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Abstract
High Static Low Dynamic Stiffness (HSLDS) is a kind of nonlinear visco-elastic device with features of passive control 
systems. This device presents the main advantages of working without a need for external energy and a maintenance of 
low cost. Thus, the paper deals with effects of HSLDS-outriggers at a predefined location on a high rise building subjected 
under earthquake excitation. The partial derivative equations based on the Timoshenko theory are used to model the 
tall building as an elastic-continuum beam. The nonstationary random approach is used to illustrate the dynamics of 
earthquake excitation of repeated sequences. Known as the powerful analytical tool and currently applicable to a variety 
of stochastic and deterministic problems, the stochastic averaging generalized by harmonic function is developed to 
linearize the modal equation of the structural system. It is showed that the direct simulation is good agreement with 
equivalent linearization technique. In doing so, it appears that this approximate analytical technique is very convenient to 
quantify the threshold values of parameters of the HSLDS control device. The obtained results come out that the control 
device significantly improved the seismic performance of the structural system at an acceptable level.

Keywords  Timoshenko beam · Outrigger · HSLDS device · Earthquake loads · Stochastic averaging

1  Introduction

The reduction of earthquake-induced vibration of tall 
buildings is an important research topic in the areas of 
structural reliability. Hence, different sophisticated meth-
ods have been made to guarantee the safety and the sta-
bility of these structures. To illustrate the real interest, the 
outrigger system was developed. In the current context, its 
design is defined as the one of the most promising alter-
native solutions [1, 2]. It traditionally consists of a core 
wall, perimeter columns, and outriggers that are rigidly 
connected to the first-two previous elements [3–7]. How-
ever, one can note some cases already implemented in the 
world as super-tall building of 212.88 m St. Francis Shan-
gri-La Place in Philippines [8], Shanghai Center located in 

Shanghai with the height of 632 m [9] and The Burj Khalifa 
in Dubai with the height of 828 m [10]. Although that the 
typical configuration of the outrigger system provides 
sufficient means to mitigate the undesirable vibration. It 
is convenient to insert the control devices into the out-
riggers. Since their presence provides additional energy 
dissipation to the whole structure [11]. Because the struc-
tures are initially not designed to withstand all possible 
external loads [12]. It is the main reason that the concept 
of damped-outriggers are widely explored in a great num-
ber of works [13, 14].

In the literature there is three kinds of the control 
devices [15]: One can firstly note, the passive devices. 
These do not need an external voltage source to operate. 
The second, these are active devices. Unlike to the passive 
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case, these devices need a large external voltage source 
to operate. Finally, one has the semi-active devices. They 
need a low external voltage to operate. Despite the fact 
that these last exhibit the combined passive and active 
properties. The researchers and engineers do not cease to 
multiply the intensive research efforts in view of reinforc-
ing the capacities of passive devices. All this is due to their 
maintenance of low cost. It is this wake that the major con-
tribution the choice of study of High-static low dynamic 
stiffness (HSLDS) using in this paper also falls. This control 
system is defined as the one more promising device that is 
able to improve the vibration isolator performance. It com-
bines the positive and negative stiffness elements at an 
equilibrium positive. It follows that the nonlinear stiffness 
of this system strongly influences its dynamic responses 
and vibration isolation performance [16]. In the same con-
text, considerable research attention has been devoted 
to attest the isolation performance of the device within 
theoretical and experimental analysis [17, 18]. Wang et al.
[19] explored the effects of the stiffness range parameter 
and static equilibrium position stiffness on the dynamic 
responses of the system. According to the authors, the 
increase of the stiffness range parameter and reduction 
of others improve the isolation performance of the device.

In addition to the above reports, the assumption is 
also considered to evaluate the behaviour dynamics of 
the outrigger system by neglecting the influence due to 
perimeter columns. Regarding the theoretical study, Pin 
et al. [20] investigated the effect of the damped outrigger 
as a general rotational spring acting on a Bernoulli-Euler 
beam. The authors showed that the modal damping ratio 
is significantly influenced by the stiffness ratio of the core 
to the column, and is more sensitive to damping than the 
position of the damped outrigger. Chen et al. [21] studied 
in free vibration under the assumptions of Bernoulli-Euler 
beam theory with two intermediate cantilever-attached 
viscous dampers. They obtained a transcendental equa-
tion that governs complex eigenvalues of system, whereby 
pseudo undamped natural frequencies, corresponding 
damping ratios and mode shapes are attainable. Lin et al. 
[22] studied the damped-outrigger, incorporating the 
buckling restrained brace (BRB) as an energy dissipation 
device. They pointed out a properly designed BRB-outrig-
ger system can behave like a traditional elastic outrigger 
through BRB’s elastic responses.

Note that all aforementioned studies showed that the 
shear as well as the rotary deformation in the dynamic 
behaviour of frame core-tube are not included in the 
assumption of the dynamic behaviour of frame core-tube.

In the present work, The frame-core tube is considered 
as a continuum cantilever Timoshenko beam with a con-
stant cross-section. This model is defined as a mathemati-
cal expansion of the Euler-Bernoulli [23].

In this present paper, the performance of the HSLDS 
device on the outrigger system is theoretically studied. The 
stochastic averaging method [24–26] extensively used in 
engineering application is developed. This analytical tech-
nique is applied to also linearize the modal equation of the 
structural system. Our main objective is to find the suitable 
values of control parameters of this passive energy dissi-
pation leading to an acceptable level of the earthquake-
induced vibration.

Known as the one more powerful of the catastrophic 
event influences the dynamics of a structures and build-
ing in worldwide [27]. The earthquake with two repeated 
sequences will be explored in work [28]. Because the struc-
ture gets damaged in the first sequence, and additional 
damage accumulates from secondary sequence before 
any repair is possible. It is thus that the efficiency of the 
control device will evaluate during its two intervals.

The rest of the paper is structured as follows: In Sect. 2.1, 
focuses on the description of the structural system. The 
mathematical model allowing to investigate its dynamics 
is developed and the linearization form of the modal equa-
tion is also illustrated. Section 3 is devoted to the numeri-
cal results and discussion. Section 4 concludes the article.

2 � Description of the system

The simplified schematic of the structural system under 
the ground earthquake is represented in Fig. 1a. It is con-
stituted of an uniform cantilever beam illustrating the 
dynamic behaviour of the core-tube and the damped-
outriggers. The configuration of these ones is made so that 
they are forced to work as a group. It comes out from this 
figure that the elements such as core-tube and perimeter 
column are rigidly connected to work together, in order 
to resist lateral force.

The damped-outriggers behave as a rigid body and 
are located at a point xa along with the height of the core 
tube. Note that the damped-outriggers communicate to 
the perimeter columns through the visco-elastic devices 
(HSBS) vertically installed, as illustrated in Fig. 1a. Thus, the 
simple schematic of this mentioned devices is displayed 
in Fig. 1b. The design of this system is a nonlinear isola-
tor with high static low-dynamic-stiffness of which com-
prising three springs of linear stiffness( two horizontals k1 
and one vertical k0 ) and a dashpot of the linear damping 
coefficient c0 . Adding of these devices should enhance the 
dynamic performance of the structural system by provid-
ing supplementary energy dissipation [11]. By passing, it is 
important to point up that the outriggers and the exterior 
columns have commonly a high stiffness. In this context, 
the bending stiffness E0I0 is assumed to be infinitely rigid.
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2.1 � Mathematical model

Note that the assumption well-used in the literature is to 
consider that the structure displayed in Fig. 1a is a can-
tilever uniform beam. For that, m1 defines the mass per 
unit length; EI is the flexural rigidity . Thus, I is the moment 
of inertia of the cross-section about the neutral axis, E is 
Young’s modulus. G is the shear modulus of elasticity; 
ra is the radius of gyration of the cross-section. These 
defined geometrical and material properties are assumed 
constant.

The lateral displacement is defined by the variable 
y(x, t) = y , which varies with the coordinate along the 
beam x and with time t. To remind as mentioned above the 
readers that the influence of the perimeter columns on the 
dynamics of the core is not taken into consideration. As a 
result, the governing equation describing the dynamics of 
the cantilever Timoshenko beam with damped outrigger 
subject to horizontal earthquake loadings can be written 
as follows [29]

(1)
m1

𝜕2y

𝜕t2
+ EI

𝜕4y

𝜕x4
−m1r

2
a

(
1 +

E

ksG

)
𝜕4y

𝜕x2𝜕t2

= −m1ÿg(t) +
𝜕Ma

𝜕x

In this above formulation, the third term from the left side 
represents the correction for rotary inertia plus the shear 
deformation effect. For the convenient study, it should be 
noted in passing that the joint action of rotary inertia and 
shear deformation effects is neglected. The dimensionless 
quantity ks is the shear coefficient depending on the geo-
metric of the cross-section of the beam and depends on 
as well as of the Poisson’s ratio.

The random function ÿg(t) represents the ground accel-
eration. It is worth pointing out that the dot denotes the 
derivative with respect to t. Thus, the seismic events are 
described through the below analytical expression [30]

Here, xg(t) is the filter response. It is important to note that 
xg(t) is numerically obtained from 3. This allows to deter-
mine the function ÿg(t) that represents the earthquake 
dynamics.

wa(t) is a stationary Gaussian white noise process with 
the following statistics

(2)ÿg(t) =
(
2𝜉g𝜔gẋg(t) + 𝜔2

g
xg(t)

)
e(t)

(3)ẍg(t) + 2𝜉g𝜔gẋg(t) + 𝜔2
g
xg(t) = wa(t)

< wa(t) >= 0, < wa(t)wa(𝜏) >= 2𝜋S0𝛿(t − 𝜏)

(a) (b)

Fig. 1   Simple structural model with nonlinear isolator
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S0 is the constant power spectral intensity of the noise. The 
evolutionary power spectrum is described as [28]

in which e(t) is a deterministic envelope function of time 
and is defined as

where e0i and �i are positive constants that control, respec-
tively, intensity and non-stationarity trend of the ith accel-
eration sequence. Note that this function in (5) is intro-
duced to represent nonstationary into the process.

Expression in (6) was suggested by Abbas and Takewakib 
[28]. It illustrates the repeated sequences of the earth-
quake excitation.

Based on the study of the frequency content of a 
number of strong ground-motion records [31], the spec-
tral density for the ground acceleration of the earth sur-
face layer was suggested by Kanai and Tajimi [32]. The 
mathematical formulation is expressed as

where �g is the dominant frequency of the soil site, �g is 
the associated damping ratio of the soil layer representing 
the spectral characteristics of the ground excitation.

Note that the modelling earthquake excitation has 
received more attention. This is due to the fact that it can 
be defined as an analytical convenient approach show-
ing many advantages within the assessment of the struc-
tural behaviour. Because it allows mainly characterising 
an accurate behaviour of the recorded models of different 
sites, by adjusting the intensity and frequency content or 
their statistical properties. It can help to also estimate the 
past nonstationary ground excitation having hit structures 
of different countries in the past for many decades.

Note that the outrigger system works by transferring 
global bending load from the core of the building to 
the outside columns [33]. Hence, the last term of Eq. (1) 
demonstrates that the induced-effects of outriggers on 
the core tube are considered as resistant moments [13]. 
Consequently, expression of concentrated moment gen-
erated by the control device is

(4)Sg(Ω, t) = |e(t)|2S(Ω)

(5)e(t) = e0i te
−�i t

(6)e(t) =

⎧
⎪⎪⎨⎪⎪⎩

0 0 ≤ t ≤ t1
e(t − t1) t1 ≤ t ≤ t2
0 t2 ≤ t ≤ t3
e(t − t3) t3 ≤ t ≤ t4
0 t4 ≤ t ≤ t5

(7)S(Ω) = S0

�4
g
+ 4�2

g
�2
g
Ω2

(
�2
g
− Ω2

)2

+ 4�2
g
�2
g
Ω2

where �(x − xa) denotes the Dirac function. It shows 
the predefined location where the damped outrigger is 
installed. The point xa indicates the distance from the bot-
tom of the tall building. However, the mentioned function 
in (8) has the property as

The distance from the control devices to the centre of the 
core is denoted r, and is also defined as the length of each 
outrigger.

The number two introduces in Eq.  (8), denotes the 
quantity of the HSLDS installed since the damped out-
rigger is symmetric in relation to core-tube. The force fH 
of Eq. (8) is given as follows [34].

The obtained expression from Eq. (10) has been studied in 
ref. [34]. They pointed that two are additional horizontal 
springs, each with stiffness k1 . These ones have the effects 
of creating a nonlinear that can be adjusted, and by auto-
matically modifying the linear natural frequency of the 
structural system.

The vertical spring of linear stiffness is so-called k0 . 
The free length of the lateral springs is so-called sa , and 
s is the length of each spring in the horizontal position.

Owing to reduce the mathematical difficulty of the 
Eq. (10) within the analytical framework, it is convenient 
to make Taylor’s development that consequently, lost a 
lot of information that is neglected. Thus, the approxi-
mated polynomial form yields [34]

It can be clearly seen that Eq. (11) is rewritten under of a 
third-order polynomial. Thus, one of the major steps will 
greatly allow to analyse the effects of different parameters 
of the control device.

By introducing the dimensionless variables defined as

X =
x

L
 ,  Xa =

xa

L
 ,  Y =

y

L
 ,  z̈g =

ÿg

L
 ,  a1 =

EI

L4m1

,   a2 =
r2
1

L2

(
1 +

E

ksG

)
  ,  C0 =

c0

Lm1

,   K0 =
k0

Lm1

, K1 =
k1

Lm1

s1 ,  K2 =
k1

Lm1

s2 , s1 =
( sa
s
− 1

)
 , s2 =

sa

s3
 , rou =

2r

L
 

This leads to rewrite the Eq. (1) as

(8)Ma = 2r�(x − xa)fH(t)

(9)�
(
x − xa

)
=

{
∞ x = xa
0 x ≠ xa

(10)

fH(t) = c0ẏ(x, t) + k0y(x, t) + 2k1y(x, t)

�
1 −

sa√
s2 + y2(x, t)

�

(11)
fH(t) = c0ẏ(x, t) + k0y(x, t) + 2k1s1y(x, t) + k1s2y

3(x, t)
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and Eq. (11) becomes

For the analytical purpose, it is convenient to reduce the 
partial differential Eq. (12) to a set of ordinary differential 
equations. For that, the transversal deflection of the beam 
Y(X , t) can be rewritten in term of product of two variables 
in the following form:

with �j is the modal participation factor of the ith mode of 
vibration; and can be determined through the following 
form [36]

N is the total number of modes, �j(t) is relative displace-
ment response of a SDOF system, and �j(X ) is the ampli-
tude of the ith mode at nondimensional height X defined 
as.

in which, �j
1
 and �j

2
 are eigenvalues defined at the j th mode 

of the vibration. The coefficients dj

1
 and dj

2
 are obtained 

by using the boundary conditions of the cantilever. The 
scheme procedure to obtain these eigenvalues and coef-
ficients of the �j(X ) is detailed in ref. [32].

2.2 � Modal equation

To assess the dynamic behaviour response of the structural 
system; it is worth reducing the partial differential equa-
tions to the modal equation. For analysis purposes, the 
Eq. (14) is considered and substituting into (12), perform-
ing the integration from 0 to 1 and algebraic manipulating 
yields

z(t) is displacement of the whole system corresponding 
to the jth mode.

Noting that the above Eq. (17) denotes the modal equa-
tion of the structural system subjected to earthquake 
excitation.

With the damping coefficient gives by

(12)

𝜕2Y

𝜕t2
+ a1

𝜕4Y

𝜕X4
− a2

𝜕4Y

𝜕X2𝜕t2
= −z̈g(t) − rouFH(t)

𝜕

𝜕X
𝛿
(
X − Xa

)

(13)FH(t) = C0Ẏ(X , t) +
(
K0 − 2K1

)
Y(X , t) + K2Y

3(X , t)

(14)Y(X , t) =

N∑
j=1

�j�j(X )�j(t)

(15)�j =
∫ 1

0
�jdX

∫ 1

0
�2
j
dX

(16)
�j(X ) = d

j

1
sin(�

j

1
X ) + cos(�

j

1
X ) − d

j

2
sinh(�

j

2
X ) − cosh(�

j

2
X)

(17)z̈j(t) + 𝛽j żj(t) + g(t, zj , żj) = −𝜎j z̈g(t)

and the restoring force thus defines

where

and

b
j

i
(i = 1, 2, 3, 4) can be computed once the eigenvalues �j

1
 

and �j
2
 have been determined.

2.3 � Analytical approach

Defined as a powerful approximate technique for the pre-
diction of response of linear or non-linear under random 
vibration, the stochastic averaging method is widely used 
in literature. Its application has proved that it is a useful tool 
for deriving approximate solutions to problems involving 
the vibration response [38]

The purpose here is to develop theoretical investigation 
through the stochastic averaging method that will provide 
a good estimate of effects on the parameters of the con-
trol device such as stiffness and damping coefficient on the 
vibration amplitude of the whole structure.

Before starting, it is important to apply the equivalent 
statistic linearization method. This stochastic technique pro-
posed by Kougioumtzoglou et al. [37] allows to approximate 
the non-linear system to a linear form. Thus, application to 
Eq. (17) leads to a suitable transform as follows.

The following step of this analyze is to consider that the 
amplitude of the structural system can be decomposed as

with natural frequency given by

(18)�j = 2�j�j + rou�jC0

(19)g(t, z, żj) = 𝜔2
j
zj + rou𝜀j

[(
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)
zj(t) + K2z

3
j
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]

�2
j
=

a1b
j
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b
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1
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j
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(
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)
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(
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)
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j

1
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j

2
)
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j
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(
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)
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(
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2
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b
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3
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1

0

�
(4)

j
(X )�j(X )dX , b

j

4
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1

0

�j(X )dX

(20)z̈j(t) + 𝛽0żj(t) + Ω2(Aj)zj(t) = −𝜎
j

1
z̈g(t)

(21)zj(t) =Aj(t) cos
[
Ω(Aj)t + �

]

(22)żj(t) = − Aj(t)Ω sin
[
Ω(Aj)t + 𝜑

]
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It is observed that the natural frequency from (23) should 
be function of the amplitude.

Combining Eqs. (21) and (22), this yields

By differentiating (22) with respect to time and combining 
with (21) into (20), the following averaged equations can 
be derived

wa(t) represents a stationary, zero-mean Gaussian white 
noise process of unit intensity [25]. It is noted that the 
amplitude (Aj) in (26) is decoupled with the phase (�) . 
The reason why these variables can be treated separately.

In what follows, the Fokker-Planck expression from (26) 
is governed by

where P(Aj , t) denotes the probabil ity density 
amplitude-depending.

This above equation allows to determine the nonsta-
tionary response amplitude P(Aj , t) , in which a solution of 
Eq. (27) can be approximated as follows [24, 39]

where the function cj(t) accounts for the time-dependent 
variance of the response process zj.

To determine the mentioned function defined in (28), it is 
readily found that by substituting the Eq. (28) into (27), and 
the manipulating yields

(23)Ω2(Aj) = �2
j
+ rou�j(K0 − 2K1 +

3

4
K2A

2
j
)

(24)A2
j
(t) =z2

j
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(
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)2

(25)𝜑(t) = − Ωt − tan−1
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2
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)
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2

)
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(
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�2P
(
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j

(28)P
(
Aj , t

)
=

Aj

cj(t)
exp

[
−

A2
j

2cj(t)

]

(29)ċj(t) = −𝛽jc(t) + 𝜎2
j

𝜋Sg
(
Ωeq(cj(t)), t

)
Ωeq(cj(t))

2

with the equivalent time-dependant stiffness Ω2
eq
(c(t)) 

given by

and the moment of the amplitude

Remind the reader that the subscript (j = 1, 2, 3..) repre-
sents the mode of vibration of the structural system.

Note by passing that Eq.  (29) is a first-order nonlin-
ear ordinary differential equation, which can be solved 
numerically.

2.4 � Floor displacement

In Tall buildings combining the shear and flexural effects, 
the interstory drift ratio IDR can be explored. It is defined 
as the difference of displacements of the floors above and 
below the story of interest normalized by the interstory 
height [36]. Although, IDR seems to correlate well with 
the seismic damage potential of buildings [40]. It will not 
develop here, because the obtained results by Xie and Wen 
[41] indicated that Timoshenko’s theory is restricted for 
the evaluation of lateral drifts for shear wall structures and 
might not be adequate.

In our context, Floor’s displacement is defined as the 
displacement of each floor of the tall building. The study 
of this approach is a powerful tool to better observe. it 
also allows to analyse the effect of the control device on 
each floor of the tall building. Thus, Floor’s displacement 
can be computed through the formulated Eq. (14) of the 
transverse deflection. Hence, the below equation can be 
deduced as follows

Nm is the number of modes considered in this work
As the Tall building illustrated Herein, has a finite num-

ber of stories. The value of each of stories should be found 
within interval nondimensional height 0 < X < 1

(30)
Ω2

eq
(c(t)) =

∞

∫
0

Ω2(Aj) P(Aj , t)dAj

=�2
j
+ rou�j

[(
K0 − 2K1

)
+

3

2
K2cj(t)

]

(31)< A2
j
>=

∞

∫
0

A2
j
p(Aj , t)dAj = 2cj(t)

(32)FD(X , t) =

Nm∑
j=1

�j�j(X )

�j(Xa)
zj(t)
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3 � Numerical analysis and discussions

It is well-known that the tall buildings primarily consist 
of structural members (columns, walls, floors) with a con-
siderable number of degrees of freedom. To reduce this 
complexity, the mentioned structure can approximately 
describe by equivalent homogeneous elastic-continuum. 
Deng et al. [35] were found that the results obtained from 
the simplified model agree well with those obtained from 
the finite element model. Note that the main objective is 
to find the threshold values of K0 and C0 that limit the seis-
mic-induced structural vibration to a considerable level.

To investigate the dynamic response of the structure, 
the simplified model based on a cantilever beam leads 
us to define the concrete core with geometric properties 
12m × 12m , a thickness of 0.5 m, and with sixty-story 
a total building height of 210 m [29]. The mass per unit 
length is m1 = 62500Kg∕m . Note that the structural system 
described here, have a single outrigger therefore the effect 
of the distance from the core to the perimeter columns on 
the dynamic response will be analysed.

Through the constitutive relationship existing between 
the coefficients, this leads to having the value of param-
eters as presented in Table 1. It illustrates the parameters 
of the shape function and frequencies of the modal equa-
tion in the three first modes of vibration.

In this paper, the mathematical model of the earth-
quake acceleration sequences is governed by Eqs. 
(2)–(6). Hence, the simulated nonstationary ground accel-
eration is shown in Fig. 2. The intensities of the accel-
eration sequences at the first and second sequences 
S0 = 0.02m2∕s3 and S0 = 0.01m2∕s3 , respectively. The 
parameters of the envelope functions are adopted as 0.30 
and 0.35, and the separating time interval between the 
sequences is 15 s. The interval time of the envelope func-
tion are t1 = 5s , t2 = 25 , t3 = 40 and t3 = 60

Figure  2 explicitly displays the temporal dynamics 
of seismic events from Eqs. 2 and 3. It can be seen that, 
depending on the envelope function (see Eq.6), the 
dynamic exhibits two sequences with the separating time 
interval both of them.

The stiffness coefficient must be selected suitably so that 
the nonlinear stiffness is always positive. Hence, the values 
of different stiffness are chosen as K1 = K0∕4, K2 = 55 K0.

In order to quantify the effect of the stiffness coefficient 
K0 on response of the structural system, Fig. 3 shows the 
variation of the stiffness on the peak response amplitude 
corresponding to different values of the dimensionless 
damping coefficient C0 . It is obviously observed that when 
C0 increases, the response amplitude decreases. In each of 
the cases shown, it can be concluded that the influence of 
K0 automatically reinforces the reduction of the response 
of the structure.

Figure 4 shows the influence of damping coefficient on 
response amplitude in the three first modes of vibration. It 
can be seen the increasing damping coefficient decreases 
automatically the response amplitude.

Figure 4a matches in the first vibration mode, thus, it 
is observed a reduction amplitude rapidly occurs when 
the damping coefficient C0 increases. While the attenua-
tion of the amplitude observed in Fig. 4b and c is due to 
especially at the frequency values corresponding to the 
second and third modes of vibration, respectively. It comes 
out as further information that C0 considerably influences 
the amplitude.

The result is evaluated in the first mode of vibration. 
As similar information will be obtained to other modes of 
vibration. It is not necessary to display here because the 
analyse of modes is independence.

In Fig. 5, the comparison is made with results based on 
Monte Carlos simulations of linear and nonlinear systems. 
More specifically, the response amplitude obtained by 
the linearization approach (see (20)) is very similar quali-
tatively to that obtained by nonlinear simulation (see (17)). 
The nonlinear response amplitude is in good agreement 
with linear simulation estimates, with a notable discrep-
ancy when of linear the coefficient stiffness K0 of the verti-
cal spring increases. The response amplitude calculated by 

Table 1   Parameters of the shape function and frequencies

Parameter First Second Third

�
j

1
1.873 4.649 7.752

�
j

2
1.860 4.465 6.979

�2

j
1.953 69.35 471.040

d
j

1
− 0.743 − 1.127 − 1.283

d
j

2
0.731 − 1.023 − 0.998

Fig. 2   The simulated acceleration sequences, �g = 3� rad∕s
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the linearization equation , with the low computed values 
of K0 in practice, is accurately satisfied. It is thus that the 
results shown in Fig. 5a also indicate in first sequence a dif-
ference of the percentage of Error=1.6% of the peak value 
of amplitudes, and an error 0.75% in second sequence 
ground excitation. While Fig. 5b exhibits a percentage 
Error=3.9% in the first sequence and the error in the sec-
ond sequence is 1.9%. According to Fig. 5c, a percentage 

of error=5.4% between the different peak amplitude first 
sequence and the error 2.7% in the second sequence are 
observed.

Note that the errors are extremely small when K0 
decreases, causing a softening nonlinearity. Although 
when K0 increases, it causes a hardening nonlinearity that 
an undesirable effect as mentioned in ref. [34]. They indi-
cated that the presence of the mentioned effects in the 

(a) (b) (c)

Fig. 3   Influence of the stiffness on maximum response amplitude in Eq. (31) in First mode

(a) (b) (c)

Fig. 4   Influence of the damping coefficient on response amplitude to the different modes of vibration ( K0 = 0.1)

(a) (b) (c)

Fig. 5   Comparison between the simulated responses with the linearization method , C0 = 0.76
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isolator results in the resonance peak bending to higher 
frequencies range over there is a violation isolator.

Thus, to analyse the influence of the control device on 
each floor. The maximal lateral deflection versus some sto-
ries is presented in Fig. 6. It can be noticed that in Fig. 6a, 
the influence of the coefficient stiffness is illustrated. While 
in Fig. 6b rather exhibits, the influence of the damping 
coefficient of the control device on the control vibration 
of the structural system

The supplementary information from Fig. 6 allow to 
found the threshold values of coefficients K0 and C0 . These 
parameters should lead the control device to provide the 
high capability of mitigating transversal displacements 
against seismic events. As a result, Table 2 illustrates the 
reduction percentage of the vibration of each floor of the 
tall building when the stiffness coefficient K0 of the control 
device increases as seen in Fig. 6a. It can be seen that its 
influence considerably affects the displacement response 
at the bottom than the top of the structural system.

Unlike the observation made in Table 2, the results of 
the Table 3 illustrate the reduction percentage of the vibra-
tion of each floor of the tall building when the damping 
coefficient C0 of the control device increases as seen in 
Fig. 6b. It can be seen that its variation significantly affects 
the transversal displacement at the top than the bottom of 
the tall building compared to the case displays in Table 2.

Thus, By combining information from both Tables 2 and 
3, it can be concluded that the variation of coefficients K0 

and C0 significantly reduces of the transversal response at 
the top and the bottom of the structural system.

As mentioned above, the outrigger without the control 
device is one of the structural element which is connected 
to the core-tube and perimeter columns. Their association 
forms a unit block that is able to provide a dynamic action 
in resisting the lateral loads. On top of that it is important 
to note by passing that the position of outrigger along the 
height of the structure is a major factor that significantly 
affects the dynamics of the tall building [29]. However, one 
of the major steps will be to evaluate the efficiency outrig-
ger’s length on deflection transverse of the whole system.

Figure 7 displays the influence of the outrigger’s length 
on maximal deflection displacement of each floor. It comes 
out that when the increase of the outrigger’s length sig-
nificantly reduces the earthquake-induced structural 
vibration.

In what follows, The results show in Tables 4, 5 and 6 
illustrate the data from in Fig. 7a–c, respectively. It can be 
seen that the variation of the outrigger’s length on the 
dynamic response by reducing the excessive vibration of 
the whole structure. Moreover, the results indicate that 
the distance between the control device and core-tube 
should not be close to each other. For a design contribu-
tion of the outrigger system, a distance must be respected 
to accentuate the effectiveness of the dynamic response 
of the structure.

Figure  8 shows the temporal evolution of root 
mean square acceleration. The results indicate that the 

Fig. 6   Effect of damping and 
stiffness parameters of the 
control device on the lateral 
deflection

(a) (b)

Table 2   Reduction percentage 
with C0 = 0.405

Floors 5 10 15 20 25 30 35 40 45 50 55

Percentage (%) 9.95 9.77 9.7 9.7 9.8 9.9 9.9 9.8 8.9 7.04 5.07

Table 3   Reduction percentage 
with K0 = 0.5

Floors 5 10 15 20 25 30 35 40 45 50 55

Percentage (%) 8.85 9.2 9.42 9.2 8.9 8.7 8.4 8.2 8.1 9.1 8.5
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percentage of the peak root mean square in the first 
sequence is 3.5% and the second sequence is 4.43% . It 
comes out that the variation of parameters of the control 
device slowly affects the acceleration amplitude. Never-
theless, they allow to rapidly reach the reduction ampli-
tude during each sequence of the earthquake excitation.

4 � Conclusion

The current paper investigated the High static low 
dynamic stiffness outrigger effects on the cantilever 
beam under earthquake loads. The Timoshenko model 
based on partial equations is used to describe the 
dynamic response of the core-tube of the structural sys-
tem. However a numerical comparison is made between 
equivalent linearisation method and the direct simula-
tion approach to justify the precision of the analytical 
averaging method used. This has allowed to determine 
the threshold values of stiffness as well as the damping 
coefficients of the nonlinear control device. Moreover, it 
is showed that the performance of the control devices 
on the structural system depends intensively on of stiff-
ness and damping coefficients. As a matter of fact, the 
provided results clearly reveal that the control device 
has the potential to reduce the excessive lateral deflec-
tion up to 10% at the top and bottom of the structural 
system.

(a) (b) (c)

Fig. 7   Effect of the outrigger’s length on deflection transverse, C0 = 0.96, K0 = 0.5

Table 4   Reduction percentage 
in Fig. 7a

Floors 5 10 15 20 25 30 35 40 45 50 55

Percentage (%) 19.5 34.23 41.1 42.6 39.8 33.6 24.4 17.5 16.5 20.49 17.9

Table 5   Reduction percentage 
in Fig. 7b

Floors 5 10 15 20 25 30 35 40 45 50 55

Percentage (%) 6.54 13.14 20.8 22.7 20.3 15.6 10.8 9.5 9.8 11.5 10.4

Table 6   Reduction percentage 
Fig. 7c

Floors 5 10 15 20 25 30 35 40 45 50 55

Percentage (%) 4.7 5.7 11.2 13.6 13.7 9.1 8.5 7.7 8.4 9.27 8.82

Fig. 8   Root mean square acceleration
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It was also possible to assess the impact of the dis-
tance of the control device vertically installed at the 
column to the centre of the core-tube. It is observed 
that the variation of this distance can greatly influence 
the dynamics of the outrigger system with a reduction 
of vibration up to 39% at the middle of the structure. 
This suggests that a good compromise should be found 
between the control devices and the centre of the core-
tube to optimise the performance of structural system. 
Another conclusion of this work is that the analytical 
investigation is really necessary to estimate the thresh-
old parameters of the nonlinear control device leading 
the acceptable level of the reduced amplitude of the 
structural system. Thus, the future work will focus on the 
investigation the delay-effects of HSLDS on the struc-
tural response.
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