
reactive power load at bus-i will be reduced by an amount 
equal to DG reactive power output and is given by:

2.1.3 � Type‑3 DG (complex power compensation sources)

Wind farms and synchronous generators are example of 
complex power compensation sources. The power factor 
lies between 0.7 and 1. In this model, the active power will 
be reduced by an amount equal to DG active power and 
reactive power will be either increment/decrement by an 
amount equal to DG reactive power load at bus-i and is 
given by:

where Pdi,base and Qdi,base are the active and reactive power 
loads at bus-i, respectively; Pdi,new and Qdi,new are the modi-
fied active and reactive power loads with DG integration at 
bus-i, respectively; PDG,i and QDG,i are the active and reac-
tive power generations/injections by DG integrated at bus-
i, respectively; �DG,i is the power factor angle of DG at bus-i.

As per the above models, the DGs compensate either 
active power or reactive power or both and cause a 
decreased net loading effect on the feeder. The decreased 
load balances usually at slack bus in load flow studies. By 
the redistribution of power flows with reduced loading, 
the net voltage profile, transmission loss and stability mar-
gins can improve significantly.

(1)Pdi,new = Pdi,base − PDG,i

(2)Qdi,new = Qdi,base − QDG,i

(3)
Pdi,new + jQdi,new =

(
Pdi,base − PDG,i

)
+ j

(
Qdi,base ± PDG,i tan

(
�DG,i

))

2.2 � Electric vehicle fleet

Here, it is assumed here that all types of EVs in an EV 
fleet are integrated to the utility via AC/DC converter 
with an operating power factor of nearly unity. It is also 
assumed that the total number EVs in an EV fleet are 
arranged in p rows and q columns and each EV may 
have different power ratings [46]. Since EV is basically 
powered by batteries, its corresponding loading effect 
during charging mode is modeled by considering volt-
age dependent load modeling [47]. By summing all EV 
power ratings, the total real power demand of an EV fleet 
is determined. The following Eqs. (4) and (5) represents 
the real and reactive power demand at bus-n after EV 
fleet integration respectively.

where P0
L(n)

 and Q0

L(n)
 are nominal real and reactive power 

loads at bus-n respectively; Pt
L(n)

 and Qt
L(n)

 are modified real 
and reactive powers at time t respectively; Pt

d(n)
 and Qt

d(n)
 

are the real and reactive power loads at location n after 
integration of EV load respectively; Pev,ij and Qev,ij are the 
real and reactive loads due to an EV at ith row and jth col-
umn in the fleet; Vo

(n)
 and Vt

(n)
 are the voltage magnitude of 

bus-n at nominal and time specified respectively; � and � 
are the exponents for real and reactive powers respec-
tively; �ev and �ev are the exponents of EV’s real and reac-
tive power loads respectively.

3 � Problem formulation

In the operation and control of RDN, minimization of real 
power loss is one of the major goals. This can be achieved 
mainly by improving the voltage profile across the net-
work, and consequently loss can reduce by having reduced 
current flow through each branch/element. In addition, an 
improved voltage profile can result in enhanced voltage 
stability.

Primarily, the voltage magnitude at any bus-j (Vj) in the 
distribution system is dependent on its active power load 
(Pj), reactance of the branch (xij), power factor (pf) or in 

(4)Pt
d(n)

= P0
L(n)

×

(
Vt
(n)

V0

(n)

)�

+

p∑
i=1

q∑
j=1

[
Pev,ij ×

(
Vt
(n)

V0

(n)

)�ev
]

(5)Qt
d(n)

= Q0

L(n)
×

�
Vt
(n)

V0

(n)

��

+

p�
i=1

q�
j=1

⎡⎢⎢⎣
Qev,ij ×

�
Vt
(n)

V0

(n)

��ev⎤⎥⎥⎦

(6)Qev,ij = Pev,ij × tan
(
�ev,ij

)
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other words, reactive power load (Qj), and preceding end 
bus voltage (Vj) as in:

Hence, by controlling active power and reactive power 
demands with different types DGs, the voltage deviation 
w.r.t. reference voltage (Vr) has to be minimized for having 
adequate voltage profile and stability margins and conse-
quently reduced real power losses in the network can be 
achieved significantly.

3.1 � Objective function

In order to achieve efficient operation, minimization of 
active power loss is one of important aspects and is deter-
mined using (8):

where nbr is the number of branches in the network, rk is 
the resistance of branch-k, Ploss the total active power loss 
in the network.

By various power system blackout incidents across the 
world, voltage stability has become one of the primary 
concerns of the system operator [48]. Hence by optimizing 
the penetration level of different types of DGs and EV fleet, 
the network voltage stability is aimed to maximize. Per-
haps, voltage stability assessment of RDN and its enhance-
ment are the typical tasks to the system operator. In this 
paper, the impact of DGs and EV fleet on voltage stability 
of distribution network is analyzed using the methodology 
proposed in [49] and given by (9).

where VSIi = voltage stability index of node-i (i = 2, 3, …, 
nbus ); rij and xij are the resistance and reactance of the 
branch connected between bus-i and bus-j respectively; 
Pdi and Qdi are the real and reactive power loads at bus-
i respectively; ||Vi|| is the voltage magnitude of bus-i. The 
condition for stable operation of the radial distribution 
network is VSIi ≥ 0 . The bus with lowest VSI can be treated 
as a critical bus for voltage collapse and its corresponding 
index value can be considered as a stability index for the 
entire network.

After assessing system stability, the major focus of this 
paper is to enhance it by means of allocating DGs and EV 
fleets optimally. Hence maximization of the lowest VSIi of 
the entire network can ensure increased stability margin.

(7)Vj =

(
Vi −

Qjxij

Vi

)
− j

Pjxij

Vi

(8)min f1 = min

⎧⎪⎨⎪⎩
Ploss =

nbr�
k=1

rk

�
P2
j
+ Q2

j

�

V2

i

⎫⎪⎬⎪⎭

(9)VSIi =
||Vi||4 − 4

(
Pdixij + Qdirij

)
≥ 0

Finally, the overall multi-objective function is formu-
lated using real power loss and voltage stability index, as 
given in Eq. (11).

In Greenhouse Gas (GHG) emission, CO2, SO2 and NOx 
are the most effective pollutants with power generating 
stations. By reducing the real power loss and dependency 
on grid power via optimal allocation of DGs and EV fleets, 
the power generation from grid reduces and consequently 
environmental benefits can be achieved. The emission fac-
tors with grid power are NOx = 5.06 lb/MWh, SO2 = 11.6 lb/
MWh and CO2 = 2031 lb/MWh [50]. Mathematically, the 
emission can be calculated as follows:

By knowing the total power generation includes net-
work real power demand ( PD ) and total real power losses 
( Ploss ) in distribution, the emission ( EGrid ) from CES can be 
determined.

3.2 � Operational constraints

The aforementioned objective functions are optimized 
by having the following VSI, node voltage ( Vi ) and branch 
flow ( ||Sl|| ) operational constraints, real power ( PDG,g ) and 
reactive power generation ( PDG,g ) generation limits by DGs 
compensation in the network.

where nfl is the number of EV fleets, Pdf  and �f  are the 
power rating of one EV fleet and power factor of AC/DC 
converter respectively; Vmin and Vmax are the lower and 
upper limits for the bus voltage magnitude, respectively; 
Sl,max is the maximum power flow limit of branch-l; PDG,g is 
the total real power generation by all DGs in the network, 

(10)min f2 = min
{
1
/
min

(
VSIi∀nbus

)}

(11)OF = min
(
f1 + f2

)

(12)EGrid =
(
CO2 + NOx + SO2

)
×
(
PD + Ploss

)

(13)VSIi > 0 i = 1, 2, ..., nbus

(14)Vmin ≤ Vi ≤ Vmax i = 1, 2, ...nbus

(15)||Sl|| ≤ ||Sl,max
|| l = 1, 2, ...nbr

(16)PDG,g ≤

nbus∑
i=1

Pdi +

nfl∑
i=1

Pdfi

(17)QDG,g ≤

nb∑
i=1

Qdi +

nfl∑
i=1

Pdfi tan
(
�fi

)
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Pdfi is the total active power demand of the EV fleets in the 
network.

4 � Future search algorithm

All individuals on the planet search for the best life. In 
the event that any individual discovered that his life isn’t 
acceptable, he attempts to imitate the life of the best indi-
vidual around the globe. The future search algorithm (FSA) 
utilizes this conduct to locate the best arrangements [45]. 
The FSA is defined by numerical conditions. It can refresh 
the irregular beginning and it uses the nearby inquiry 
between individuals, what’s more, the worldwide pursuit 
between the narrative’s ideal people. The others HSA start 
its means by a random population and it formulates its 
iterations dependent on the best optima of the random 
beginning. This best population might be a long way from 
the initial population, this makes the HSA take many itera-
tions to come to the global optima. The FSA can defeat this 
issue and it refreshes the irregular population each every 
iteration. In every HSA, there is a local best population 
between the multi-variables and global optima between 
the iterations. Some of HSA update its new population 
dependent on the nearby best population as it were. In 
any case, the others update its new population depend-
ent on the global best optima as it were. These strategies 
may take a long number of iterations. The FSA uses the 
local best solution and the global optima for finding the 
best population. Some of HSA have more and complex 
mathematical models which can take additional time and 
a long number of iterations to come to the global optima.

4.1 � Modeling of future search algorithm

The proposed FSA is worked by simple mathematical 
conditions. In this section, the fundamental mathemati-
cal equations involved in the FSA are presented.

Generate random initialization using Eq. (18), in which 
S is the solution, k is the current solution, d is the dimen-
sion of search space or number of countries, Lb and Ub are 
the lower and upper boundaries of the variables in the 
optimization problem.

The objective function of each initial population is 
defined as a local solution (LS) and the best among all is 
defined as a global solution (GS). The FSA uses both LS and 
GS to find the optimal solution in its process.

The exploitation feature of the FSA is modeled using 
Eq. (19) by using the best influenced person or LS of each 
country.

(18)S(k, ∶) = Lb +
(
Ub − Lb

)
. ∗ rand(1, d)

The next step is to characterize the exploration feature 
of the FSA which uses the global influenced person or GS 
and is given in Eq. (20).

By observing the local and global influenced persons 
across the world, each person may change his way of lead-
ing the life or current variables and it is modeled as given 
in Eq. (21) using the local and global influenced solutions.

At this stage, the FSA updates the GS and LS and uses 
to modify the initial population using Eq. (22) and this is 
the major characteristic of FSA to define its exploration 
ability than other HSA.

This process repeats until the convergence criteria 
reaches by computing LS and GS using Eq. (19) and Eq. (20) 
respectively, finding the new solution using Eq. (12) and 
update LS, GS, and initial population of Eq.  (18) using 
Eq.  (22). The population size indicates the number of 
nations searching by a person for his comfortable life. The 
more nations mean the more local influenced persons 
(LSs). These individual local best persons can again be 
influenced by the global best person (GS). Hence defining 
new GS and LS at each iteration and again using them for 
updating the optimal solution within the same iteration is 
the key feature of FSA for outperformance than the other 
HSA. Generally, the maximum number of iterations (kmax) 
are taken to stop the iteration process of all HASs and it 
remains the same in FSA also. This stage can be treated 
as that the person reaches a satisfactory level in life or his 
goal, by which he may stop searching further. Also, from 
the mathematical equations point of view, FSA is also said 
to be the simplest without necessity to tune any control-
ling variables and proven its superiority than various other 
HSAs by its fast convergence rate characteristics and capa-
bility to escape premature convergence [45].

4.2 � Application of FSA for solving simultaneous 
optimal allocation of DGs and EV fleets

The solution methodology of FSA for solving optimal allo-
cation of DGs and EV fleet problem is followed the follow-
ing steps.

Step 1 Read the test system bus data and branch data, 
dimension of search space d (includes number of DGs, 

(19)S(k, ∶)L = (LS(k, ∶) − S(k, ∶)) ∗ rand()

(20)S(k, ∶)G = (GS − S(k, ∶)) ∗ rand()

(21)S(k, ∶) = S(k, ∶) + S(k, ∶)L + S(k, ∶)G

(22)S(k, ∶) = GS + (GS − LS(k, ∶)) ∗ rand()
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number of EV Fleets and size of DGs) and number of 
countries n and maximum number iterations kmax.
Step 2 Generate initial population using Eq. (18) and 
evaluate the objective function value using Eq. (11). 
Since the locations of DGs and EV Fleets are discrete 
variables, round(x) function is used and whereas DG 
sizes remain the same as generated using random num-
ber theory within the search space. From the solutions, 
define each solution as a local solution (LS) and best 
among all as a global solution (GS).
Step 3 Perform exploitation stage related to each coun-
try for each LS using Eq.  (19) and exploration stage 
related to overall world using Eq. (20) respectively.
Step 4 Using LS and GS in Step (2) and Step (3), update 
the solution of each person using Eq. (21) and update 
LS and GS solutions.
Step 5 Update the initial random population gener-
ated at Step (2) using Eq. (18) for new population using 
Eq. (22) and check for updating LS and GS before incre-
ment in iteration count k.
Step 6 Check for k = kmax.
Step 7 If not, repeats Step (3) to Step (6), else, stop and 
print the results.

5 � Results and discussion

In this section, the effectiveness of the proposed FSA for 
solving optimal allocation of CBs/DGs problem is dem-
onstrated. For the purpose, the simulation studies on 
two real-time test systems namely 106-bus agricultural 
feeder and 36-bus system represents a small portion of 
residential feeder in Srikalahasti, Chittoor, AP, are pre-
sented and discussed here. The bus data and line data 
of these test systems are provided in Appendix A1 and 
A2 respectively. The simulations are performed in a PC 
with specification of 4 GB, 64-bit OS and Intel® Core™ 
i5-2410 M CPU @ 2.3 GHz processor using MATLAB pro-
gram [51].

5.1 � Practical 106‑bus agriculture feeder

The practical system has 106 buses interconnected by 105 
branches and operating at 11 kV. In this system, the follow-
ing case studies are performed for two scenarios: (1) peak 
loading condition and (2) average loading conditions.

Case 1: Optimal allocation of CBs.
Case 2: Optimal allocation of DGs operating at unity 
power factor.
Case 3: Simultaneous allocation of CBs and DGs operat-
ing at unity power factor.

5.1.1 � Scenario‑1: peak loading condition

The peak constant power load of the system is 
(1218.68  kW + j 775.947 kVAr). According to voltage-
dependent load modeling [52], the exponents for real and 
reactive powers are considered as 0.08 and 1.6 respectively 
for representing the agriculture loads such as pumps, fans 
and motors. From the load flow results, it is observed that 
total system load of (1216.372 kW + j 747.002 kVAr) and 
the test system is suffering from a total loss of (27.78 kW + j 
20.21 kVAr). Also, the lowest voltage magnitude and stabil-
ity index are observed as 0.9709 p.u. and 0.8887 at 105th 
bus respectively.

Case 1: In this case, FSA is applied to minimize real 
power losses via optimally allocation three CBs in the 
system. Also, the smallest size of CB is chosen as 50 kVAr. 
Under ideal VAr compensation (i.e., total reactive load 
on network made zero), the system has a total loss of 
(19.8591 kW + j 14.4472 kVAr). It means, by optimal allo-
cation of CBs, the objective function value should not be 
less than 19.8591 kW. The best locations (buses 61, 104 
and 106) and sizes in kVAr (i.e., 200, 200, 100) obtained by 
FSA are given in Table 1. In comparison to the base case, 
the improved performance of the system is as follows: the 
losses are decreased to 21.1203 kW from 27.78 kW and 
the minimum voltage magnitude and VSI at 100th bus are 
observed as 0.9787 p.u. and 0.9176 respectively.

Table 1   FSA results of real-time 
106-bus feeder under peak 
loading conditions

Case CBs (kVAr) DGs (kW) Ploss (kW) Qloss (kVAr) Vmin (p.u.) VSI

Base – – 27.78 20.21 0.9709 (105) 0.8887
1 200 (61)

200 (104)
100 (106)

– 21.1203 15.3647 0.9787 (100) 0.9176

2 – 399 (32)
281 (16)
466 (10)

8.6547 6.2961 0.9885 (105) 0.9546

3 200 (47)
150 (23)
200 (79)

446 (57)
463 (95)
153 (68)

1.988 1.4464 0.996 (44) 0.9840
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Case 2: In this case, FSA is applied to maximize voltage 
stability index via optimally allocation three DGs in the 
system. Under ideal active power compensation (i.e., total 
active load on a network made zero), the VSI of the sys-
tem is 0.964. By integrating DGs with upf, the VSI may not 
be more than this value. Using FSA, the optimal locations 
(buses 32, 16 and 10) and DG sizes in kW (i.e., 399, 281 and 
466), the VSI is reached to 0.9546. Correspondingly, the 
system real power loss and minimum voltage magnitude 
at 105th bus are 8.6547 kW and 0.9885 p.u. respectively.

Case 3: In this case, FSA is applied to optimize multi-
objective function of loss plus voltage stability index via 
optimally simultaneous allocation of three DGs and three 
CBs in the system. The best objective function value 2.9723 
is obtained by FSA via DGs at buses 57, 95, and 68 with 
sizes in kW, 446, 463 and 153, and CBs at buses 47, 23, and 
79 with sizes in kVAr, 200, 150 and 200. The real power 
losses are The minimum voltage magnitude of 0.996 p.u. 
is observed at 44th bus and correspondingly VSI is reached 
to 0.984.

The results of three cases are given in Table 1. The volt-
age profiles of test system under different conditions 
are given in Fig. 1. In comparison to the base case, the 
real power losses of 1.988 kW, which have decreased by 
92.8427%.

5.1.2 � Scenario‑2: average loading condition

On the other side, the system has an average constant 
power load of (1106.251 kW + j 743.99 kVAr). Considering 
voltage-dependent load modeling, the load flow is per-
formed and observed as total load (1104.323 kW + j 718.5 
kVAr), total loss of (23.517 kW + j 17.108 kVAr), and the low-
est voltage magnitude and stability index are observed as 
0.9732 p.u. and 0.8972 at 105th bus respectively.

Case-1: The case study is repeated by considering 
average loading conditions. By having CBs at buses 8, 
98 and 77 with a capacity of 150 kVAr, 200 kVAr and 200 
kVAr respectively, the losses are decreased to 16.925 kW 
from 23.517 kW and minimum voltage at 105th bus is 
increased to 0.9805 p.u. from 0.9732 p.u. and stability 
index improved to 0.9242 from 0.8972.

Case-2: Similarly, the VSI is optimized considering aver-
age loading conditions on the system. The results of FSA 
are as follows: the optimal locations (buses 97, 7 and 8) and 
DG sizes in kW (i.e., 373, 220 and 453), the VSI is reached to 
0.9653. Correspondingly, the system real power loss and 
minimum voltage magnitude at 105th bus are 7.6946 kW 
and 0.9912 p.u. respectively.

Case-3: Similarly, the procedure is repeated for mini-
mizing simultaneously loss and VSI in this case. The best 
objective function value 3.2352 is obtained by FSA via 
DGs at buses 56, 69, and 97 with sizes in kW, 342, 374 and 
316, and CBs at buses 24, 48, and 77 with equal sizes of 
150 kVAr. The minimum voltage magnitude 0.9956 p.u. is 
observed at 94th bus and correspondingly VSI is reached 
to 0.9826. In comparison to the base case, the real power 
losses (2.2526 kW) are decreased by 90.42%.

The comprehensive results of FSA for three cases under 
peak and average loading conditions are given in Table 2. 
The voltage profiles of the test system under different con-
ditions are given in Fig. 2. For the results, it can be said 
that the P compensation via DGs has resulted in better 
results than only Q compensation via CBs and combined 
P and Q compensation has better results than either P or 
Q individual compensation.

The impact of CBs/DGs integration is resulted in mini-
mizing the real power loss and grid dependency, conse-
quently, GHG emission. As given in Eq. (12), the GHG emis-
sion before and after CBs/DGs integration is calculated for 
both peak and average loading conditions and presented 

Fig. 1   The voltage profiles of 
106-bus under peak loading 
conditions
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in Fig. 3. The percentage of reduction in GHG emission is 
calculated w.r.t. base case and given in Fig. 4. By observing 
Figs. 3 and 4, it can be said that the integration of CBs may 
result in improving system performance effectively but not 
in emission, since the grid dependency for total demand 
(load + loss) is not decreased much. On the other side, by 
having either DGs or combination of both DGs and CBs 
are results for reduced grid dependency and consequently 
the emission is decreased significantly and reduction rate 
is increased significantly. Notably, the emission reduction 
is more in Case-2 (i.e., only DGs) when compared with 
Case-3 (i.e., CBs and DGs), since the penetration of DGs 
is more in Case-2. Hence, at this point, it can be said that 
the integration of simultaneous allocation of CBs and DGs 
can contribute technically and environmentally in network 
operation.

5.2 � Practical 36‑bus residential feeder

The test system has 36 buses interconnecting by 35 
branches, and serving a total constant power load of 
(2798.1 kW + j 1946.4 kVAr) at 11 kV. By considering 0.92 
and 4.04 as exponents for real and reactive power in volt-
age-dependent load modeling for residential loads [26], 

the load flow is performed. From the results, it is observed 
that total system load of (2791.1 kW + j 1922.9 kVAr) the 
test system is suffering from a total loss of (7.8571 kW + j 
5.7163 kVAr). Also, the lowest voltage magnitude and sta-
bility index are observed as 0.9956 p.u. and 0.9825 at 11th 
bus respectively. Since it is a residential feeder, the perfor-
mance improvement is simulated for only with DGs oper-
ating at upf (i.e., solar PV systems) for the following cases.

Case 1: Feeder performance improvement via optimal allo-
cation of DGs with upf for base load considering loss minimi-
zation. The best DG sizes in kW are 789, 423 and 1193 at 
buses 6, 19 and 18 respectively. The real power compensa-
tion resulted as follows: In comparison, the real power loss 
decreased to 3.5736 kW and is equal to 54.52% reduction 
with base case. Correspondingly, the minimum voltage at 
the 11th bus is observed as 0.9974 p.u. and VSI is 0.9896.

Case 2: Analysis of feeder performance with EV loads 
penetration. At each bus, 10% load increment is assumed 
towards EVs adoption. In general EVs charge batteries 
via AC/DC charger and it is assumed that the operating 
power factor of the charger is 0.98, hence, the reactive 
power consumption by EV load is equal to 10% real power 
load × tan(cos−1(0.98)). As per voltage-dependent load 
modeling, the exponents of increased real and reactive 

Table 2   FSA results of real-time 
106-bus feeder under average 
loading conditions

Case CBs (kVAr) DGs (kW) Ploss (kW) Qloss (kVAr) Vmin (p.u.) VSI

Base – – 23.5169 17.1082 0.9732 (105) 0.8972
1 150 (8)

200 (98)
200 (77)

– 16.9252 12.3128 0.9805 (106) 0.9242

2 – 373 (97)
220 (7)
453 (8)

7.6946 5.5977 0.9912 (105) 0.9653

3 150 (24)
150 (48)
150 (77)

342 (56)
374 (69)
316 (97)

2.2526 1.6387 0.9956 (94) 0.9826

Fig. 2   The voltage profiles of 
106-bus under average loading 
conditions
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power are considered as 2.59 and 4.06 respectively. The 
system load under this case is (3068.3 kW + j 1977.4 kVAr). 
Under these conditions, the system performance is as fol-
lows, the total losses are (9.0233 kW + j 6.5647 kVAr), low-
est voltage at 11th bus is 0.9953 p.u. and correspondingly 
VSI is 0.9814. Here it can be observed that the losses are 
increased, voltage profile and VSI are decreased with addi-
tional EV load on the system.

Case 3: Feeder performance improvement via optimal 
allocation of DGs with upf considering loss minimization and 
VSI improvement: By using proposed FSA for solving DGs 

allocation problem at this case, the best solution obtained 
is as follows: the locations of DGs are 36, 9 and 35 and their 
sizes in kW are 550, 541 and 1073 respectively. By having 
this real power compensation, the losses are decreased 
to (3.7216 kW + j 2.7075 kVAr), minimum voltage profile 
at 11th bus is increased to 0.9975 and VSI is raised to 0.99 
respectively.

Case 4: Feeder performance improvement via optimal 
allocation of EV fleet considering loss minimization: In this 
case, the increased 10% of loading condition (279.11 kW + j 
192.29 kVAr) across the network is taken as a load of 

Fig. 3   GHG emission under different cases (106-bus system)

Fig. 4   Percentage of reduction 
in GHG emission under differ-
ent cases (106-bus system)
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single EV fleet and optimized its location. The proposed 
FSA is finalized the 2nd bus as optimal location for EV 
fleet integration, correspondingly the system loading is 
(3069.74 kW + j 2114.45), the losses (8.1275 kW + j 5.9130), 
the lowest voltage at 11th bus is 0.9955 p.u and system 
stability index is 0.9823.

Case 5: Feeder performance improvement via simultane-
ous optimal allocation of DGs and EV fleet considering loss 
minimization and voltage stability maximization: In this 
case, the increased loading condition across the network 
is taken as total power rating of a single EV fleet and opti-
mized its location along with DG locations and sizes. FSA 
resulted lowest objective function by EV fleet location at 
2 and DGs sizes in kW and locations are: 1179(7), 1317(17), 
427(30), correspondingly the losses (3.6418 kW + j 2.6495 
kVAr), lowest voltage at 11th bus is 0.9981 and VSI is 
0.9923.

The comprehensive results of all the cases are given in 
Table 3 and correspondingly the voltage profiles are given 
in Fig. 5. From Fig. 3, the base case voltage profile across 
the network is improved by having DGs (case-1) declined. 
Similarly by having EV load distribution across the net-
work, the voltage profile is declined significantly (case-2). 
At this stage also, it is also possible to improve network 
profile by having DGs at best locations (case-3). On the 
other side, by having a charging facility to support spa-
tially distributed EV load (as seen in case-2) at some best 
locations as EV fleet, the voltage profile can be improved 
significantly (as seen in case -4). This situation can be fur-
ther improved by having EV fleets and DGs at optimal loca-
tions (as seen in case-5). From these case studies, it can be 
said that the improved voltage profile is almost flat across 
the network in case-5, hence, the distribution losses are 
decreased and consequently VSI is improved significantly.

As determined in the 106-bus system, the GHG emission 
is calculated for different cases in this test system also and 
the percentage of reduction/increment in emission w.r.t. 
the base case is given in Fig. 6. In case-1, the grid depend-
ency for base case loading is decreased via DGs alloca-
tion, whereas in case-2 and case-4, it is increased due to 
EV load. But as compared to case-2 (EV load is distributed 
spatially), in case-4, it is less due to concentrated EV load 
as fleet at optimal location. Hence, in case-2 and case-4, 

the emission is increased. The negative effect in case-2 and 
case-4 is managed effectively by having DGs in case-3 and 
case-5 respectively. Hence, in case-3 and case-5 resulted in 
reduction in emission. But as compared to case-3, case-5 is 
given more reduction in emission due to optimal location 
of both EV fleet and DGs in the network.

5.3 � Comparison of FSA performance with other 
HSAs

The results of FSA for Case-5 are compared with other 
HAs, namely, Grasshopper Optimization Algorithm (GOA) 
[53], Teaching Learning-based Optimization (TLBO) [54], 
Cuckoo Search Algorithm (CSA) [55], Flower Pollination 
Algorithm (FPA) [56] and Particle Swarm Optimization 
(PSO) [57]. Since FSA is not required to control any param-
eters, we have not changed any parameters of other algo-
rithms also. In PSO, the range for inertia weighting factor 
is decreased linearly about 0.9 to 0.4 during a run and the 
social and cognitive coefficients are taken equally as 2. In 
CSA, the switching parameter is set to 0.8. In TLBO, the 
teaching factor may become randomly either 1 or 2 with 
equal probability during a run. For GOA, the intensity of 
attraction and the scale of attractive length are considered 
as 0.5 and 1.5 respectively. For all algorithms, the following 

Table 3   FSA results of real-time 
36-bus feeder

Case DGs (kW) Ploss (kW) Qloss (kVAr) Vmin (11) (p.u.) VSI

Base – 7.8571 5.7163 0.9956 0.9825
1 789 (6), 423 (19), 1193 (18) 3.5736 2.5999 0.9974 0.9896
2 – 9.0233 6.5647 0.9953 0.9814
3 550 (36), 541 (9), 1073 (35) 3.7216 2.7075 0.9975 0.99
4 – 8.1275 5.9130 0.9955 0.9823
5 1179(7), 1317(17), 427(30) 3.6418 2.6495 0.9981 0.9923

Fig. 5   Voltage profile 36-bus system for different cases
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parameters are considered commonly: population = 50, 
iterations = 50, search variables = 7 (i.e., 3 for DG locations, 
3 for DG sizes and 1 for EV fleet location). The lower limit 
and upper limits for locations = [2, nbus] and DG sizes = [0, 
1500].

In order to determine the robustness of FSA in solving 
optimization problems, each algorithm is simulated for 
25 independent run simulations for case-5 in the 36-bus 
system and compared their performance characteristics 
in terms of best, mean and worst objective functions. The 
boxplots given in Fig. 7 for Case 5 in the 36-bus system are 
allowed to clear and analyze these features. At this point, 
it can be said that the FSA is a more robust and efficient 
algorithm than other used algorithms. The best solution 
obtained by each algorithm over 25 independent run 
simulations are given along with average computational 
time in Table 4. Also, the best cost/solution improvement 
obtained by FSA is quantified and defined as [58]:

(23)BSI(%) =
best solution of compared method − best solution of proposed FSA

best solution of compared method
× 100%

Fig. 6   Changes in emission 
reduction/increment w.r.t. EV 
load, fleet and DGs (36-bus 
system)

Fig. 7   Boxplot for comparison HSAs for case-5 in 36-bus system

Table 4   Comparison of best solution obtained by different HSAs for case-5 (36-bus system)

Case DGs sizes in kW and (bus) Fleet Location Ploss (kW) Qloss (kVAr) Vmin (11) (p.u.) VSI Time (s) BSI (%)

PSO 1392 (33), 1127(8) 2 3.9111 2.8454 0.9985 0.9939 1.7301 6.8855
FPA 393(29), 966(7), 1376(33) 24 3.8949 2.8336 0.9976 0.9906 1.6537 6.4982
CSA 611(9), 526(17), 1442(23) 3 3.8760 2.8198 0.9976 0.9903 1.5425 6.0423
TLBO 1343(18), 1049(5), 374(13) 2 3.7569 2.7332 0.9973 0.9892 1.4139 3.0637
GOA 702(31), 888(5), 698(24) 2 3.7535 2.7307 0.9970 0.9881 1.3008 2.9759
FSA 1179(7), 1317(17), 427(30) 2 3.6418 2.6495 0.9981 0.9923 1.2581 NA
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The more BSI value of an algorithm indicates more dis-
tance from the best solution obtained by proposed FSA. 
All these performance matrices are less with FSA over 
other compared algorithms, hence it can be said that the 
FSA is effective in resulting global solutions frequently. 
The convergence characteristics of different algorithms 
for case-5 in the 36-bus system for best solution provided 
in Table 4 are given as new Fig. 8.

6 � Conclusion

This research presented the application of a new nature 
–inspired meta-heuristic algorithm called future search 
algorithm for solving the simultaneous allocation of dis-
tributed generation and electric vehicle fleets in radial 
distribution systems. The proposed methodology mimics 
human behavior in search for better living life by inspiring 
a local popular/ successful leader in a zone. In FSA, the 
population size indicates the number of nations search-
ing by a person for his comfortable life. The more nations 
mean the more local influenced persons. These individual 
local best persons can again be influenced by a global best 
person. Hence defining new GS and LS at each iteration 
and again using them for updating the optimal solution 
within the same iteration is the key feature of FSA for out-
performance over other HAs.

The simultaneous allocation of DGs and EVs has been 
formulated as a multi-objective function using real power 
loss, average voltage deviation index (AVDI), voltage sta-
bility index (VSI) and greenhouse gas (GHG) emission. In 
comparison with PSO, FPA, TLBO, CSA and GOA, the pro-
posed FSA has resulted in the lowest objective function. 
The statistical analysis based on 25-individual run time 

results, FSA has shown its superiority in terms of robust-
ness and consistency. In conclusion, FSA has outperformed 
other simulated HAs in solving the multi-objective, non-
linear and complex optimization problem.

The simulation results on a practical 106-bus agricul-
ture feeder for simultaneous allocation of multiple DGs, 
and a 36-bus rural feeder for simultaneous allocation of 
DGs and EV fleet are presented. From the case studies, 
the EV load penetration has resulted in degrading the 
feeder performance significantly in terms of increased 
real power losses, decreased voltage profile and conse-
quently resulted in lowering the voltage stability margin. 
In counter to this scenario, the optimal placement and 
sizing of DGs and EVs resulted for improvement in feeder 
performance significantly. Also, the environmental ben-
efits in terms of reduced GHG emission have shown 
the necessity of the RE and EV technologies adoption 
globally.

However, the randomness in EV fleet load, intermit-
tency of renewable energy and timely varying network 
loading conditions can create potential operating issues 
in the modern distribution networks. Under these cir-
cumstances, validation of proposed methodology for 
enhancing the performance of distribution network by 
using simultaneous smart charging scenario in EV fleets 
and timely optimal network reconfiguration w.r.t. net-
work loading conditions need to be further analyzed. 
Also, the computational efficiency of the proposed 
meta-heuristic FSA algorithm in solving such complex 
multi-objective optimization problems needs to be 
further investigated and treated as future scope of this 
research.
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Appendix

A1: Practical 106‑bus agriculture feeder data

Brach 
#

Fb Tb R (Ω) X (Ω) Average load 
at Tb

Peak load 
at Tb

Pd 
(kW)

Qd 
(kVAr)

Pd 
(kW)

Qd 
(kVAr)

1 1 2 0.8145 0.5925 0 0 0 0
2 2 3 0.2932 0.2133 0 0 0 0
3 3 4 0.1086 0.079 11.65 8.022 12.955 8.464
4 4 5 0.0977 0.0711 0 0 0 0
5 5 6 0.0977 0.0711 0 0 0 0
6 6 7 0.0543 0.0395 3.735 2.741 3.919 2.51
7 7 8 0.0977 0.0711 0 0 0 0
8 8 9 0.1086 0.079 11.88 7.784 12.944 8.138
9 9 10 0.1086 0.079 11.808 7.751 12.942 8.242
10 10 11 0.1086 0.079 11.966 7.717 12.94 8.01
11 11 12 0.0543 0.0395 10.512 9.409 11.944 9.842
12 12 13 0.1358 0.0988 3.636 2.693 3.903 2.651
13 13 14 0.4344 0.316 3.956 1.78 3.895 2.146
14 14 15 0.1086 0.079 18.428 11.748 19.895 12.91
15 15 16 0.1086 0.079 0 0 0 0
16 16 17 0.1086 0.079 18.54 11.69 20.887 12.748
17 17 18 0.0815 0.0593 11.578 8.34 12.929 8.563
18 18 19 0.0543 0.0395 11.664 7.497 12.929 8.445
19 19 20 0.1086 0.079 11.621 7.487 12.928 8.504
20 20 21 0.1358 0.0988 0 0 0 0
21 21 22 0.1629 0.1185 12.038 7.469 12.927 7.902
22 22 23 0.1086 0.079 0 0 0 0
23 23 24 0.0543 0.0395 11.966 7.464 12.927 8.01
24 24 25 0.0543 0.0395 11.534 8.294 12.927 8.621
25 2 26 0.0652 0.0474 3.623 2.848 3.953 2.67
26 26 27 0.0326 0.0237 3.78 2.848 3.953 2.442
27 3 28 0.0543 0.0395 11.923 8.1 12.959 8.074
28 28 29 0.0543 0.0395 3.74 2.795 3.936 2.503
29 4 30 0.0543 0.0395 12.038 8.022 12.955 7.902
30 4 31 0.0543 0.0395 11.923 8.017 12.955 8.074
31 31 32 0.0543 0.0395 11.966 8.017 12.955 8.01
32 32 33 0.0543 0.0395 12.053 8.012 12.955 7.88
33 33 34 0.0543 0.0395 12.038 8.012 12.955 7.902
34 34 35 0.1086 0.079 18.473 12.463 20.927 12.846
35 5 36 0.1086 0.079 18.833 12.349 20.921 12.312
36 36 37 0.1955 0.1422 0 0 0 0
37 37 38 0.1086 0.079 11.651 7.909 12.95 8.462

Brach 
#

Fb Tb R (Ω) X (Ω) Average load 
at Tb

Peak load 
at Tb

Pd 
(kW)

Qd 
(kVAr)

Pd 
(kW)

Qd 
(kVAr)

38 38 39 0.0543 0.0395 3.654 2.75 3.922 2.626
39 39 40 0.1086 0.079 12.038 7.904 12.949 7.902
40 40 41 0.1086 0.079 11.822 7.9 12.949 8.221
41 41 42 0.1086 0.079 11.923 7.9 12.949 8.074
42 42 43 0.1086 0.079 11.966 7.895 12.949 8.01
43 43 44 0.0543 0.0395 11.938 7.895 12.949 8.053
44 37 45 0.1086 0.079 18.473 12.311 20.919 12.846
45 45 46 0.1195 0.0869 18.495 12.311 20.919 12.813
46 37 47 0.1086 0.079 18.833 12.311 20.919 12.312
47 47 48 0.0543 0.0395 18.698 12.303 20.919 12.516
48 48 49 0.0543 0.0395 18.135 13.182 19.923 13.318
49 6 50 0.1629 0.1185 18.923 12.266 20.917 12.173
50 50 51 0.1086 0.079 12.398 7.005 13.944 7.324
51 51 52 0.1086 0.079 11.693 7.875 12.948 8.405
52 52 53 0.0706 0.0514 11.592 7.875 12.948 8.543
53 53 54 0.1086 0.079 11.851 7.875 12.948 8.18
54 54 55 0.1086 0.079 19.17 11.369 20.916 11.78
55 51 56 0.0543 0.0395 12.11 7.88 12.948 7.791
56 8 57 0.1086 0.079 3.74 2.73 3.915 2.503
57 8 58 0.1086 0.079 0 0 0 0
58 58 59 0.1086 0.079 11.707 7.798 12.944 8.385
59 59 60 0.1086 0.079 11.592 7.794 12.944 8.543
60 60 61 0.0977 0.0711 12.197 7.789 13.939 7.655
61 61 62 0.1086 0.079 11.621 7.789 12.944 8.504
62 62 63 0.0543 0.0395 11.894 7.789 12.944 8.117
63 63 64 0.0543 0.0395 11.635 7.789 12.944 8.484
64 58 65 0.0543 0.0395 11.966 7.803 12.944 8.01
65 65 66 0.0543 0.0395 3.789 2.725 3.913 2.428
66 66 67 0.0543 0.0395 18.293 12.997 19.914 13.101
67 67 68 0.1629 0.1185 11.549 8.665 12.944 8.601
68 68 69 0.1629 0.1185 11.563 8.66 12.944 8.582
69 69 70 0.3258 0.237 11.65 7.789 12.944 8.464
70 65 71 0.0977 0.0711 11.664 7.803 12.944 8.445
71 67 72 0.1358 0.0988 11.693 7.798 12.944 8.405
72 60 73 0.1086 0.079 18.248 12.981 19.913 13.164
73 73 74 0.1086 0.079 18.473 12.116 20.909 12.846
74 9 75 0.0543 0.0395 11.606 7.784 12.944 8.524
75 10 76 0.0543 0.0395 11.707 7.751 12.942 8.385
76 11 77 0.0543 0.0395 11.866 7.717 12.94 8.159
77 12 78 0.1086 0.079 0 0 0 0
78 78 79 0.1901 0.1383 11.693 7.694 12.939 8.405
79 79 80 0.0815 0.0593 11.765 7.689 12.939 8.304
80 80 81 0.1086 0.079 11.722 7.689 12.939 8.364
81 78 82 0.0543 0.0395 11.491 8.548 12.939 8.678
82 78 83 0.0543 0.0395 11.794 7.694 12.939 8.263
83 13 84 0.0543 0.0395 11.477 8.517 12.938 8.697
84 84 85 0.1629 0.1185 11.966 7.665 12.938 8.01
85 14 86 0.1086 0.079 18.225 12.611 19.896 13.195
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Brach 
#

Fb Tb R (Ω) X (Ω) Average load 
at Tb

Peak load 
at Tb

Pd 
(kW)

Qd 
(kVAr)

Pd 
(kW)

Qd 
(kVAr)

86 86 87 0.0815 0.0593 11.534 8.407 12.933 8.621
87 14 88 0.3258 0.237 0 0 0 0
88 88 89 0.1629 0.1185 11.578 8.392 12.932 8.563
89 89 90 0.1629 0.1185 0 0 0 0
90 90 91 0.1086 0.079 3.618 2.666 3.894 2.676
91 88 92 0.0543 0.0395 11.765 7.557 12.932 8.304
92 89 93 0.0543 0.0395 11.52 8.392 12.932 8.64
93 90 94 0.0543 0.0395 11.506 8.392 12.932 8.659
94 16 95 0.0543 0.0395 3.654 2.661 3.892 2.626
95 18 96 0.1086 0.079 11.722 7.506 12.929 8.364
96 19 97 0.0543 0.0395 3.65 2.653 3.889 2.633
97 19 98 0.1086 0.079 11.693 7.497 12.929 8.405
98 98 99 0.1086 0.079 11.549 8.325 12.929 8.601
99 99 100 0.1086 0.079 11.635 7.492 12.929 8.484
100 20 101 0.1086 0.079 11.563 8.319 12.928 8.582
101 101 102 0.0543 0.0395 11.851 7.487 12.928 8.18
102 21 103 0.1086 0.079 18.27 12.464 19.889 13.132
103 22 104 0.0543 0.0395 11.707 7.469 12.927 8.385
104 23 105 0.1086 0.079 18.225 12.441 19.888 13.195
105 23 106 0.1086 0.079 18.36 11.611 19.888 13.006

A2: Practical 36‑bus residential feeder data

Brach # Fb Tb R (Ω) X (Ω) Load at Tb

Pd (kW) Qd (kVAr)

1 1 2 0.01358 0.00988 65.406 75.644
2 2 3 0.02606 0.01896 97.800 20.861
3 3 4 0.02715 0.01975 100.000 0.000
4 4 5 0.07222 0.05254 88.200 47.125
5 5 6 0.05702 0.04148 90.566 42.401
6 6 7 0.00652 0.00474 175.928 261.294
7 7 8 0.06570 0.04780 98.410 17.762
8 8 9 0.02552 0.01857 210.300 135.181
9 9 10 0.08688 0.06320 56.007 28.848
10 10 11 0.16833 0.12245 61.740 308.890
11 3 12 0.00380 0.00277 0.000 0.000
12 12 13 0.02172 0.01580 0.000 0.000
13 13 14 0.01629 0.01185 0.000 0.000
14 14 15 0.01629 0.01185 0.000 0.000
15 15 16 0.01846 0.01343 76.000 64.992
16 16 17 0.02063 0.01501 0.000 0.000
17 17 18 0.00217 0.00158 0.000 0.000
18 18 19 0.01955 0.01422 86.000 134.922
19 19 20 0.03149 0.02291 51.975 35.603
20 12 21 0.00326 0.00237 118.400 107.617
21 13 22 0.01629 0.01185 98.500 17.255

Brach # Fb Tb R (Ω) X (Ω) Load at Tb

Pd (kW) Qd (kVAr)

22 14 23 0.00652 0.00474 62.559 7.441
23 15 24 0.01629 0.01185 100.000 0.000
24 24 25 0.05159 0.03753 55.900 82.917
25 25 26 0.06136 0.04464 26.560 96.408
26 26 27 0.00163 0.00119 99.732 7.316
27 27 28 0.00977 0.00711 19.996 59.742
28 25 29 0.02172 0.01580 86.000 51.029
29 25 30 0.00163 0.00119 88.180 47.162
30 17 31 0.01629 0.01185 98.825 15.285
31 31 32 0.00380 0.00277 100.000 0.000
32 18 33 0.00760 0.00553 88.500 46.559
33 33 34 0.01086 0.00790 183.600 79.316
34 34 35 0.01629 0.01185 219.200 120.214
35 4 36 0.00815 0.00593 93.800 34.664
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