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Abstract
This work addresses the design of miniature compliant displacement amplifiers. The optimum design of the compliant 
mechanism is generated through topology optimization of two-node frame elements with linearly varying cross sections 
using the Ant Colony Optimization technique. First, stiffness matrices that account for the change in the cross-section 
dimensions are formulated. Then, each element is assigned 5 independent ants that represent its design variables defined 
as the width and thickness of each of the two peripheral cross-sections in addition to the material density. Three case 
studies with customized cost functions are furnished; the first maximizes the amplification ratio, the second maximizes 
the output displacement, while the third maximizes both amplification ratio and output displacement simultaneously. 
The resulting micro-compliant amplifiers are more compact in volume and surpass their constant cross-section coun-
terparts in terms of amplification ratio and output displacement while keeping relatively low internal stresses. The 
performances of all optimized topologies are verified through ANSYS.

Keywords  Compliant mechanisms · Ant colony optimization · Topology optimization · Finite element analysis · Variable 
cross section · Frame elements

1  Introduction

A compliant mechanism is an interconnected structure 
that deflects due to its material’s elastic properties. These 
flexible mechanisms contain less number of parts than 
their corresponding rigid counterparts delivering the 
same task. In addition, complaint mechanisms have great 
advantages over their rigid counterparts in terms of fric-
tion and wear elimination as they lack joints within their 
structure. Being joint-less, compliant mechanisms are 
noticeably reputable for the ease in miniaturization that 
makes them applicable in advanced robotics and micro-
electro-mechanical systems, MEMS [1].

The main challenge lies in the topology design of 
complaint mechanisms since their behavior is not clearly 
defined as compared to rigid linkages. Synthesis of 

compliant mechanisms is usually classified by two catego-
ries; pseudo-rigid body model (PRBM) [2] which leads to 
partially compliant mechanisms and topology optimiza-
tion which generates fully compliant mechanisms [3].

Optimization of compliant mechanisms is of three 
levels: topology, shape and size. Topology optimization 
is used to generate material layout concepts. Once the 
structure’s topology is defined, shape optimization refines 
and improves the topology within the desired concept 
whereas size optimization identifies the optimal param-
eters, such as cross-section and thickness dimensions [1].

Topology optimization was first applied to compli-
ant mechanisms using the homogenization method [4]. 
It defines the material layout and thus its distribution 
between the input and output nodes in the design space 
leading to a joint-less mechanism that gains its flexibility 
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from the structure’s elastic deformation. Topology opti-
mization is either ground structure parameterization or 
continuous material density parameterization. In the first 
approach, or the binary approach, the design space is 
divided into elements that are given the values of either 
zero (no material), or 1 (full material) for the normalized 
modulus of elasticity of the material [5]. However, the 
second approach distributes materials in the design 
space based on their densities, thus, observing white 
and black contour regions as well as grey regions mod-
eling softer materials [4]. At the end of either approach, a 
complete view of the mechanism is formulated in terms 
of the material distribution.

In the past decade, topology optimization for various 
applications using swarm intelligence techniques has 
prospered including compliant and rigid mechanisms. 
Kaveh and Shahrouzi [6, 7] elaborated a new algorithm 
called hybrid ant strategy that mixed between the 
Genetic Algorithm (GA) and the Ant Colony Optimization 
(ACO) to enhance convergence efficiency. Later, Kaveh 
and Talatahari [8] introduced a new concept of Improved 
Ant Colony Optimization (IACO) to solve problems using 
the sub-optimization mechanism (SOM) at maximum 
accuracy with higher convergence rates. Wu et al. [9] 
proposed a modified ACO algorithm to find the optimal 
design by evaluating the accumulated pheromone on 
the finite elements. Their proposed algorithm provides a 
swap technique of optimization with a higher probabil-
ity of finding the optimal topology of a structure as com-
pared to genetic algorithms and typical ACO methods. 
Kim et al. [10] suggested the modified ant colony opti-
mization (MACO) to obtain stable and optimal topology 
for geometrically linear and non-linear compliant mech-
anisms. To overcome the weakness of the ACO in low 
target volume problems, MACO is developed depend-
ing on results of Kosaka and Swan [11]. Their approach 
was based on comparing three objective functions and 
defining the fitness ratio where they modeled stiffness 
and flexibility in the objective function as mutual strain 
energy and strain energy ratio respectively. Yoo and 
Han [12] introduced a new variable, “element contribu-
tion significance”, which reflects the significance of each 
finite element and consequently adapted a new form 
of the classical ACO algorithm. Sharma and Grover [13] 
integrated another MACO to set the optimum energy 
efficient path of sensor nodes in signal transmission. 
Liu et al. [14] implemented MACO algorithm where their 
technique excluded nodes enclosed by low density ele-
ments from the mesh. Si and Wei [15] categorized the 
ants in their work into scout, search and worker ants 
each with different specified tasks. The same catego-
rization concept was implemented by Diab and Smaili 
[16] where their modified ant search (MAS) algorithm 

intended to optimize the performance of the algorithm 
with dynamic enter/exit strategies between exploration 
and exploitation phases.

Designing for compliant mechanisms that balance the 
stiffness-flexibility criterion while allowing for large defor-
mations is a challenging task that recent research work 
is addressing. Lately, many researchers have streamlined 
their efforts for optimum design of compliant amplifiers. 
Clark et al. [17] studied optimized topologies using bridge 
structures to maximize output displacement of flexure 
based mechanisms. They introduced new cost functions 
to approximate the output displacement in the direction 
normal to the input load. The optimized designs gener-
ated bridge-element topologies with variable thicknesses 
and additional sideways connections that enhanced the 
displacement amplification. Iqbal et al. [18] tested the 
effect of different geometric parameters, namely length 
of flexure hinges and flexure angle, on the amplification 
ratio of the optimized flexure mechanisms. Cao et al. [19] 
applied topology optimization of compliant mechanisms 
using a hybrid mesh of flexure hinges and beam elements. 
The former allow for high flexibility while the latter give 
the overall topology its stiffness. Since flexure hinges store 
strain energy when deformed, Zhao et al. [20] proposed 
near-zero stiffness rotational flexural pivots to cut down 
on the rotational stiffness of the overall compliant struc-
ture while allowing for relatively large deformations. For 
multi-input/multi-output compliant mechanisms that 
allow for large displacements, Zhu et al. [21] implemented 
fully decoupled flexible mechanisms by adding several 
constraints to suppress the undesirable outputs due to 
each input through a coupling index. Diab and Smaili [22] 
conducted four case studies on topology optimization of 
compliant mechanisms through four different objective 
functions using two node frame elements with constant 
cross sections. In their work, the authors postulated new 
objective functions for modeling output displacements 
and amplification ratios of micro-compliant mechanisms.

In this work, the ACO algorithm is implemented for topol-
ogy optimization of a micro-compliant displacement ampli-
fier. The objective of this study is twofold. Firstly, unlike previ-
ous work in literature [6–16], the ACO technique adopted in 
this study redeemed ants from crossing physical node-to-
node elements into a more flexible and conceptual percep-
tion of optimization. This unique approach paves the way 
for geometry (dimensions of the tapered elements) and 
topology (material layout) optimization by assigning an 
ant to each design variable irrespective of the existence of 
physical paths for the ants. Secondly, in addition to the afore-
mentioned unique adaptation of ACO to optimum design of 
topology optimization, the current study targets to enhance 
the performance of micro-compliant amplifiers by manip-
ulating the geometry and topology of its frame elements 
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without the limitations and undesirable effects of flexure 
hinges (i.e. strain energy storage) and bridge type mecha-
nisms (i.e. output displacement is normal to input force) as 
presented in [17–21]. The performance of the optimum com-
pliant mechanisms obtained in this paper are benchmarked 
with those in [1] and [22] to highlight the effect of tapering 
mesh elements over constant-cross-sections.

In what follows, the finite element formulation of frame 
elements with tapered cross-sections is furnished followed 
by the problem formulation and the ACO algorithm. The 
study concludes with 3 case studies that address different 
objectives of the miniature compliant amplifier.

2 � FEA formulation

A basic step in reaching the objective of this work is to 
formulate the stiffness matrices of the two node frame 
elements with variable cross section. These elements are 
the stones of constructing the mechanism’s topology. It is 
believed that a tapered cross-section has more flexibility 
compared to its constant cross-section counterpart and 
this will be tested by benchmarking the results obtained in 
this work with those in [22]. The two-node frame element 
is a superposition of the two-node bar element and the 
two-node beam element. Bar or truss elements are spring-
like elements that only withstand axial loading as shown in 
Fig. 1.

Therefore, they behave like springs and their stiffness 
matrix ( kbar ) is given as [24]:

where

is the cross sectional area of the bar with b defined as the 
out-of-plane width and h defined as the in-plane thick-
ness, E is the modulus of elasticity, and L is the length of 
the bar. For a constant cross section, the stiffness matrix of 
the bar element derived from (1) is as follows:

(1)kbar = ∫
L

0

AareaE

L2

[
1 − 1

−1 1

]

(2)Aarea = bh

(3)kbar,cst =

[
AE

l
−

AE

l

−
AE

l

AE

l

]

However, if we assume b and h to be linearly varying across 
the length L between nodes 1 and 2 (Fig. 2), the equations 
of their cross-sectional variations will be as follows:

Thus, substituting (4) and (5) in (1) gives the new stiff-
ness matrix of a bar with linearly variable cross section:

On the other hand, beam elements are subjected to trans-
verse loading which implies bending and shear in the 
beam as shown in Fig. 3.

Thus, the stiffness matrix ( kbeam ) of a constant cross-
section beam element is as follows:

where

(4)b =
b2 − b1

L
x + b1

(5)h =
h2 − h1

L
x + h1

(6)

kbar,var = E

[
2b1h1+b1h2+b2h1+2b2h2

6L
−

2b1h1+b1h2+b2h1+2b2h2

6L

−
2b1h1+b1h2+b2h1+2b2h2

6L

2b1h1+b1h2+b2h1+2b2h2

6L

]

(7)kbeam = ∫
L

0

EIinertia

L4
Mxdx

F F

1 2

Fig. 1   Loaded bar element

Fig. 2   Tapered rectangular two node element
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Fig. 3   Loaded beam element
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Developing Mx into one matrix gives (only upper triangular 
matrix is listed due to symmetry):

(8)

Mx =

⎡
⎢⎢⎢⎢⎣

12
x

L
− 6

6x − 4L

6 − 12
x

L

6x − 2L

⎤
⎥⎥⎥⎥⎦

�
12

x

L
− 6 6x − 4L 6 − 12

x

L
6x − 2L

�

(9)IInertia =
1

12
bh3

(10)

Mx =

⎡
⎢⎢⎢⎢⎢⎢⎣

(12
x

L
− 6)2 (12

x

L
− 6)(6x − 4L) (12

x

L
− 6)(6 − 12

x

L
) (12

x

L
− 6)(6x − 2L)

sym (6x − 4L)2 (6 − 12
x

L
)(6x − 4L) (6x − 2L)(6x − 4L)

sym sym (6 − 12
x

L
)2 (6 − 12

x

L
)(6x − 2L)

sym sym sym (6x − 2L)2

⎤
⎥⎥⎥⎥⎥⎥⎦

However, for a beam element with linearly varying cross-
sections, the stiffness matrix can be formulated by substi-
tuting b and h from Eqs. 4 and 5 into Eq. (7) through (10) 
to obtain:

where

Finally the frame element, which is a superposition of a bar 
and a beam, holds three degrees of freedom at each node. 
As shown in Fig. 4, the frame element can bear axial loads 
along with shear forces and bending moments.

Hence the stiffness matrix ( kframe,cst ) of the frame ele-
ment is the superposition of that of a bar and that of a 
beam. So, superimposing matrices stated in (3) and (11) 
yields to the stiffness matrix of the frame element with 
constant cross section as:

(12)
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Fig. 4   Loaded frame element

For a constant cross-section, (7) through (10) give the stiff-
ness matrix of a beam element as:

(11)kbeam,cst = E

⎡⎢⎢⎢⎢⎣

12I

L3
6I

L2
−

12I

L3
6I

L2
6I

L2
4I

L
−

6I

L2
2I

L

−
12I

L3
−

6I

L2
12I

L3
−
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−
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And superimposing matrices in (6) and (12) gives the stiff-
ness matrix of a frame element with linearly changing 
cross-section as:

After considering each element’s stiffness matrix individ-
ually, the elements are assembled into a global stiffness 
matrix for the whole mesh where elements have different 
orientations. Figure 5 shows a general element in the mesh 
inclined at an angle theta ( � ) with the horizontal axis.

In order to rectify the orientations of the elements into 
the global axes (x, y) for the apt of assembly, the transfor-
mation matrix T is multiplied by the local stiffness matrix 
of every element to get its global stiffness matrix K:

(13)kframe,cst = E

⎡⎢⎢⎢⎢⎢⎢⎢⎣
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L
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L
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0
12I
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4I

L
0 −

6I

L2
2I

L

−
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L
0 0

A

L
0 0
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12I

L3
−

6I

L2
0

12I

L3
−

6I

L2

0
6I

L2
2I

L
0 −

6I

L2
4I

L

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(14)kframe,var = E

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
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6l
0 0 −

2b1h1+b1h2+h1b2+2h2b2

6l
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0 Â B̂ 0 Ĉ D̂

0 B̂ Ê 0 F̂ Ĝ

−
2b1h1+b1h2+h1b2+2h2b2

6l
0 0

2b1h1+b1h2+h1b2+2h2b2

6l
0 0

0 Ĉ F̂ 0 Ĥ Î

0 D̂ Ĝ 0 Î Ĵ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

where T is given by:

After assembling the global stiffness matrix of all two node 
frame elements, the global load matrix is then formulated 
with axial forces (A), shear forces (V) and bending moments 
(M) at both nodes. So, the load vector for a single frame 
element is:

Along with that, the displacement vector for a frame ele-
ment, that includes the axial displacement u, the trans-
verse displacement v and rotation about the element w, 
is as follows:

where the equation of static equilibrium for each frame 
element is given as [24]:

where f, k and u are the local force, stiffness and displace-
ment matrices respectively.

The global equation of static equilibrium is:

where F, K and U are the global force, stiffness and dis-
placement matrices respectively.

3 � Problem formulation

The objective or the performance function is what governs 
the behavior of the optimization process. Depending on the 
type of problem or the task intended from this mechanism, 

(15)K = T �KT

(16)T =

⎡⎢⎢⎢⎢⎢⎢⎣

cos(�) − sin(�) 0 0 0 0

sin(�) cos(�) 0 0 0 0

0 0 1 0 0 0

0 0 0 cos(�) − sin(�) 0

0 0 0 sin(�) cos(�) 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

(17)f = [A1 V1 M1 A2 V2 M2]

(18)d = [u1 v1 w1 u2 v2 w2]

(19)f = ku

(20)F = KU

Fig. 5   Inclined frame element
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the objective function is set. The major challenge in for-
mulating the objective function of topology optimization 
problems is the compromise between the stiffness and 
flexibility of the structure. The strain energy and the mutual 
strain energy have been found to have a great effect on the 
compliance of the mechanism [25]. The stiffness is measured 
by the strain energy (SE) defining the elastic energy stored in 
the structure while the flexibility is measured by the mutual 
strain energy (MSE) resembling the energy at the output 
port [4]. Howell [1] found that the total strain energy for all 
elements, in its discretized form, is:

And the mutual strain energy can be measured as:

where D is the displacement field due to a dummy load.
Based on what preceded, Howell [1] revealed the energy-

based objective function that seeks a stiff yet flexible mecha-
nism by minimizing SE and maximizing MSE:

The above objective function eventually maximizes the 
amplification ratio (AR) defined as the ratio of the output 
to the input displacements:

Diab and Smaili [22] elaborated a new objective function 
in order to maximize the displacement at the output port 
yet keeping the topology in physically feasible conditions. 
To prevent misleading outcomes, they postulated a new 
objective function that hooked the output displacement 
to the maximum tensile and compressive stresses that the 
topology is subjected to:

where �max,ten and �max,comp are the maximum tensile and 
maximum compressive stresses in the structure. These nor-
mal stresses are computed from the bending-moment (M) 
and axial forces (A) generated within each frame element 
as listed in (17). The logarithmic scale is used to account 
objectively for relative changes in stresses and MSE

SE
.

Five design variables, of discrete and continuous nature, 
are allocated to each frame element. The cross-sectional 
dimensions of each element represented by the continu-
ous variables b1 , h1 , b2 and h2 in Fig. 2 can take any value 

(21)SE =
1

2
UTKU

(22)MSE = DTKU

(23)Minimize ∶
MSE

SE

(24)Maximize ∶ AR =
�output

�input

(25)
Minimize ∶

MSE

SE

(
log10

(
∣ �max,ten ∣

)

+log10
(
∣ �max,comp ∣

))

between an upper and lower limit as listed in Sect. 5. In 
addition, the normalized material density En is the discrete 
design variable that can take values of 0 or 1 indicating 
the existence or non-existence of a material element 
respectively.

4 � Ant colony optimization

Swarm intelligence is a family of optimization stochastic 
algorithms that uses the novelty of living organisms like 
insects’ colonies such as ants and bees, bird flocks, fish 
schools and microbes in connecting their home with the 
food source. First proposed by Dorigo and Caro [23], ant 
colony optimization was found to be an efficient tool in 
designing fully compliant mechanisms and thus gaining 
huge attention in research.

Researchers were able to imitate the natural ants’ 
behavior through artificial “simulated” ants. Their perfor-
mance is coded into a mathematical approach of numeri-
cal equations and notations. Resembling the search 
space, a design space of a compliant mechanism is the 
room where artificial ants roam to intend the optimal path 
between two points. These points, representing the home 
and food source, are considered as the input and the out-
put ports of the mechanism.

Since an individual ant is not multitasking and it 
searches for only one variable, multi-variable problems 
require an ant assigned to each variable. In this work, the 
ACO algorithm is adapted in a unique approach where the 
ants’ paths are no longer confined by the finite elements, 
as real physical node-to-node paths; however, each ant 
path represents an independent design variable. Upon 
randomly changing one of the variables and if the objec-
tive function is improved, this will be decoded as “an ant 
crossing an imaginary path” and thus pheromone is layed 
over that path. Increasing the pheromone deposit on that 
trail will consequently affect the no-change probability (P) 
and thus increase the probability of saving this change for 
the coming few iterations:

where �i is the pheromone intensity for ant i and �avg is the 
average pheromone intensity for all ants. This value is com-
pared to a random number (s) generated between 0 and 1; 
if Pi is less than s then the variable is randomly changed (i.e. 
ant is allowed to cross the path) and the objective function 
is recalculated. If an improvement is detected, the vari-
able is updated by its new value otherwise the old value 
is retained. This probability test will ensure low chances 
of change on variables that revealed improvement and 

(26)Pi =
�i

�avg
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higher chances for less frequent paths. And since not all 
improvements have the same contribution in reaching the 
optimal solution, the pheromone update �� is a function 
of the objective function change:

where fiter−1 and fiter are the objective function values at 
iterations iter − 1 and iter respectively. Furthermore, the 
pheromone evaporation rate � at the end of each iteration 
is uniform for all ants. Thus, the total pheromone update 
is given by:

In this work, 5 ants are assigned to each frame element 
in the topology layout, 4 of them representing the geo-
metric design variables and 1 representing the normal-
ized modulus of elasticity (En). Accordingly, for a compli-
ant topology with n frame elements, the total number of 
ants involved in the ACO algorithm is 5n. The imaginary 
paths of the ACO algorithm represent the possible change 
in the values of the design variables. Therefore, when an 
ant crosses over an imaginary path, this is translated as a 
successful change in the value of the design variable that 
improves the objective function. The pheromone intensity 
laid over each path represents the driving force of motion 
for the corresponding ant as formulated by the no-change 
probability P in 26. The objective functions stated in (23) 

(27)��iter =
fiter−1 − fiter

fiter−1

(28)�iter+1 = (1 − �)�iter + ��iter

and (25) will be used herein to present three case stud-
ies. A comparison between two types of frame elements, 
constant and variable cross section, will be casted. The 
results are tested using ANSYS under the same conditions 
as illustrated in the coming section.

5 � Case studies

In this section, three case studies are tested for different 
objective functions to address the miniature displacement 
amplifier first introduced by Howell [1] Unlike the study in 
[22] where the design domain was meshed with constant 
cross-section two node frame elements, in this work, the 
elements have linearly changing cross-sections. As men-
tioned earlier, the number of ants used in this work is 5n 
where n is the number of elements. The initial amount of 
pheromones (ph) associated to each ant has a minimal 
effect on the convergence of the solution as it will only dif-
ferentiate between the pheromone intensities during the 
first few iterations. Accordingly, each ant is initialized with 
a unit pheromone (ph=1). For the pheromone evaporation 
rate ( � ), 50% is deemed most appropriate as it presents a 
compromise between fast convergence to local minima 
and very slow convergence to the global minimum.

The design domain is a rectangular 2D space, 200 by 
100 �m , meshed according to the pattern shown in Fig. 7. 
The mesh consists of 154 elements and 59 nodes. The four 

Fig. 6   Design space for the displacement amplifier problem
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corner nodes (1, 7, 53 and 59) are constrained, the input 
force ( Fin ) is applied to node 4 and the desired output 
displacement ( �out ) is at node 56. Each of the elements 
shown in Fig. 6 is of two nodes with a linearly changing 
cross section as illustrated in Fig. 2. The material used is 
plastic ABS as reported by Howell [1] which can withstand 
compressive and tensile stresses up to 38MPa and 52MPa 
respectively.

The elements are considered as Euler-Bernoulli beams 
where the length is much greater than b and h (aspect 
ratio greater than 10). The modulus of elasticity (E), is 
160GPa and Fin is 500�N acting upward. The optimizer 
may omit or keep some elements by giving it a normalized 
modulus of elasticity (En) of either 0 (void) or 1 (material). 
For comparison purposes with the previous work in [1] and 
[22], h1 and h2 are fixed to 0.053�m and b varies within 
the bounds of 0.01�m and 5 �m . The termination criteria 
for the optimizer is reached when the pheromone values 
for all ants drop below a threshold value ( �th=10

−6 ) which 
indicates that the objective function has stabilized.

The proposed methodology is summarized in Fig. 7 with 
a flowchart that streamlines the flow of steps in adapting 
ACO to optimum synthesis of a micro-compliant displace-
ment amplifier.

5.1 � Case 1

The objective function used in this section is to minimize 
MSE

SE
 and thus maximize the amplification ratio. Table  1 

shows the values of b1 and b2 for each element in the opti-
mized topology where elements that are not listed in the 
table are simply void with En = 0. The AR of the optimized 
mechanism is 90.464. Table 2 summarizes the performance 
of the optimized mechanism and compares its perfor-
mance to that obtained in [22]. Figure 8 shows the opti-
mized compliant mechanisms for maximizing the ampli-
fication ratio where the solid and dashed lines represent 
the un-deformed and deformed topologies respectively. 

To validate the results obtained from the topology opti-
mization approach of case 1, the topology parameters 
listed in Table 1 are used in the finite element solver ANSYS 
and the un-deformed/deformed topologies are shown in 
Fig. 9. The performance criteria of the optimized design 
mechanism (output displacement, AR, maximum stresses, 
and material volume) as obtained through ANSYS are also 
listed in Table 2 for comparison.

Figure 10 displays the convergence curves of the ACO 
algorithm for 5 different runs of case study 1. Each run 
starts from a different value of the objective function 
depending on the initial solution vector of the design vari-
ables, however all runs converge to the optimum value of 
the cost function as listed in Table 2. Plateaus in the con-
vergence curves represent iterations with no improvement 
in the objective function.

5.2 � Case 2

In this case, the objective is to maximize the output dis-
placement. Thus, the objective function stated in 25 is 
used. Table 3 shows the values of b1 and b2 for the opti-
mized topology where the maximum output displacement 

Set ini�al solu�on r, ini�al pheromone amounts 
ph=1, and the current itera�on iter=0

i=i+1

Apply pheromone 
evapora�on rate to ant i

Evaluate probability func�on Pi and 
generate random number s

s > Pi

randomly change 
variable i

Cost Func�on 
decreased

Update i

Retain old i

Add pheromone to 
the path of ant i

i = 5

n = total number of 
frame elements

Final solu�on

No
Yes

Yes

No

n=n+1

No

Iter=iter+1

Set n=0; n is the frame 
element number

No
Yes

max(τ)<τth

Yes

No

Yes

Set i=0;  i represents the ant
(or variable) considered

Fig. 7   Flowchart of the ACO methodology for optimum synthesis 
of micro-compliant amplifiers
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Table 1   Element Specifications 
for case 1 as obtained by the 
ACO

Element b
1

b
2

Element b
�

b
2

Element b
1

b
2

2 4.650 3.870 48 0.628 0.369 104 0.405 0.973
3 4.175 2.026 50 4.990 4.750 105 0.674 4.806
4 2.195 4.506 52 4.875 4.185 106 4.936 4.794
5 0.205 0.190 54 4.418 4.868 107 4.986 4.834
7 0.810 0.214 57 0.724 1.980 110 4.840 4.986
9 4.959 4.932 61 4.596 1.214 111 4.832 4.850
10 4.901 4.889 62 2.701 0.376 112 4.988 4.483
11 4.859 4.908 64 0.138 0.104 113 4.457 4.563
12 4.560 0.111 65 4.892 4.995 114 4.938 4.588
13 1.075 0.173 67 4.811 4.752 115 4.880 4.787
14 4.744 3.718 71 4.951 4.791 116 4.995 4.770
17 4.982 4.863 72 4.885 4.840 117 4.699 4.880
18 2.021 0.236 73 4.931 4.937 121 0.213 0.320
19 4.825 4.981 75 3.024 4.832 122 4.958 4.960
20 4.969 4.936 76 3.279 4.853 123 4.485 1.109
22 4.984 2.102 77 4.903 4.769 127 2.088 4.129
23 0.343 0.441 78 4.896 4.968 130 4.832 3.683
24 4.936 4.975 79 3.273 3.972 132 4.932 3.713
25 4.868 0.906 80 4.828 4.944 134 1.246 1.194
26 4.906 4.830 81 0.667 4.972 137 4.869 4.994
27 5.000 5.000 82 4.798 4.929 138 4.982 4.955
29 4.977 4.721 84 3.102 4.969 141 4.901 4.846
31 4.854 4.751 85 4.959 4.986 143 4.987 4.965
34 2.489 0.462 87 0.309 0.183 144 4.937 4.981
35 4.959 4.933 89 4.965 4.920 145 4.795 4.843
37 4.854 4.870 90 3.652 4.088 146 4.987 4.977
38 4.996 4.952 92 4.923 4.095 147 4.851 4.965
39 4.742 4.946 96 0.640 1.012 148 4.977 4.895
40 4.907 4.957 97 0.053 0.053 149 4.991 4.837
41 4.991 4.787 98 0.344 0.415 150 4.946 4.994
42 4.938 4.804 100 0.187 0.162 153 4.785 4.814
43 4.913 4.809 101 0.536 3.011 154 4.978 4.937
44 0.961 0.954 102 4.995 4.959
47 4.243 0.418 103 0.168 4.775

Table 2   Comparison of results obtained in all 3 cases

Case Objective function Output disp. ( μ m) Ampl. ratio Max. tensile 
stress (MPa)

Max. comp. 
stress (MPa)

Total volume ( μm3)

Case 1 - current work −90.4640 −0.075 90.464 0.3385 0.3390 463.3880
Case 1 - ANSYS −90.2879 −0.076 90.287 0.3580 0.3575 463.3880
Case 1 - [22] −40.1300 −0.059 40.130 0.4530 0.4542 551.0969
Case 2 - current work −32.9802 −0.992 21.962 5.6312 5.6376 253.9830
Case 2 - ANSYS −33.9162 −0.991 21.597 6.1011 6.0952 253.9830
Case 2 - [22] −33.6118 −0.923 20.070 6.8726 6.8803 437.8200
Case 2 - [1] – −0.290 7.0000 – – –
Case 3 - current work −88.9489 −0.663 46.374 2.8755 2.8797 241.7310
Case 3 - ANSYS −90.5047 −0.663 46.366 2.9900 2.9941 241.7310
Case 3 - [22] −76.8130 −0.627 31.852 5.0698 5.0878 363.9993
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is found to be 0.992 m. The elements that are not listed in 
Table 3 are the ones with En = 0 and consequently repre-
sent void elements.

Figure 11 shows the un-deformed and deformed topol-
ogies of case 2 represented through the solid and dashed 
lines respectively. The same elements’ parameters listed in 
Table 3 are inserted to ANSYS FEA solver under the same 
loads and constraints and the un-deformed/deformed 
topologies are shown in Fig. 12. The optimized topol-
ogy performance (output displacement, AR, maximum 
stresses, and material volume) as calculated from ANSYS 
is also furnished in Table 2.

Fig. 8   Un-deformed/deformed 
topology of case 1

Fig. 9   Displacement of the 
topology in case 1 as obtained 
in ANSYS
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Fig. 10   Convergence curves of the ACO for case 1
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Figure 13 displays the convergence curves of the ACO 
algorithm for 5 different runs of case study 2 where all runs 
converge to the optimum value of the objective function 
listed in Table 2.

5.3 � Case 3

The objective of this case study is to maximize the output 
displacement and the amplification ratio (AR) simultane-
ously. Consequently, the objective function to be used 

Table 3   Element specifications 
for case 2 as obtained by the 
ACO

Element b
1

b
2

Element b
1

b
2

Element b
1

b
2

3 0.775 0.922 54 0.245 0.107 116 0.159 4.932
4 0.874 0.313 56 0.112 0.112 118 0.122 0.122
8 2.745 3.944 57 0.157 4.513 119 3.374 1.526
9 4.974 2.033 58 4.922 4.998 120 0.593 0.224
12 2.549 0.188 62 0.183 2.817 121 4.821 3.997
13 4.876 4.907 63 0.771 2.082 124 0.107 0.107
14 0.180 0.852 67 0.394 0.232 126 1.495 3.378
15 4.964 4.780 69 1.925 4.948 127 4.619 2.479
16 3.292 4.954 75 1.575 0.118 128 2.753 1.006
17 1.622 2.413 76 0.710 0.427 130 2.593 0.430
18 0.175 4.070 80 3.839 2.739 131 2.827 2.436
19 0.107 0.113 81 4.985 4.899 132 3.556 4.552
21 0.285 0.349 82 4.818 4.943 134 0.904 1.152
23 2.742 2.534 83 4.965 4.996 136 1.021 4.858
24 0.477 1.431 84 4.629 4.911 137 4.954 4.391
25 4.210 0.207 86 4.963 3.861 138 4.872 4.990
27 0.163 0.132 87 4.868 4.701 141 4.961 4.890
29 0.213 0.108 89 0.333 0.293 145 4.489 4.988
30 0.606 3.643 96 2.562 4.225 146 4.992 4.909
32 1.728 4.155 98 0.107 1.385 148 0.138 3.799
36 2.161 0.593 100 4.985 4.906 149 4.887 4.981
39 2.392 3.742 101 4.956 4.985 150 1.383 0.492
40 1.659 0.394 104 1.308 0.107 153 1.596 1.818
41 0.969 0.265 105 4.877 0.980 154 0.121 1.471
46 4.755 4.966 107 2.325 0.780
48 0.595 0.199 111 4.990 4.931
50 4.973 4.973 114 1.377 4.956
53 0.102 0.744 115 4.926 4.876

Fig. 11   Un-deformed/
deformed topology of case 2
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in this case is the superposition of those previously pre-
sented in cases 1 and 2. Thus the objective function is for-
mulated as follows:

The elements’ specifications ( b1 and b2 ) for the optimized 
topology (Fig. 14) of case 3 are listed in Table 4. The ampli-
fication ratio and output displacement are found to be 
46.374 and 0.663�m respectively as listed in Table 2 in 
addition to the maximum internal stresses and material 
volume used.

(29)
Minimize ∶

MSE

SE

(
log10

(
∣ �max,ten ∣

)

+log10
(
∣ �max,comp ∣

))
+

MSE

SE

The same optimized mechanism is modeled in ANSYS 
and the deformed topology is shown in Fig. 15. Compari-
son between the results obtained through the ACO algo-
rithm and that of ANSYS is listed in Table 2.

It is worth noting that the hanging elements in all three 
cases do not affect the performance of the overall topology 
but were kept there to show the exact output of the ACO 
algorithm. The stiffness matrices of such elements do not 
enter into the formulation of the global stiffness matrix of 
the overall topology. Such elements can be easily removed 
via a post-processing phase without interfering with the 
physical feasibility of the mechanism.

Figure 16 displays the convergence curves of the ACO 
algorithm for 5 different runs of case study 3 where all runs 
converge to the optimum value of the objective function 
listed in Table 2.

5.4 � Discussion of results

By looking at Table 2 and comparing the results obtained 
through the ACO algorithm for linearly variable cross-sec-
tions (current work) to constant cross-sections previously 
presented in literature, the following interpretations can 
be emphasized. In case 1, the main goal was to maximize 
the amplification ratio AR of the micro-displacement 
amplifier. An amplification ratio of 90.464 is reported in 
this work as compared to 40.13 for constant cross-sec-
tion frame elements. Therefore, compared to the work 
in [22], AR was increased by 55.64% with a decrease of 
25.2% and 25.36% in maximum tensile and compressive 

Fig. 12   Displacement of the 
topology in case 2 as obtained 
in ANSYS
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Fig. 13   Convergence curves of the ACO for case 2
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stresses respectively along with 15.91% cut down on the 
total material volume used. In case 2, the output displace-
ment is to be maximized. The optimized topology in this 
case study produced an output displacement of 0.991�m 

compared to 0.29�m and 0.9232�m in [1] and [22] respec-
tively. Therefore, compared to constant cross-section 
elements [22], the linearly varying cross-section topol-
ogy have shown an increase in �out by 6.945% with 18% 

Table 4   Element specifications 
for case 3 as obtained by the 
ACO

Element b
1

b
2

Element b
1

b
2

Element b
1

b
2

1 0.414 0.414 49 0.401 0.582 115 3.797 1.691
2 1.043 0.369 50 0.580 0.365 116 3.521 4.634
3 4.716 1.752 60 2.355 4.127 117 0.197 3.702
7 0.844 1.260 61 4.601 0.304 121 0.254 0.382
8 2.655 2.693 65 2.281 1.381 122 4.958 4.958
12 3.159 0.435 67 2.766 1.254 123 2.646 0.486
13 0.125 0.125 68 2.276 0.131 125 3.310 1.881
14 0.485 0.293 71 1.168 2.894 126 4.231 4.325
15 0.053 0.053 72 4.018 1.849 127 0.906 0.906
17 1.167 1.330 76 4.535 3.869 128 2.495 2.495
18 1.268 4.519 79 0.520 0.829 129 0.712 0.712
19 0.259 0.259 81 4.792 4.596 130 4.543 4.543
20 2.077 2.084 82 4.414 4.866 131 0.916 0.916
22 0.635 4.810 84 1.085 2.250 132 0.261 0.261
24 0.230 0.230 85 4.945 4.945 134 1.724 1.724
25 4.822 1.296 87 0.220 0.220 137 2.579 2.333
26 5.000 5.000 90 3.784 2.758 138 4.117 3.211
28 2.411 2.820 93 0.922 0.922 143 4.269 2.690
29 0.194 0.194 95 3.577 3.656 144 4.876 0.427
31 4.279 4.586 96 1.753 3.682 145 3.603 4.093
34 3.516 1.241 98 3.241 3.466 146 1.272 4.833
38 4.548 0.259 102 0.793 0.863 147 1.217 4.170
40 1.452 0.624 103 2.269 1.104 148 3.847 3.363
41 4.713 2.557 104 0.840 1.652 149 3.431 3.431
42 4.302 3.217 106 3.818 4.063 150 4.240 4.240
44 3.251 3.251 107 2.684 2.857 151 0.866 2.286
45 2.796 4.711 110 2.451 0.559 152 1.896 3.951
46 1.093 0.206 111 1.473 1.257 154 4.139 3.894
48 1.055 3.393 112 4.159 2.525

Fig. 14   Un-deformed/
deformed topology of case 3
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less tensile and compressive stresses with a reduction of 
41.989% on material volume. In case 3, both the output 
displacement and the AR were to be maximized. The opti-
mized topology in this work generated an output displace-
ment of 0.6631�m and an amplification ratio of 46.3744 
as compared to an output displacement of 0.6276�m and 
an amplification ratio of 31.8525 in the optimum constant 
cross-section topology. Therefore, an output displacement 
increase by 5.356% and an amplification ratio increase by 
31.31% is achieved. Moreover, the optimum topology in 
case 3, as compared to that in [22], achieved a decrease of 
43.28% and 43.39% in maximum tensile and compressive 
stresses respectively and 41.007% drop in total material 
volume. The stress values obtained in all the case stud-
ies are less than the tensile (52MPa) and the compressive 

(38MPa) yield strengths of the ABS plastic used, ensuring 
the mechanism is deforming within its elastic limits.

6 � Conclusions

The objective of this work is to optimally design compli-
ant mechanisms using frame elements with linearly vary-
ing cross-sections. New stiffness matrices are derived to 
account for the linear change in an element’s cross-section. 
Three case studies are presented to optimize for amplifica-
tion ratio, output displacement and the combination of 
both. The ACO algorithm is applied to optimize for the ele-
ment specifications and consequently the whole topology. 
The performances of the 3 optimally designed topologies 
are compared to those previously reported in [1] and [22] 
for elements with constant cross-sectional areas. In addi-
tion, the performance of all optimized topologies are vali-
dated through ANSYS. Results show that the performance 
of a compliant structure with variable cross-sections sur-
passes that of its constant cross-section counterpart for 
all three cases. The variable cross-section topologies have 
more flexibility at the output port and more rigidity at the 
input port as reflected in the larger output displacements 
and amplification ratios. Moreover, the variable cross-sec-
tion topologies are subjected to lower levels of compres-
sive and tensile stresses and can be manufactured using 
less material volume. For future work, node positions can 
be added as design variables such that the locations of the 
nodes are variable. In addition, non-linear cross section 

Fig. 15   Displacement of the 
topology in case 3 as obtained 
in ANSYS
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Fig. 16   Convergence curves of the ACO for case 3
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variations are to be investigated where the tapering 
between the two nodal areas of an element is non-linear 
(ex: parabolic). The material density, En currently restricted 
to 0 or 1 (i.e. void or material), can be released to have 
any material density and thus obtain grey elements of 
intermediate densities other than black (i.e. full material) 
and white (i.e. void). The current work focused on frame 
elements however, the topology optimization approach 
presented herein can be easily extended to 3D structures.
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