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Abstract
The present work is aimed at deriving a finite element model for active constraining layer damping treatment (ACLD) of 
layered skew plates by incorporating zig-zag behaviour using a Murakami zig-zag function (MZZF). The ACLD in skew 
patch form comprises of 1–3 PZC material and viscoelastic material in the layer form placed on substrate skew plate. 
The overall skew substrate ACLD system deformation kinematics are derived using MZZF and the equations of motion 
for the same are derived by virtual work method. A MATLAB subroutine for the overall skew plate ACLD system has 
been developed to present the closed loop frequency responses by successful implementation of closed-loop feedback 
system. The substrate skew plates with different lamination schemes namely symmetric/antisymmetric cross-ply and 
antisymmetric angle-ply are considered to assess the damping behavior of the skew plates undergoing ACLD. Also, the 
piezo-fiber angle (obliquely reinforced) variation of the PZC layer on the damping responses of the skew plates have 
been thoroughly examined.

Keywords Finite element method (FE) · Smart damping · Piezoelectric composite (PZC) · Murakami zig-zag function 
(MZZF) · Skew plates

1 Introduction

It is apparent that layered laminates with skew edges are 
imperative to many of the applications and have substan-
tial importance in aerospace systems, frames, ship hulls, 
and aircraft wings. These elements exhibit anisotropic 
behavior due to discontinuities at layer interfaces. Also, 
the low transverse to in-plane modulus ratio and different 
transverse moduli results in the zig-zag behavior in the 
element. Hence the behavioural study of skew elements 
is an important area to be dealt with and investigations 
in this regard has be carried out by few researchers in the 
past decades. Wang [1] applied Reissner–Mindlin model 
considering the transverse shear effect and studied the 
free vibration responses of skew laminates. Krishna and 
Palaninathan [2] developed triangular element for finite 

element (FE) model for free vibration bending behavior of 
skew plates. First order shear deformation theory (FSDT) 
and higher order shear deformation theory (HSDT) are 
used to analyse the buckling of skew panels by Babu and 
Kant [3]. Garg et. al [4] presented a simple C0 FE model 
based on HSDT for free vibration study of composite and 
skew sandwich plates. Recently Kiani [5] explore the buck-
ling behaviour of functionally graded carbon nanotube 
(FG-CNT) reinforced skew plates and evaluated the tem-
perature dependent responses of the same. Most recently, 
Kallannavar et al. [6] studied the free vibration characteris-
tics of skew composite and sandwich plates and reported 
the hygrothermal effect on the same. But the analysis 
using these theories is time consuming leading to high 
costs of computation. Also, these theories do not account 
for the Zig-Zag effect which may affect the responses 
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of layered structures. Hence, Murakami [7] modified the 
existing theories by introducing Murakami zig-zag func-
tion (MZZF) to account for this behavior. MZZF incorpo-
ration considers use of fewer degrees of freedom (DOF) 
and hence the low computation time and cost. Carrera 
[8] introduced the MZZF modifying the classical theories 
investigating the effect in modeling the plates and shells. 
Carrera and Ciuffreda [9] developed a unified theory for 
assessing the behaviour of layered plates under bending. 
Brischetto et al. [10] used the MZZF for the analysis of 
unsymmetrical bending of sandwich laminates. Brischetto 
et al. [11] employed the incorporated MZZF higher order 
theory for studying the bending responses of panels of 
sandwich construction.

These structures possess very low damping which may 
result in vibration related failures of the same. To increase 
damping these structures are often embedded with addi-
tional materials to enhance their damping and once such 
material which is widely used is the piezoelectric mate-
rial. Such structures with embedded piezoelectric type 
material are called smart structures [12]. Piezoelectric 
material embedded flexible structures have been studied 
rigorously by many researchers. Bailey and Hubbard [12] 
analysed the transverse vibration control of the laminated 
beam by the use of polymer made of piezo material. Reddy 
[13] first used the piezo electric materials as sensor and 
actuator for carrying out the analysis of laminated plates. 
Recently Elahi et al. [14] proposed a Barium titanate piezo-
electric material for aerospace applications and evaluated 
its performance experimentally for thermo mechanical 
shock and electrical shock. These materials require very 
high voltages for producing the desired effect and hence 
usage of these materials in bulk form posed a huge set-
back. Hence, these materials are reinforced in polymer 
acting as matrix lead to the development of piezoelectric 
composite (PZC). Initial research in this area is carried of 
effective properties estimation of these PZCs. Smith and 
Auld [15] have done the pioneering work associated with 
the modeling of 1–3 PZC material for studying the bending 
oscillations of structures. Dunn and Taya [16] employed 
micromechanics approaches to estimate the moduli of the 
PZCs. Stevenson et al. [17] proposed piezoelectric materi-
als for high temperature applications for their possible use 
as sensors and actuators. Most Recently, Wang et al. [18] 
conducted the survey of the piezoelectric material and 
their use in recent years and based on their findings they 
made classifications of the same depending on the long 
working strokes. Among the class of PZCs, 1–3 PZC [19] 
materials having vertical and oblique piezo fiber reinforce-
ments are widely used for damping of thin structures. To 
enhance the damping responses, 1–3 PZC material along 
with viscoelastic material are embedded over the structure 
where the later acts as passive material while the former 

acts as active material when supplied with voltage. Such 
combo of 1–3 PZC and the viscoelastic material developed 
by Baz [20] who coined that as active constrained layer 
damping (ACLD). Baz and Ro [21] optimized the damping 
and energy dissipation of plates undergoing ACLD treat-
ment and proved that damping performance is enhanced 
by the use of ACLD over just 1–3 PZC layer. ACLD treat-
ment is nothing but a patch of material consisting of a vis-
coelastic material as constrained layer and a smart material 
layer like the piezoelectric material layer as constraining 
layer. Both active (with supply voltage) and passive (with 
no voltage) vibration control can be achieved by using the 
ACLD treatment [22]. Recently, several authors examined 
the behavior of 1–3 PZC as a material of the ACLD con-
straining layer for damping the responses of composite/
sandwich plates and shells. Kanasogi and Ray [23], pre-
sented ACLD of skew plates composed of laminates con-
sidering the displacement equations in terms of FSDT. 
Selim et al. [24] carried out the vibration control of func-
tionally graded material (FGM) plates using HSDT. Zhao 
et al. [25] presented the damping behaviour considering 
an equivalent single-layer material by simplifying the finite 
element model of the plates. Selim et al. [26] reported the 
control of FG graphene nanoplatelets reinforced plates 
using HSDT with integrated piezoelectric layers. Recently, 
Li et al. [27] investigated the damping response of FG pie-
zoelectric plates composed of smart piezo layers using the 
Hamiltonian and Rayleigh ritz mechanics. Vinyas [28] car-
ried out the vibration damping analysis of skew magneto 
electro-elastic plates using FSDT. Most of the above-men-
tioned studies considered the FSDT and HSDT to model 
the displacement kinematics in deriving the governing 
equations for suppressing the vibration. However, no 
work has yet been reported with the inclusion of the MZZF 
which play a vital role owing to the anisotropic behaviour 
of these structures and also resulting in an effective com-
putational model for the analysis of structures undergoing 
ACLD. Very recently, Khan and Kumar [29] incorporated 
the MZZF for reporting the smart damping analysis of 
cylindrical shells. The findings reported by them prove the 
effectiveness of the model in reducing the computation 
time. Although MZZF has been successfully implemented 
in studying the behaviour of cylindrical shells, this pro-
vides a scope for investigating the effect of the same in 
the analysis of laminated skew plates. Also, the response 
and damping characteristics of skew plates are entirely 
different compared to the cylindrical shells and hence it 
provides an ample scope for investigating them. The nov-
elty of the present work lies in the successful incorporation 
of MZZF for estimating the vibration damping of smart 
skew plates. In the present paper, the authors intend to 
develop a closed loop finite element (FE) model consider-
ing the displacement kinematics incorporating the MZZF 
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to examine the damping responses of ACLD smart skew 
laminate plate. A MATLAB subroutine has been developed 
to investigate the damping behaviour of plates in both 
active (voltage ≠ 0) and passive (voltage = 0) mode.

1.1  Outlines of the paper

The present article is organised systematically in the fol-
lowing manner:

• First, the governing equations have been derived 
including the MZZF in the displacement functions. The 
stresses and strains at any point in the skew plate have 
been obtained by the use of strain displacement rela-
tions while the equations of motion of the skew plate 
are derived employing the virtual work principle.

• The finite element model to obtain elemental, global 
equations of motion are obtained for which eight-
noded isoparametric elements have been considered.

• Employing a basic feed-back control strategy, the 
closed loop global equations of motion are derived for 
producing the frequency responses in active and pas-
sive mode.

• The closed loop global equations of motion have been 
used to produce the numerical results which are illus-
trated in the results and discussions part of the manu-
script.

• Finally, the conclusions of the study are presented at 
the end followed by the references section.

2  Governing equations

Figure 1 displays skew plate ACLD system composed of 
N layered substrate laminate with equal lateral dimen-
sion namely the length, the width �, �(a = b) while the 
thickness of the skew substrate plate is h . Skew patches 
of ACLD two in number are positioned on top of substrate 

skew plate along the non-skewed edges. The smartness 
adding material of the skewed ACLD is either vertically/
obliquely 1–3 PZC while the passive material is viscoe-
lastic whose thicknesses are hp and hv , respectively. The 
skew angle of the edge of ACLD plate system is � whose 
reference plane (z = 0) overlaps with the mid layer of the 
substrate plate and the origin of which is located at the 
left edge of the intersection of the boundary lines namely 
x = (�����, � + �����)andy = (0,�����) . The orientation 
� of the fibers in the substrate lamina are in the xy-plane . 
The 1–3 PZC smart material with fiber reinforcements in 
xz-or yz-plane while the same are at angle �  with z-axis 
for oblique reinforcements and such depiction pictorially 
is shown in Fig. 2. The skew ACLD plate is numbered by 
k(= 1, 2, 3…N,N + 1,N + 2) with k = (1, 2, 3…N) links 
to the N layered skew substrate while k = N + 1,N + 2 
designate the two layers of the ACLD skew patch. A layer 
with thickness hk is depicted by its top and bottom sur-
face by thickness coordinate given by zk+1 and zk with 
origin corresponds to midplane by the consideration of 
non-dimensional coordinate �k (function of z) whose limits 
are −1 ≤ �k ≤ 1 . The MZZF in terms of �k is given by the 
following equation

where M(z) is a linear piecewise function in zk assum-
ing values −1 and +1 alternatively at the layer interface. 
The amplitude of M(z) is independent of both the thick-
ness and the properties of the layer while its derivative 
M�(z) = dM∕dz assumes opposite sign with the amplitude 
dependent only on the layer thickness. To incorporate Zig-
Zag behaviour in the present analysis, the displacement 
equations in x - and y-directions are included with MZZF 
whose deformation kinematics are demonstrated in Fig. 3. 
The displacements of skew plate ACLD system in x-and 
y-directions namely uk and vk at any point are given by

(1)M(z) = (−1)k�k where �k =
2

hk

(
z −

1

2

(
zk + zk+1

))

Fig. 1  Representation of ACLD 
Skew substrate plate com-
posed of layered laminates
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the variables �� and �� are the additional DOF depicting 
the zig-zag layer wise rotations. With supply of voltage, 
the patches get activated resulting in the flexure vibra-
tion control for which the transverse deformation wk of 
the skew plate at any point assumed to quadratically vary 
in z-direction given by:

The reference plane displacements along x , y and z

-directions are u0, v0 and�0 while rotations of the mid-
plane normal of skew plate are �x and �y in xz-plane, yz
-plane, respectively while the rotations depicting gradi-
ent and second derivative displacement in z-direction are 
given by �� and ��. The right-hand side of the Eqs. (2) to 

(2)uk = u0 +
(
zk
1
+ zk

2
+ zk

3

)
× θx +M(z) × ψx

(3)vk = v0 +
(
zk
1
+ zk

2
+ zk

3

)
× θy +M(z) × ψy

(4)wk = w0 + z × θz + z2 × �z

(4) are functions of (�, �, �) while the left-hand side of the 
same are functions of(�, �, �, �) , respectively.

For maintaining the dimensional equality, variables are 
grouped as two vectors shown below:

(5)

where

zk
1
= z and zk

2
= zk

3
= 0 for k = N (Substrate plate)

zk
1
=

h

2
, zk

2
=
�
z −

h

2

�
andzk

3
= 0 for k = N + 1(visco − layer)

zk
1
=

h

2
, zk

2
= hvand zk

3
=
�
z −

h

2
− hv

�
for k = N + 2(PZC − layer)

⎫⎪⎪⎬⎪⎪⎭

(6)
( {

dt

} {
dr

} )
=
⟨ [

u0 v0 w0

]T [
θxθyθzψxψyϕz

]T ⟩

Fig. 2  Lamina of 1 − 3 PZCs with obliquely ori-
ented fibers (� ≠ 0) when fibers are coplanar with [29] 
(�) xz-plane, (�) yz-plane and (�)� = 0with xz-plane (vertical fibers)

Fig. 3  Deformation kinematics of the Skew substrate plate ACLD 
system cross section (a) xz-plane and (b) yz-plane
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Shear locking is evident in thin structures and to avoid 
this effect, selective integration has be performed using 
Gauss quadrature rule and hence, the stresses and strains 
are grouped as in-plane 

{
�b
}
,
{
�b
}

 and out of plane {
�s
}
,
{
�s
}

 terms separately and are given as follows.

in which 
{
�b
}
,
{
�b
}

 feature normal stresses and strains in 
�, � and �-directions along with �xy and �xy the in-plane 
shear stress and corresponding strain while 

{
�s
}
,
{
�s
}

 fea-
ture the remaining shear components, respectively. Con-
sidering infinitesimal strain analysis, strain displacement 
relations which are linear have been used for obtaining the 
strain vectors for skew substrate ( 

{
�b
}
c
,
{
�s
}
c
 ), viscoelastic 

layer ( 
{
�b
}
v
,
{
�s
}
v
 ) and 1–3 PZC layer ( 

{
�b
}
p
,
{
�s
}
p
 ) which 

are given by

(7)
{
σb
}
=
[
σx σy σxy σz

]T
and

{
εb
}
=
[
εx εy εxy εz

]T

(8)
{
σs
}
=
[
σxz σyz

]T
and

{
εs
}
=
[
εxz εyz

]T

(9)

({
εb
}
c
,
{
εs
}
c

)
=
({

εbt
}
+
[
Z1
]{
εbr

}
,
{
εst
}
+
[
Z4
]{
εsr
})

({
εb
}
v
,
{
εs
}
v

)
=
({

εbt
}
+
[
Z2
]{
εbr

}
,
{
εst
}
+
[
Z5
]{
εsr
})

and({
εb
}
p
,
{
εs
}
p

)
=
({

εbt
}
+
[
Z3
]{
εbr

}
,
{
εst
}
+
[
Z6
]{
εsr
})

where
[
Z1

]
=

[ [
Z1

] [
M

Z1

] ]
,
[
Z2

]
=

[ [
Z2

] [
M

Z2

] ]
,
[
Z3

]
=

[ [
Z3

] [
M

Z3

] ]

[
Z4
]
=
[
I
[
M

�

Z4

] [
Z4

] [
MZ4

]]
,
[
Z5
]
=
[
I
[
M

�

Z5

] [
Z5

] [
MZ5

]]

[
Z6
]
=
[
I
[
Mz

�

Z6

] [
Z6

] [
MZ6

]]

in which
�
Z1

�
k=1toN

=
�
Z2

�
k=N+1

=
�
Z1

�
k=N+2

=

⎡⎢⎢⎢⎣

z 0 0 0

0 z 0 0

0 0 z 0

0 0 0 1

⎤⎥⎥⎥⎦
�
M

Z1

�
k=1toN

=
�
M

Z2

�
k=N+1

=
�
M

Z3

�
k=N+2

=

⎡⎢⎢⎢⎢⎣

(−1)k�k 0 0 0

0 (−1)k�k 0 0

0 0 (−1)k�k 0

0 0 0 2z

⎤⎥⎥⎥⎥⎦

[
I
]
=

[
1 0

0 1

]
,
[
Z4

]
k=1toN

=
[
Z5

]
k=N+1

=
[
Z6

]
k=N+2

=

[
z 0

0 z

]

while the vectors 
{
εbt

}
,
{
εbr

}
,
{
εst
}
and

{
εsr
}

 appearing 
in Eq. (9) are given by

The stress strain constitutive relations for layer ‘k’ of 
skew substrate are

and C
k

ij
(i, j = 1, 2, 3...6) are the elastic coefficients of layer 

′k′ of the skew plate which are transformed based on the 
fiber orientation of the skew substrate. The viscoelastic 
constitutive relations are similar to the Eq.  (11) with 
(k = N + 1) containing the complex isotropic coefficients 
given by

In which G is the storage modulus ϑ, is the Poisson’s 
ratio and η is the loss factor. The constitutive relations of 
the viscoelastic material layer (k = N + 1) are also given by 
Eq. (11) with complex elastic coefficients [22]. The 1–3 PZC 

[
MZ4

]
k=1 toN

=
[
MZ5

]
k=N+1

=
[
MZ6

]
k=N+2

=

[
z2 0

0 z2

]

[
M

�

Z4

]
k=1toN

=
[
M

�

Z4

]
k=N+1

=
[
M

�

Z4

]
k=N+2

=

[
(−1)k

2

hk
0

0 (−1)k
2

hk

]

(10)

{
εbt

}
= ∇1

{
dt

}
,
{
εbr

}
= ∇2

{
dr

}
,
{
εst
}

= ∇3

{
dt

}
and

{
εsr
}
= ∇4

{
dr

}

where∇1 =

⎡
⎢⎢⎢⎢⎣

�

�x
0 0

0
�

�y
0

�

�y

�

�x
0

0 0 0

⎤
⎥⎥⎥⎥⎦
,∇1∗ =

⎡
⎢⎢⎢⎢⎣

�

�x
0 0

0
�

�y
0

�

�y

�

�x
0

0 0 1

⎤
⎥⎥⎥⎥⎦
,

01∗ =

⎡⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦
∇2 =

�
∇1∗ 01∗

01∗ ∇1∗

�

I2 =

�
1 0 0

0 1 0

�
, 02∗ =

�
0 0 0

0 0 0

�
∇3 =

�
0 0

�

�x

0 0
�

�y

�
,∇4 =

⎡
⎢⎢⎢⎣

I2 02∗

02∗ I2

∇3 02∗

02∗ ∇3

⎤⎥⎥⎥⎦

(11)

�
σk
b

�
=

⎡
⎢⎢⎢⎢⎢⎣

C
k

11
C
k

12
C
k

16
C
k

13

C
k

12
C
k

22
C
k

26
C
k

23

C
k

16
C
k

26
C
k

66
C
k

36

C
k

13
C
k

23
C
k

36
C
k

33

⎤
⎥⎥⎥⎥⎥⎦

�
εk
b

�

and
�
σk
s

�
=

�
C
k

55
C
k

45

C
k

45
C
k

44

��
εk
s

�
(� = 1, 2, 3…N)

(12)Gv = G(1 + i) and Ev = 2Gv

(
1+v

)
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constitutive relations consistent with the present analysis 
are given by

Here, �� and �� are the � direction electric field and dis-
placement vector and �33 is the dielectric constant. The 
coupled constitutive Eqs. (13) are a result of oblique rein-
forcement of piezo fibers with coupled matrices 

[
C
N+2

bs

]
 in 

Eq. (13) are given by

The matrices entries are zero when � = 00 of the pie-
zofibers while the vectors 

{
��
}
and

{
��
}

 in Eq. (13) repre-
senting the transformed piezoelectric coefficients given 
by:

Tp and Tk are the potential and kinetic energies without 
accounting rotary inertia effects of the skew substrate/
ACLD system are [22]

Applying virtual work principle, the equations govern-
ing the dynamics of skew substrate ACLD is expressed as 
[23]

in which ��,� are the density, volume of layer �while {�} 
is the external traction load on area �.

(13)

{
σN+2
b

}
=
[
C
N+2

b

]{
εN+2
b

}
+
[
C
N+2

bs

]{
εN+2
s

}
−
{
eb
}
Ez,

{
σN+2
s

}
=
[
C
N+2

bs

]{
εN+2
b

}
+
[
C
N+2

s

]{
εN+2
s

}
−
{
es
}
Ez

andDz =
{
eb
}T{

εN+2
b

}
+
{
es
}T{

εN+2
s

}
+ �33Ez.

(14)
�
C
N+2

bs

�
=

�⎡
⎢⎢⎢⎢⎢⎣

C
N+2

15
0

C
N+2

25
0

0 C
N+2

46

C
N+2

35
0

⎤
⎥⎥⎥⎥⎥⎦

or

⎡
⎢⎢⎢⎢⎢⎣

0 C
N+2

14

0 C
N+2

24

C
N+2

56
0

0 C
N+2

34

⎤
⎥⎥⎥⎥⎥⎦

�

(15)

{
eb
}
=
[
e31 e32 e36 e33

]T
and

{
es
}
=
[
e35 e34

]

(16)

Tp =
1

2

[
N+2∑
k=1

∫
Ω

({
𝜀k
b

}T{
𝜎k
b

}
+
{
𝜀r
s

}T{
𝜎k
s

})
dΩ − ∫

Ω

DzEzdΩ

]

− ∫
A
{d}T{f}dAand Tk =

1

2

N+2∑
k=1

∫
Ω

𝜌k
(
u̇2 + v̇2 + ẇ2

)
dΩ

(17)

5∑
k=1

∫
�

(
δ
{
ϵk
b

}T{
σk
b

}
+ δ

{
ϵsk

}T{
σk
s

}
− δEz ϵ̄33Ez − δ

{
dt

}T
ρk
{
d̈t

})
dΩ

− ∫
A

𝛿
{
d
t

}T
{f }dA = 0

3  FE model of ACLD skew plate

For developing the FE model, a mesh size 4 × 4 is selected 
based on the convergence and the element for the mesh 
is an eight noded quadrilateral element. Following Eq. (5), 
the elements node ′j′ DOF are given by

while the element displacement vectors 
{
de
[]

}
:

�[]with [] →either � or� are size 3 and size 6 unit matrices 
and �� is the basis function of the ��� node. The strain vec-
tors in the element consistent with Eq. (9) is as follows:

where �Btbj
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0
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02∗ I2�
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�
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�
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�
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 w i t h 

elemental form being

Putting Eqs. (11)–(15) and (21) in Eq. (17) and identify-
ing �� = �∕�� where � is the applied voltage to the PZC 
layer, the equations of motion of skew plate ACLD system 
as follows:

(18)

{
dtj
}
=
[
u0j v0j w0j

]T
and

{
drj
}
=
[
�xj�yj�zj�xj�yj�zj

]T

(19)

{
d[]

}
=
[
N[]

]{
de
[]

}
in which

{
de
[]

}
=

[{
de
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}T{
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. .
{
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[]8

}T
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(20)

[
N[]

]
=
[
N[]1 N[]2. . N[]8

]T
and N[]k = ��I[]; []

either
→

{
t-translational

r-rotational

(21)
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,

and
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}
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=
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{
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(22)

[
Bt()

]
=

[
Bt()1 Bt()2 .Bt()8

]
and

[
Br()

]

=

[
Br()1 Br()2 . Br()8

]
( )

either
→

{
b-bending

s-shear
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Before deriving the global equations of the skew substrate 
ACLD plate, the skewed nature of the plate makes the assem-
bly process difficult since the edges of the plate are not paral-
lel to the reference coordinates. This makes the processes of 
defining the end condition in generalized displacements dif-
ficult and hence for successful implementation of the same, 
the skew edge transformed displacements are [23]:

where 
{
d

′

t

}
 and 

{
d

′

r

}
 are transformed vectors in the (x′ y′ 

z′) system given by:

in which c = cos α, s = sin α, and O3 is 3 × 3 null matrix. The 
entries to the matrices of elements with nodes along the 
skew edge are given by

w h e r e  t h e  m a s s  a n d  s t i f f n e s s  m a t r i c e s 
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,
[
��

tr

]
and
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]
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{
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}

 , 
{
Fe
tp

}
,
{
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}
; in the element form 

seen in Eq.  (25) while the transformation matrices [
T1
]
and

[
T2
]
 in Eq. (27) are as follows:
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{
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while the transformations matrices
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where the matrices in Eq.  (28) are similar to those in 
Eq.  (23) in the global form, {�} and

{
��

}
 are the DOF 

representing translational and rotational displacements, 
��-voltage applied and �-patch number . The entries to 
the stiffness matrices in Eq. (28) are complex due to the 
viscoelastic material, the energy loss in the system is 
ascribed to the imaginary parts. The Eq. (28) also amounts 
for uncontrolled responses of the ACLD skew plate taking 
�� = 0(for all p).

4  Closed-loop model

For active mode, the ACLD patches are activated by sup-
ply of control voltage at a particular point as a function 
of transverse velocity of the same. The supply voltage in 
terms of control gain ��

�
 is expressed as:

In which 
[
�

�

�

]
 and 

[
�

�
�

]
 are the transverse unit vectors 

of voltage supply. The equations in the final form adopt-
ing the feedback system are found by substitution of the 
Eqs. (29) in (28) as:

5  Results and discussion

The model derived in the earlier section are utilized to 
present the findings of the study. The dimensions of the 
skew substrate ACLD system are shown in Table 1 while 
the properties of the constituent materials of the ACLD 
skew substrate are listed in Table 2. The composition of the 
smart constraining layer is 60% fiber volume fraction PZT-
5H/spur composite [19]. To carry out the analysis, different 
end conditions of the skew plates are considered and the 
same are listed in Table 3. To proceed with the analysis, the 
first step is to validate the developed FE model with incor-
porated MZZF, the same is used for evaluating the trans-
verse displacements and fundamental frequency param-
eters of similar plates available in the literature. Tables 4 
and 5 list the evaluations of the same and corresponding 
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values are compared with the works of earlier researchers 
[4, 30]. The results shown in the Tables 4 and 5 are found to 
be in good agreement with the benchmark works of Garg 
et al. [4] and Reddy [30]. Also, these results not only clearly 
establish the present model but also proves to be versa-
tile for predicting the behavior of thicker plates. The next 
step in the analysis is to use the present model to evaluate 
the frequency response functions (FRFs)skew substrate 
plate ACLD system and assess the damping behavior of 
the same. For such a study a force 1 N magnitude of time 
harmonic nature is applied at the point (a/2+ (b/4) sinα, 
(b/4) cosα, h/2) on the top surface of the skew substrate 
while the control voltages for activating the patches are 
supplied to the points (a/2 + (b/4) sinα, (b/4) cosα, h/2) 
and (a/2 + (b/4) sinα, (3b/4) cosα, h/2). Except stated, the 
aspect ratio (a/h) is 100, the piezo fibers of smart layer are 
vertically aligned (ψ =  00) and the skew angle (α =  300) are 
considered for further analysis. The controlled FRFs of SS1 
skew plates composed of symmetric cross-ply  (00/900/00) 
substrate laminates for different skew angles are dis-
played in Figs. 4, 5 and 6, while the equivalent required 
voltages are illustrated in Figs. 7, 8 and 9. It can be seen 
from these figures that the present model incorporating 
the Zig-Zag theory is found to be very effective in damp-
ing the responses of the skew plates. Also, the results 
shown above clearly provide an insight into modelling the 
smart damping responses of the structures which has not 
been attempted earlier and can be treated as benchmark 
results for future research in the similar area. Similar results 
not shown here for brevity sake have been obtained for 
antisymmetric cross ply  (00/900/00/900) and antisymmetric 
angle-ply (–450/450/–450/450) skew substrates. The con-
tribution of the transverse actuation for improving the 
damping behavior of ACLD patch for controlling the vibra-
tions of SS1 symmetric cross-ply  (00/900/00) skew substrate 
with α = 300 is shown in Fig. 10. The responses show that 
the effect of considering e33 and e31 contributes signifi-
cantly in damping these responses in comparison to the 
in-plane actuation. Also, the effect of piezoelectric coef-
ficient e33 is found to be significant over e31 for the same 
which justifies consideration of transverse normal strain 
for better performance evaluation. In order to investigate 

Table 1  Dimensions of the skew substrate ACLD system

Skew substrate ACLD system Notation with dimensions

Thickness of skew substrate � = 0.003 m

Aspect ratio of substrate �∕� = 100

Length/width of the plate � = 0.3m

Thickness of the ACLD patch �� + ��
��(1 − 3 PZC layer) − 200 μm

��(Viscoelastic layer) − 50 μm
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control authority of the patch, the ‘ψ’ of oblique coplanar 
xz- and yz-plane fibers of 1–3 PZC are changed from  00 
to  450, respectively. Figures 11 and 12 illustrates FRFs of 
SS1 and CC symmetric cross ply  (00/900/00) ACLD skew 
plates with coplanar xz-plane piezofibers for different ‘ψ’ 
(i.e., ψ =  00,150,300,450), respectively. It may be observed 
that maximum attenuation of the patch for controlling the 

responses has been found when the value ψ is  00 for SS1 
end condition while the same is found maximum when ψ 
is  300 for CC end conditions, respectively. Similar results 
not shown for brevity sake are obtained for other substrate 
skew plates with coplanar yz-plane piezo fibers.

Table 2  Material properties of 
the components of the ACLD 
skew plate

Component Layer number Material properties

Skew substrate [30] k = (1, 2, 3… .N) E1 = 172GPa, E1∕E2 = 25,

G12 = G13 = 0.5E2, G23 = 0.5E2,

υ13 = υ13 = υ13 = 0.25

Viscoelastic layer [22] k = N + 1 Shear Modulus� = 20(1 + i)MN/m2,
Poisson ratio � = 0.49

and � = 1140 kg/m3

1–3 PZC layer [22] k = N + 2 C11 = 9.29 GPa, C12 = 6.18 GPa,

C13 = 6.05 GPa, C33 = 35.44 GPa,

C23 = C13, C55 = C44, C44 = 1.58GPa,

C33 = 1.54 GPa, e31 = −0.1902 C/m2,

e32 = e31, e24 = 0.004 C/m2,

e33 = 18.4107 C/m2and e15 = e24

Table 3  Types of Support end 
conditions of the plate

End condition x = 0 and x = a y = 0 and y = b

Simply-supported (SS1) v0 = w0 = �y = �y = �z= �z = 0 u0 = w0 = �x = �x = �z= �z = 0

Simply-supported(SS2) u0 = w0 = �y = �y = �z= �z = 0 v0 = w0 = �x = �x = �z= �z = 0

Clamped-clamped(CC) u0 = v0 = w0 = �x = �x

= �y = �y = �z = �z = 0

u0 = v0 = w0 = �x = �x

= �y = �y = �z = �z = 0

Table 4  Fundamental 
frequency (�) of SS1 Skew 
substrate laminates with ACLD 
of negligible thickness (� = �)

� =
�
�b2∕�2h

�√
�∕E

2
,� is the circular natural frequency

Skew 
angle (�)

Source Symmetric cross-ply
900/00/900/00/900

Antisymmetric cross-
ply
(00/900/00/900)

Antisymmetric 
angle-ply
450/-450/450/-450

Mode-1 Mode-2 Mode-1 Mode-2 Mode-1 Mode-2

0 Ref. [4] 1.5699 3.0372 1.5119 2.4656 1.9171 3.4869
1.5703 2.8917 1.4829 2.4656 1.7974 3.3351

Ref. [30] 1.5635 2.4383 1.5076 2.4380 1.8493 3.3359
Present MZZF 1.5779 2.4392 1.5197 2.4392 1.8779 3.4220

15 Ref. [4] 1.6874 3.1413 1.6081 2.5364 1.9366 3.4206
1.6877 3.0458 1.5741 2.5351 1.8313 3.2490

Ref. [30] 1.6571 2.9840 1.5796 2.5775 1.8675 3.2075
Present MZZF 1.6751 3.0223 1.5945 2.5771 1.8970 3.2857

30 Ref. [4] 2.0884 3.5147 1.9439 2.9389 2.1196 3.6146
2.0840 3.4023 1.8871 2.9372 2.0270 3.4431

Ref. [30] 1.9596 3.1690 1.8226 2.9585 1.9894 3.2365
Present MZZF 1.9900 3.2404 1.8473 2.9576 2.0238 3.3156

45 Ref. [4] 2.8932 4.2852 2.6752 3.3131 2.6752 3.3131
2.8925 4.1906 2.5609 3.3126 2.5609 3.3125

Ref. [30] 2.4811 4.4875 2.2996 3.4773 2.3194 3.4870
Present MZZF 2.5349 4.6255 2.3464 3.5708 2.3676 3.5809
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6  Conclusion

The zig-zag behavior in the form of MZZF has been suc-
cessfully incorporated in the development of FE model of 
skew plate ACLD system. symmetric cross-ply  (00/900/00), 
antisymmetric cross-ply  (00/900/00/900) and antisymmetric 

angle-ply  (450/–450/450/–450) substrate skew plates are 
considered for presenting numerical results. The investi-
gations reveal that the present FE model accurately pre-
dicts the damping responses which are consistent with 
other shear deformation theories. For active damping of 
the skew plates, he vertical actuation by the 1–3 PZC layers 
vertical actuation is far better than the in-plane actuation. 

Table 5  Fundamental 
frequency (�) of CC Skew 
substrate laminates with ACLD 
of negligible thickness (a = b)

� =
�
�b2∕�2h

�√
�∕E

2
,� is the circular natural frequency.

Skew 
angle (�)

Source Symmetric cross-ply
900/00/900/00/900

Antisymmetric cross-
ply
(00/900/00/900)

Antisymmetric 
angle-ply
450/-450/450/-450

Mode-1 Mode-2 Mode-1 Mode-2 Mode-1 Mode-2

0 Ref. [4] 2.3820 3.7383 2.3947 3.9533 2.2965 3.8921
2.3687 3.5399 2.2990 3.7880 2.2119 3.7339

Ref. [30] 2.3201 3.4769 2.3315 3.6531 2.2433 3.6000
Present MZZF 2.3784 3.5871 2.3933 3.7732 2.2983 3.7120

15 Ref. [4] 2.4750 3.7872 2.4803 3.9145 2.4007 3.8555
2.4663 3.6255 2.3809 3.7516 2.3099 3.6997

Ref. [30] 2.3699 3.4821 2.3741 3.5856 2.3049 3.5346
Present MZZF 2.4305 3.5910 2.4381 3.7024 2.3639 3.6440

30 Ref. [4] 2.7922 4.0568 2.7798 4.1566 2.7418 4.1221
2.8001 3.9557 2.6666 3.9851 2.6325 3.9549

Ref. [30] 2.5366 3.5696 2.5240 4.1943 2.4945 3.6113
Present MZZF 2.6051 3.6809 2.5964 4.3406 2.5653 3.7286

45 Ref. [4] 3.4739 4.7396 3.4434 4.8223 3.4434 4.8223
3.5215 4.7129 3.3015 4.6290 3.3015 4.6290

Ref. [30] 2.8665 4.7074 2.8377 4.7614 2.8377 4.7614
Present MZZF 2.9509 4.8691 2.9294 4.9406 2.9294 4.9406

Fig. 4  Frequency response plot of transverse displacement of SS1 ACLD skew plate (
Symmetric cross-ply

(
00∕900∕00

)
,� = 150, �∕� = 100,� = 00

) Fig. 5  Frequency response plot of transverse displacement of SS1 ACLD skew plate(
Symmetric cross-ply

(
00∕900∕00

)
, � = 300, �∕� = 100, � = 00

)
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For the simply-supported end conditions, substrate skew 
plates with ACLD treatment containing vertically aligned 
coplanar xz- and yz-plane piezo fibers (ψ =  00) exhibits 
better control authority while the same is best when ψ = 
 300 for the clamped–clamped end conditions, respectively.

Limitation of the present study and scope for further 
research: Although, the study has its own advantages in 
terms of reduction in time of computation, but the MZZF 
incorporation for smart control of plates and shells does 
not give the clear-cut view regarding the across shear 

Fig. 6  Frequency response plot of transverse displacement of SS1 ACLD skew plate (
Symmetric cross-ply

(
00∕900∕00

)
,� = 450, �∕� = 100,� = 00

)

Fig. 7  Control voltages for ��1���� skew plate
(
� = 150, �∕� = 100

)
 (

Symmetric cross-ply
(
00∕900∕00

)
,� = 00

)

Fig. 8  Control voltages for ��1���� skew plate
(
� = 300, �∕� = 100

)
 (

Symmetric cross-ply
(
00∕900∕00

)
,� = 00

)

Fig. 9  Control voltages for ��1���� skew plate
(
� = 450, �∕� = 100

)
 (

Symmetric cross-ply
(
00∕900∕00

)
,� = 00

)
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which is close to parabolic nature. This may be sorted out 
by including the MZZF in the displacement fields of HSDT 
providing ample scope for further research.
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