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Abstract
The work presents a review on ongoing researches in terrain-related challenges influencing the navigation of Autono-
mous Robots, specifically Unmanned Ground ones. The paper aims to highlight the recent developments in robot design 
and advanced computing techniques in terrain identification, classification, parameter estimation, and developing mod-
ern control strategies. The objective of our research is to familiarize the gaps and opportunities of the aforementioned 
areas to the researchers who are passionate to take up research in the field of autonomous robots. The paper brings 
recent works related to terrain strategies under a single platform focusing on the advancements in planetary rovers, 
rescue robots, military robots, agricultural robots, etc. Finally, this paper provides a comprehensive analysis of the related 
works which can bridge the AI techniques and advanced control strategies to improve navigation. The study focuses on 
various Deep Learning techniques and Fuzzy Logic Systems in detail. The work can be extended to develop new control 
schemes to improve multiple terrain navigation performance.
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1 Introduction

The advancements in robotics have addressed the chal-
lenges in unknown environments where human actions 
are limited. Autonomous robots are now widely used in 
various applications such as disaster management activi-
ties [1], military operations [2], Mars missions [3], self-driv-
ing cars [4] etc. In most cases, prior information regarding 
the trajectory and nature of terrains are not available with 
the system. Hence robot needs to learn the trajectory, 
presence of obstacles, nature of the terrain, etc. using 
built-in sensors. For example, a robot deployed for rescue 
missions during a landslide has to navigate through dif-
ferent kinds of terrains like rocks, mud, concrete, etc. The 
ability of robots to understand the existing terrain can 
improve their performance.

The field of autonomous robots is now attracting 
researchers to areas such as navigation, localization etc. 
Fig. 1 shows major research areas of autonomous robots. 
In this work, we investigate terrain-related issues influ-
encing the performance of robot. Conventional motion 
control and path planning strategies assume smooth 
navigational surfaces and terrain variations are less con-
sidered. The study of terrain profiles involves classifica-
tion and parameter estimation through suitable models. 
The developments of learning techniques as well as con-
trol algorithms have improved the researches in terrain 
identification problems [5]. These works are fueled by the 
researches in new robot system designs [2].

To the best of our knowledge, most of the recent review 
works on autonomous mobile robots is focusing on trajec-
tory planning, localization, and obstacle avoidance [6–8] 
with less focus on terrain strategies. The trends in terrain 
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based researches in the field of mobile robots for appli-
cations like agriculture, military robots, self-driving cars, 
rescue robots, and planetary rovers are plotted in Fig. 2 
with reference to the corresponding keywords in Science 
direct website.

The number of researches in the last decade is a sign 
of the increasing impact of this topic. It motivated us to 
explore the recent trends in terrain-related challenges 
in autonomous robots. This challenge is addressed as a 
unique problem since it affects all other aspects of autono-
mous robots. This paper is arranged in the following pat-
tern; the researches in robot design are analyzed in the first 
section, followed by the different sensors used for terrain 
identification in robots. The terrain-traversability analysis 
for path planning, recent trends in terrain classifications, 
terrain parameter estimation methods, the relationship 
between robot model and the terrain are analyzed in the 
following sections. In the last two sections, the advance-
ment in control strategies are investigated with focus on 
fuzzy logic controllers. In short, the recent developments 
in multi-terrain navigation of robots is investigated and 
the summary is represented in Fig.3.

2  Recent trends in the robot design

The design of robot has an important role in the process 
of motion planning through dynamic terrains. Wheeled 
robots are among the popular designs in autonomous 
robot systems. Also, any development in the design of 
wheeled robots produced a great interest in the research 
of self-driving cars. The wheeled robot has an advantage 
over other popular designs, due to its efficiency and ease 
of control. The wheeled robot is classified into the follow-
ing types; mecanum-wheeled robots [9, 10], differential 
drive robots, two-wheel balancing robots [11], car-like 
robots, multi-wheeled robots, etc. To improve the perfor-
mance in discontinuous structures, researchers investi-
gated the performance on legged robots [12, 13]. Legged 

Fig. 1  An overview of research areas in autonomous robots

Fig. 2  An overview of research areas of autonomous robots

Fig. 3  areas of research in 
robot multi-terrain navigation
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robots are classified according to the number of legs such 
as biped (e.g.: humanoids), four-legged or quadrupedal 
robots, hexapod, etc. The design of legged ones is popu-
lar due to their less dependency on terrains. The research 
also includes robust shapes and biologically mimic robots 
like snake robots (Takemori et al. [14], caterpillar robots 
[15] and some other robust designs too. Deformable 
type robots are employed for desired locomotion [16] 
developed a deformable polygonal type robot with its 
dynamics. Innovative shapes using elastic structures are 
developed in [17, 18]. These promising approaches require 
further investigations for better control strategies and 
incorporation of different learning strategies

3  Robot perception methods and latest 
developments

The section analyses the state of the art of sensors used in 
mobile robots for terrain identification and classifications. 
Di Feng et al. [19] reviewed the sensors used in mobile 
robots. Vision-based systems provide a good response. But 
conventional cameras have shown inferior performance 
to thermal counterparts for the analysis at night or low 
light conditions. Various other sensors also used in mobile 
robots for better performance including LiDARS, RADARS, 
LiDARS (Light Detection and Ranging) are showing better 
performance than vision systems in a challenging envi-
ronment. LiDARS used in 3-D object detection without 
contacts. The classification will be difficult for LiDARs since 
it cannot catch the fine texture of the objects. RADARS 
(Radio Detection and Ranging) uses Doppler Effect for 
detecting the obstacles as the radio waves emitted by sen-
sors reflected from obstacles. Ultrasonic sensors radiate 
high-frequency waves to find obstacles but in a challeng-
ing environment though it has limitations during high-
speed robotic operation. IMU (Inertial Measurement Unit) 
gives the internal state of the robot. The use of external 
tools such as the Global Positioning System (GPS) is com-
mon in the application of mobile robots. In this context. 
Along with the navigation, techniques of localization are 
also investigated. Almeida et al. [20] uses an unidirectional 
sonar for localization. The authors compared machine 
learning methods with the Bayesian method and found 
that the Optimum Forest method (OPF) has better per-
formance than the conventional approach. Hence recent 
developments in learning techniques have an impact 
on sensors used in basic mobile robot operations. In his 
review, Kuutii et  al. [21]. explains the recent trends in 
localization methods. In summary, the authors point out 
the localization with a single sensor cannot produce an 
accurate result. Integrated sensory action is required for 
efficient results. The properties like surface texture, object 

stiffness, are measured with tactile sensors and frequency 
domain analysis. These are used for the navigation and 
localization of mobile robots. The design of 3-D sensors 
including NIPON Signal F6, IFM O3D200, Fotonic E70P, 
Microsoft Kinect, and ASUS Xtion Pro Live, have improved 
the autonomous performance of mobile robots [22]. The 
possibilities of using low-cost sensors for 3-D detection are 
also investigated using RADAR and learning techniques 
[23].

4  Terrain identification and terrain 
classification strategies

In this session, we are discussing the advanced approaches 
for terrain identification and classification strategies. These 
analyze the traversability of surfaces where robot is navi-
gating. Both global and local analysis are executed accord-
ing to the situation. The robot can decide whether to 
avoid or navigate through the terrain based on intelligent 
algorithms. The recent developments provide advanced 
algorithms to generate paths for robots to avoid difficult 
terrains. In terrain classification methods, the classes used 
in different works are analyzed. Then discusses the conven-
tional and modern approaches for accurate classification, 
which are discussed under session 4.2 and 4.3.

4.1  Terrain identification using geometry based 
approaches

The Traversability of autonomous robots is influenced by 
navigating terrains. Researchers have globally approached 
the issue of traversability, in which the global map is 
prepared considering the terrain irregularities, and in 
some other cases, locally i.e., preparing a real-time map 
for navigation. R. Omar Chavez-Garcia [24] uses a global 
map from top of the terrain, termed as a height map. The 
experiments were done using a V-REP simulator. They have 
investigated two different methods for analyzing the data. 
The first is a feature-based approach where the histogram 
of gradient of height map is computed and Random For-
est Classifier. The second method is using Convolutional 
Neural Networks (CNN). In CNN, the system automatically 
learns the properties with ReLU activation function. Since 
the mapping is prepared globally, the effect of dynamics 
of the robot will play a key role and hence the application 
is limited. Belter et al. [25] used an intelligent algorithm 
using RGB-D camera and popular classification algorithms 
like Support Vector Machine, to identify the terrain and 
developed a motion planning strategy using A* algorithm. 
The works on global traversability taken on a global scale 
have limitations for local terrain irregularities. Most meth-
ods like Triangular meshes, DEMs (Digital Elevation Maps), 
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or 3D grid maps, may require huge computation in real-
time to concatenate the points and to obtain the terrain. 
Along with the identification of terrains, there are gaps 
in traversability through the terrains. In general, offline 
training based methods are tedious and time computing. 
Philipp Krüsi [12] presented an onboard online terrain ana-
lyzing mechanism using 3D mapping. They presented a 
learning mechanism for both understanding the terrains 
and the traversability. The concept of point cloud map 
used for localization is used for terrain assessments. Wer-
melinger et al. [13] uses a traversability map for naviga-
tion of legged robots. Cheng et al. [26] used vision-based 
techniques to classify the upcoming path and determines 
traversability by classifying based on a dead-end, left-right 
turns, junctions using image processing and deep learn-
ing techniques and Bayesian classifier. In general, the local 
approaches for determining the maps are attracting mod-
ern researchers. These works are suited for planetary rovers 
as well as unknown conditions. In the next session, we will 
see how the advanced learning methods influenced clas-
sifying the navigating terrains

4.2  Terrain classification using visual perception

The above works have limitations with geometrical param-
eters for terrain analysis. An onboard sensor-based analysis 
can give better results than geometric based mapping that 
cannot ensure the real factors affecting the traversability 
in unknown terrains. The conventional vision-based sys-
tems provide better real-time performance with the help 
of other haptic sensors. Manduchi et al. [27] addressed the 
terrain classification problem by two approaches; using 
RGB camera and LiDAR. The limitations of vision-based 
systems affecting the performance of surface reflectivity 
concerning normal and near-infrared spectra. The clas-
sification based on reflectivity faces drawbacks due to 
the non-linearity in response due to moisture variations, 
contents etc. The approach of brightness normalization 
converts the vector f(r,g,b) to f(r,g) . The white point cali-
bration of the images and the efficiency of various color 
based sensors analyzed in vision-based techniques. The 
LiDAR-based system has been used for terrain classifica-
tion to overcome the limitations of vision-based systems. 
Tai et al. [28] developed a multilayer deep learning neural 
network capable of obtaining data from a simple RGB-D 
camera. The terrain classification using simple vision tech-
niques requires large data sets and not able to navigate 
in unfamiliar surroundings. The physical conditions have 
a big role to play. Kyohei Otsu et al. [29] approached this 
problem concerning Mars missions. Semi-supervised 
algorithms are used in place of supervised ones for visual 
classification systems. The data from different sensors are 
classified using the Support Vector Machine (SVM). The 

experiments included An ATV-Jr. Rover is equipped with a 
stereo camera unit consisting of Point Grey Flea2 cameras 
and Kowa 3.5 mm wide-angle lenses with a baseline of 
0.1 m. Dan Barnes [30] focuses on limitations of seman-
tic segmentation of terrains such as the requirement of 
a larger data set. To reduce the data set, researchers use 
virtual data set and using direct learning methods. Lor-
enz Wellhausen et.al [31] used a multisensory approach 
in terrain identification with legged robots. Their foothold 
positions are recorded in camera and labeled for each ter-
rain with the help of onboard sensors. A ground reaction 
score is marked for the purpose. Convolutional Neural 
Network (CNN) method is used for training. The possibili-
ties of different camera techniques are investigated. Gray 
scale, RGB, NIR, thermal cameras are used for basic terrain 
identification. The recent development of deep learning 
techniques and improved demand for independent vision-
based systems together address the navigation challenges 
of mobile robots. Rothrock et al. [32] presented a novel 
software to predict the slip ratio and traversability for mars 
missions, using the deep learning CNN. The authors con-
nect the techniques of terrain classification to the control 
strategies of navigation. Vision-based classifications are 
also investigated in [22, 33–35]. The challenges of visual 
perceptions are already addressed and several research-
ers preferred a vision-independent analysis for the terrain 
classification process. The following session describes 
some important works which evaluate various sensors 
and their positioning to address the issue.

4.3  Terrain classification without visual perception

The alternatives to vision-based systems are becoming 
popular for autonomous robot researchers, as vision-
based systems have many limitations. A. Brooks et al. [36] 
use onboard accelerometer and the vibration measured 
is trained using Waveform representation. Principal Com-
ponent Analysis (PCA) is applied in the identification of 
terrain during online processes. The classes are identi-
fied through Probabilistic Distance Measure, analyzed by 
Class Distribution Analysis carried out offline. As per the 
findings, the accuracy represented in terms of confidence 
levels gives 96% to 100% for the four classes of terrain that 
is gravel, dirt, sand, and unclassified. Dupoint et al. [37] 
presented a frequency response method for classifying 
terrains from the vibration-based transfer function. The 
authors have classified the surface into packed gravel, 
loose gravel, tall grass, sparse glass, and f sand. Sensor data 
is processed using FFT (Fast Fourier Transform). A proba-
bilistic neural network is used to obtain the terrain infor-
mation based on feature extraction by FFT. Giguire et al. 
[38] focused on solving the limitations of tactile sensors 
and vision sensors used for terrain identification, normally 
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mounted on the robot, and issues like inertial effect will 
be affecting it. A probe mounted in the wheel can be flex-
ible to use in any robot irrespective of the design. They 
used a tactile probe that is in contact with the environ-
ment and its output is trained using classification methods 
which resulted in an accuracy of 94.6% . The tactile probe 
is designed considering the features to represent each 
terrain. The sensors should sensitive to power spectral 
density and Visco-elasticity properties. Solid Aluminium 
is used for making the probe. The authors preferred to use 
accelerometers considering various other sensors.

Walas et al. [39] suggested a Laser Range Finder (LiDAR) 
detect the terrain profile. Intensity of the reflected beam is 
calibrated in terms of the terrains. Though some previous 
works use LiDAR, the number of identified terrains was 
only four. The authors propose 12 terrain profiles which 
are listed as follows; black rubber tiles, wooden boards, 
rocks, PVC tiles, ceramic tiles, carpet tiles, artificial grass, 
grit, pebbles, sand, green rubber tiles, concrete ground. 
Four different approaches were used to classify the terrains 
from the intensity output of LIDAR. They are the Statistical 
Approach, Texton, Fast Fourier Transform, and elevation 
map. The best result is generated by the 2D FFT approach 
with 98.47% . But the experiments are conducted on a labo-
ratory scale, and in real-time operation, there exists the 
possibility of errors.

Chengchao Bai [40] also addressed the issue of terrain 
identification based on multi-sensor fusion. The authors 
classified terrain into five types; brick, sand, flat, cement, 
and soil. The process incorporated offline trained data 
for feature extraction in vision-based online terrain pro-
cesses. Dutta et al. [41] use multiple sensors such as GPS, 
IMU, Laser, and metal detector. The authors motivated for 
a low coast approach for terrain identification systems. 
They investigated the replacement of one of the conven-
tional classifiers, SVM (Support Vector Machine), as the 
on-board computational cost for SVM is high. The authors 
propose ensembles KNN methods with multiple K values 
for classification. The terrains are brick, grass, rock, sand, 
and concrete.

Seyedmeysam Khaleghian et al. [42] classified terrain 
identification strategies into two types, with contact sen-
sors and non-contact ones. The acceleration signal is col-
lected from the mounted sensor in the tire, slip ratio, and 
wheel speed collected from the encoder feedback.The 
experiment repeated at different speeds. Bednarerk et al. 
[43] refers to tactile based sensing focuses on simulation 
type environment. Force and torque sensor readings are 
trained using a neural network for terrain identification. 
The authors also considered the analysis of speed varia-
tions in terrain. Recurrent and convolutional neural net-
works analysis are conducted for two different models; 
fixed length step model, variable-length model. An error 

function is developed for analyzing loss performance. The 
labeling is done using an encoder-decoder approach. The 
terrains are classified into six different types, sand, rubber, 
concrete, floor, artificial grass, chipping, and gravel. The 
experiments are conducted at three different speeds and 
six directions. An FFT based processing is done for varia-
ble-length signal sampling. Nampoothiri et al. [44] devel-
oped a machine learning-based approach for unknown 
terrain navigation using Inertial Measuring Unit (IMU). The 
authors investigated a generalized approach for terrain 
identification with a view of implementing control strate-
gies by real-time terrain identification. The work examines 
performances of 23 different machine learning algorithms 
for the real-time classification of terrains where the robot is 
navigating and observes Ensembles Subspace KNN show-
ing the best accuracy in classifying the slope profile of the 
terrains. Summary of these methods is given in Table.1.

5  Recent developments in terrain parameter 
estimation of wheeled robots

The development in study of terrain classification dis-
cussed in the previous section can extend to the research 
of mobile robot motion planning and control with the 
help of a suitable robot model [45, 46] and tire terrain 
interaction model [47–51]. The section investigates the 
role of terrain parameters in controlling torques to the 
wheels. The robot model is used to implement classical 
and advanced control strategies such as Model Predictive 
Control (MPC), Fuzzy Logic Control etc., and with the help 
of a dynamic model, advancements in soft-computing 
techniques used for improving the performance of naviga-
tion control systems. The approach can be used in any type 
of mobile robot, for example, by using a dynamic model 
of autonomous car, its performance can be improved with 
help of the concepts explained in the survey. The classifi-
cation techniques in the previous sections as well as the 
control strategies under our investigation can be applied 
for the research of the autonomous vehicles, with the help 
of perception systems and advanced controllers.Similarly, 
the trends in researches related to terrain parameter esti-
mations show the impact of the same in improving the 
performance of planetary rovers. In last decade, the works 
on terrain parameter estimation of planetary rovers have 
outpaced autonomous robots in terms of nomenclature 
[52]. It is notable if the works on planetary rovers can be 
extended to the support of complex actions like agricul-
ture and disaster management.

Iagnemma [53] presented a novel terrain model of 
wheeled robot generating functions of different terrain 
parameters in multiple predefined terrains. The pre-
dicted values are used to determine the shear strength 
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from Coulomb’s equation. Iagnemma et al. [54] Intro-
duced a simulation tool for analyzing terramechani-
cal properties of planetary rovers. Timon Homberger 
et al. [55] proposed a vision-based system, for develop-
ing terrain identification parameters of legged robots. 
The parameters such as roughness and step height are 
characterized using Inertial Measurement Units (IMU). 
Yuankai Li [56] proposed an online terrain parameter 
estimation model for wheeled robots with multimodal 
methods for different terrains. The sinkage coefficient 
and internal friction angle, derived from the slip ratio and 
normal stress equation, are used here. These parameters 
are preferred over the slip ratio as the latter is ineffective 
in rough terrains. This work provides an improved algo-
rithm of the work by Yuankai Li [57]. The real-time terrain 
estimation by two-layer process improves the perfor-
mance of Extended Kalman filter [58, 59] and Recursive 
Gaussian Newton algorithm [60]. The algorithm provides 
a switching property to select between filters. Gao et al. 
[61], evaluated the performance of vision-based sensors 
and tactile sensors. The estimated parameter is the sink-
age coefficient. In complex missions like mars rowers, 
the latter part is not able to calculate with ease. A visual 
camera is used to identify wheel-soil interaction image 
through a camera and slippage is calculated with a non-
linear adjustment for image processing.

Bijo Sebastian et al. [62] proposed a terramechanics 
estimation with the help of state sensors. Vision-based 
terrain identification systems have limitations in terms of 
variations in surface properties. The sensors like LiDAR, 
sonar, etc., also prone to errors, and hence the number of 
sensors needs a reduction. Features of interest that repre-
sent the terrains are defined. Principle Component Analy-
sis reduces the data and the Support Vector Machine clas-
sifier identifies the terrain class. The terrains are classified 
into asphalt, grass gravel, artificial turf, and vinyl flooring. 
The authors used the POZYX tool for the recording of path 
followed by the robot during training. A linear regression 
model is formed. James Dallas et al. [51] investigated the 
formulation of terrain parameters based on soil cohesion 
and internal friction angle. The model is analyzed using the 
least square method, Neuton Raphton method, and Simp-
son’s rule, with inputs from the measured internal forces 
[63]. The work highlights the limitations of existing models 
where robot parameters and terrain class are linearized, 
may cause errors, and the outputs from force or torque 
sensors, may not be feasible in some conditions. A nonlin-
ear model of the road is combined with the bicycle model. 
An unscented Kalman Filter is used to identify the terrain 
using a parameter, sinkage exponent. The tire is fixed with 
a mesh and the terrain parameters are estimated using 
two models. The bicycle model parameters are determined 
from the terradynamics model with the help of Unscented 

Kalman Filters(UKF)). The Bayesian techniques have also 
performed well in the estimation of terrain parameters. 
Interestingly, these techniques have a good real-time per-
formance too [64]. Many other recent works [65–68] also 
focus on the possibilities of new approaches for terrain 
parameter estimations and simulating the condition [69].

The advancements in machine learning methods have 
helped to understand the terrain parameter methods of 
WMR [70, 71]. Using these techniques, the hardness and 
steepness can be identified. Both supervised and unsu-
pervised algorithms are investigated for this purpose. In 
unsupervised algorithms, it is important to choose suitable 
parameters for feature extraction. The comparison studies 
of both supervisory and unsupervisory learning methods 
have investigated to predict the slip ratio. A combination 
of supervisory and unsupervisory learning algorithms 
have been found successful in predicting the slip ratio [72]. 
The success of these methods depends on the kind of sen-
sors used for the purpose. The challenges of slips are inves-
tigated concerning Mars Rowers and hence the research-
ers prefer methods like IMU over visual odometry. Proper 
placing of IMU sensors is also important in determining 
the success of the machine learning algorithm [73]. One 
of the major challenges of using machine learning models 
is to balance between the prediction time and accuracy of 
the process. Also, the selection of the learning algorithms 
is important. The recent advancement in machine learning 
tries to obtain the slippage as a regression value rather 
than classifying it as categories like a low slip, medium slip, 
and high slip [74]. The challenges involve factors such as 
mechanical structure and gravitational field effects, espe-
cially for planetary rovers. The challenge related to the 
parameters of mobile robots such as torque control and 
velocity control will also play an important role in machine 
learning-based slip estimation [47].

6  Control strategies for overcoming 
the effects of terrain variations

The effect of terrain variations is influencing the navigation 
of mobile robots, as reviewed from the above works. Now 
we are focusing on the possible control strategies used 
for compensating the errors caused by terrain variations. 
Among the various types of mobile robots, we will focus 
more on WMR (Wheeled Mobile Robot) since it is supe-
rior in many aspects such as design, robust mobile con-
trol strategies, etc. The navigation of WMR under uneven 
terrains requires a wheel-terrain interaction model and 
a dynamic model of the robot. The review focus on how 
the different control strategies used in addressing terrain-
related challenges in autonomous robots.
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The relationship between the wheel and its navigating 
terrain is important in the optimization of traction per-
formance. Terrain estimation models are used to modify 
the dynamics of mobile robots, and used for control pur-
poses. To regulate the errors caused by terrain irregulari-
ties, either the torque control to the wheels or any terrain-
related wheel parameter control is used. The variation of 
slip ratio according to the change in terrain profiles is 
considered while designing robust control strategies. An 
optimized slip ratio helps to determine the traction control 
strategy [75] and thereby improve battery performance. 
The dynamic model of the robot is required for the torque 
control in varying terrains. Thus along with slip control, the 
torque control enables the robot to choose the optimum 
velocity, hence improved performance [76]. Researches 
focus on generating a control structure for reducing the 
terrain effects on wheels, using optimized slip ratio val-
ues [77]. The steps of developing an adaptive controller 
include a slip optimizer, slip controller, and compensator. 
Terrain modeling can be both empirical and analytical. Bijo 
Sebastian et al. [78] use Kalman filter and an augmented 
control to compensate for the terrain irregularities, meas-
ured in terms of slip rate. Adaptive controllers with the 
advancement in Neural Networks have performed well 
in terrain irregularities. Ngoc-Bach Hoang and Hee-Jun 
Kang [79] presented an adaptive controller for compen-
sating the dynamic disturbances and wheel slip with a 
Neural Network based structures, (NN). Mingyue Cui et al. 
[80] addressed the issue of external disturbance affecting 
the trajectory control taking the effects to design a state 
observer function for compensating the error dynamics. 
Spyros G. Tzafestas [81] reviewed the control architectures 
affecting autonomous robots. The approaches involved in 
adaptive control strategies of linear and angular veloci-
ties of WMR. Nampoothiri et al. [44], along with an intel-
ligent terrain identification algorithm, proposed a control 
strategy to overcome terrain irregularities. The approach 
indicates switching control in terrain-related controls. A 
general structure of an Adaptive Network-based Fuzzy 
Inference System (ANFIS) for addressing terrain-related 

issues is shown in Fig. 4. The error (e) in the position of 
WMR is transformed by T matrix to the kinematic control-
ler. Hybrid controllers as shown in the figure are developed 
using various approaches as the combination addresses 
the limitations due to the non-linearity of dynamic ter-
rains. The desired position and velocity can be obtained 
with proper control parameter selection, realized by the 
fuzzification of wheel terrain models and optimized using 
Neural Network based adaptive mechanism. The Model 
Reference Adaptive control techniques are also useful 
in unstructured environments [82]. The adaptive control 
schemes have limitations in providing exact modeling 
and switching control schemes for multiple terrains are 
beneficial in advanced control design. Mauricio Begnini 
[83] introduced Variable Structure Control (VSC) for mobile 
robots. VSC is a high-speed switching strategy to control 
nonlinear trajectories. Previous works on Variable Struc-
ture Control are discontinuous and cause errors while 
switching. The introduction of fuzzy logic provides real-
time implementation with logical reasoning. Ming Yue [84] 
contributed to the control strategy by introducing Sliding 
Mode Control, a type of Variable Structure Control, along 
with Fuzzy controllers by defining a sliding surface with a 
slippage effect. Three types of frictions are considered in 
the design. They are Coulomb, Viscous, and Stribek Effect 
frictions. Among various strategies, Neural Network is 
good in intelligently selecting the proper control. Also, 
terminal sliding mode control (TSMC) is used. A sliding 
surface is designed and a Lypanauv function is generated. 
The use of sliding mode control and fuzzy logic control 
in path planning strategies to carry different payloads in 
planetary missions [85], can be extended to address the 
issue of terrain challenges. The next section focuses on 
fuzzy logic controllers used in mobile robot control since 
a high percentage of recent works use fuzzy systems. The 
understanding of recent developments in fuzzy systems 
will be helpful for the researchers who are looking to 
develop control strategies to address terrain issues.

Fig. 4  Structure of Adaptive 
Network based Fuzzy Inference 
System (ANFIS) for address-
ing terrain related issues of a 
Wheeled Mobile Robot (WMR)
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7  Recent developments in using fuzzy logic 
controllers for autonomous robots

Fuzzy based systems are widely researched in nonlinear 
mobile robot control with minimal complexity. The ability 
of fuzzy systems to produce magical results with an intel-
ligent selection of input, output membership functions 
and fuzzy rules made it very useful for robotic researchers. 
Yusuke Tanaka et al. [86] use a fuzzy-based approach for 
reducing terrain disturbance. The authors approached the 
problem in five steps, first an elevation map of the terrain 
is generated using a LIDAR and in second step a rectan-
gular grid from the data is generated. Third, the rough-
ness and slope are calculated. Fourth, Fuzzy rules are with 
these as input membership functions and traversability as 
output membership functions. Fifth, A Vector Field Histo-
gram (VFH) is created using the result and the optimum 
path is selected for navigation. Since mobile robots are 
dealing with multiple challenges, implementing fuzzy 
controllers show improved performances. Omrane et al. 
[87] suggested two fuzzy controllers, one is for naviga-
tion, and the other is for obstacle avoidance by travers-
ability analysis. The navigation control is realized by dis-
tance and angle as input membership functions and left 
wheel and right wheel velocities as output membership 
functions. The obstacle avoidance fuzzy controllers use 
sensor output as an input membership function. It has 62 
rules in it. It also has wheel velocities as an output mem-
bership function. Both the controllers together provide 
intelligence for robot navigation. Adaptive control laws 
are used to address the issues of task planning, environ-
mental modeling, multi-sensory fusion, path planning, and 
localization of robot in an indoor environment (Azzeddine 
Bakdi et al. [88]. This approach can optimize the naviga-
tion length, travel time ensures the robot’s safety using 
visual perception. The fuzzy logic controllers for mobile 
robots are analyzed by Budiano et al. [89], Mac et al. [90]. 
The conventional Fuzzy systems called Type-1 are having 
some limitations [91] 

1. Inputs to the fuzzy controller are from sensors, 
which may be noisy due to the variations in the envi-
ronment, cause errors in the Output Membership 
Function(OMF).

2. The variations in control actions such as force or torque 
in the actuators will cause errors in the OMF.

3. Fuzzy logic controllers are dependent on linguistic 
commands that lead to errors.

4. For a complex control problem, the fuzzy rule set will 
be large. The number of rules will increase exponen-
tially with the of inputs.

A Hierarchical Type-2 Fuzzy controller will be useful to 
address this issue for mobile robots. A Type-2 fuzzy con-
troller is associated with fuzzy membership function, in 
place of crisp membership functions in Type-1 controllers. 
The uncertainty in the membership function termed as the 
Footprint of Uncertainty (FOU).

The problems of path and trajectory tracking, etc. 
belong to the deliberative approach whereas naviga-
tion, wall following, obstacle avoidance as a Hierarchical 
Type-2 Fuzzy controller will be useful to address this issue 
for mobile robots. Cheol-Joong Kim [92] investigated both 
Type-1 and Type-2 fuzzy logic controllers. Type-1 Fuzzy 
controllers gave limited results but Type -2 provides bet-
ter results. An example of Type-2 fuzzy obstacle avoidance 
for the soccer system developed. A Type-1 fuzzy controller 
designed with four input membership functions. These are 
the distance from goal and the nearest obstacle, inclina-
tion angle to the goal, and the nearest obstacle. The Type-2 
fuzzy membership function is realized by adding mean 
and standard deviation. This concept extended to over-
come the difficulties of terrain irregularities. Abiyev et al. 
[93] used a Type-2 fuzzy system for optimum performance 
of mobile robot navigation by avoiding obstacles. The 
type-2 method has shown superior performance over vari-
ous other obstacle avoidance algorithms like Vector Field 
Algorithm Plus (VFH+), Local Navigation, etc. The angles 
of right and left wheels, as well as the distance to the goal 
point, are taken as input membership functions, and the 
turn angle is the output membership function with upper 
and lower limits. Khalid-Al-Mutib et al. [94] also introduced 
a Type-2 fuzzy controller for mobile robot navigation. 
Santiago et al. [95] investigated Type-2 Fuzzy control for 
mobile robot navigation. The studies of Type-2 fuzzy con-
trollers are expanded to navigation under unstructured 
environment [96]. The membership function consists of 
target location and angle as input membership functions 
and linear and angular velocities as output functions.

Many recent studies suggested the better performance 
of Type-2 controllers over Type-1 counterpart. Castillo et al. 
[97] reviewed Type-1 and Type-2 fuzzy intelligent systems. 
The authors focus on the control where Type-2 fuzzy sys-
tems for the left and right wheel torques. Sanchez et al. 
[98] had a focused analysis on torque control of mobile 
robots and found the Generalized Type 2 fuzzy control-
ler (GT2FC) performed better than Type-1 fuzzy control-
ler (T1FC) and Interval Type 2 Fuzzy Controller (IT2FC). 
Martínez et al. [99] also performed GT2FC algorithms on 
dynamic control of mobile robots and obtained better per-
formance compared with T1FC. A study was conducted 
by Chia-Feng Juang and Chia-Hung Hsu [100] suggests 
a Type-2 controller with ant colony optimization for wall 
following of Autonomous robots. In their further stud-
ies, Chia-Hung Hsu and Chia-Feng Juang [101] evaluates 
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species-differential-evolution-activated continuous ant 
colony optimization (SDE-CACO) along with Type 2 fuzzy 
control. Castino et al. [102] investigated the bio-inspired 
optimization techniques for type 1 and type 2 fuzzy con-
trollers for torque control of mobile robots. The recent 
development in optimization algorithms has influenced 
fuzzy-based mobile robotics control. Melin et al. [103] 
introduced chemically inspired optimized algorithms for 
Type 1 and Type 2 controllers. Hence the possibilities of 
terrain-based parameters can contribute to the optimiza-
tion of robot performance by suitable control selection 
Figueroa et al. [104] presented a Type-2 fuzzy controlled 
mobile robot for playing soccer games. A vision system is 
mounted on top of an experimental soccer ground and the 
camera inputs a membership function for Type 2 FLC. The 
important take away is the efficiency of Type-2 systems 
in mobile robots for dealing with uncertainty. Amador-
Angulo et al. [105] proposed a hybrid controller with T1FC, 
IT2FC, and GT2FC along with Bee colony optimization 
algorithm in trajectory control of mobile robots. Jyun-Yu 
Jhang [106] suggest a Type-2 fuzzy system with particle 
swarm optimization for behavior-based mobile robot con-
trol approach. Fuzzy logic controllers give better results for 
reactive approaches.

8  Conclusion

The performance of autonomous robots can be improved 
by learning the variations in navigating terrains. The recent 
technological advancements in the navigation of autono-
mous robots in different terrain structures are analyzed in 
detail. The terrain-related analysis is necessary for mobile 
Robots in various strenuous applications. The works in 
planetary rovers also require indistinct terrain analysis. 
The review covered various facets of this issue, as follows 

1. The researches on the design of the robot, addresses 
the multi-terrain navigation challenges and improved 
designs are formed. But focusing on design variations 
can increase the complexity, in manufacturing and 
control.

2. The sensors enjoy a key role in the terrain challenges, 
as they identify and classify different terrains. Visual 
and non-visual techniques such as haptic sensors are 
used to address the issue. Specific sensors compatible 
in size and able to communicate in real-time with the 
processors are ideal for the purpose.

3. The developments of intelligent techniques like Deep 
Learning methods influenced real-time terrain identi-
fication and classification strategies. The hybrid struc-
tures integrating the vision and tactile mechanisms are 
showing improved performance.

4. The relationship between terrain parameters and 
robot parameters are important in developing optimal 
control strategies. The accuracy of the terrain estima-
tion process depends upon robot-terrain modeling. 
These estimations are influenced by the development 
in computing techniques. The performance of robots is 
optimized by the implementation of intelligent control 
strategies, like Variable Structure Control, Fuzzy Logic 
Control, etc. The Fuzzy Logic Controllers show optimal 
performances in nonlinear applications. The recent 
developments in the field of Fuzzy Logic Controllers 
for mobile robots are also covered in our survey, as 
Type-2 systems are used in recent control strategies.

The future scope of the terrain related mobile robot navi-
gation will be to incorporate the development in soft 
computing techniques to the intelligent control strate-
gies considering the terrain classification and estimation 
procedures.
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