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Abstract
In this study, it is intended to optimize a high-velocity impact case of a composite plate. The case selected from literature 
focused on the failure response of advanced carbon–carbon (C/C) composites under high-velocity impacts. Based on the 
stochastic optimization method, three unique models are introduced within the present study’s scope as dimensionless 
damage areas of front and back sides and the composite impact energy response. The difference between the equa-
tions found in the present study and the base study is the number of variables. Obtained prediction models consist of 
only the tests’ input variables; thus, these models can be considered the essential prediction functions of high-velocity 
impact response of C/C composites under high temperatures. Multiple nonlinear regression method is used for objective 
functions of the optimization problem. Since the determination coefficient values have been found quite similar to the 
ones in the literature, the presented models can be considered successful in predicting the results. By utilizing the novel 
regression functions presented in this study, the damaged areas are minimized. Without the necessity of experimental 
research, further predictions can be made by operating the models found in the present study.
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1 Introduction

Carbon–carbon composite systems are materials com-
posed of carbon fiber reinforcement and a carbon matrix 
phase. There are two different forms of C/C composites 
as advanced and reinforced. These composite systems are 
preferred for their extraordinary properties in mechanical 
and thermal points of view [1–3].

C/C composites are known for their unique behaviors. 
These relatively new developed engineering materials 
show ceramic behavior in nature but behave in a range 
from pseudo-plastic to brittle. These composite materials 
are all-carbon composites with a reinforcing fiber phase 
and a matrix phase; both made up of carbon. These mate-
rials are also known as inverse materials. C/C composites 

are used in several industrial and medical applications, 
especially in re-entry nose tips, rocket nozzles, and aircraft 
brake discs, where their excellent thermo-structural prop-
erties become crucial [4].

Failure investigation on composite materials and any 
material is a long-term research field in material science. 
Even this research field has been focused on for decades 
still a trending topic because of the importance of applica-
tion areas it is needed to be used and the topics availability 
of multidisciplinary working.

Varas et  al. [5] studied the high-velocity impact 
response of carbon-reinforced epoxy woven laminates, 
and to predict these responses; they produced a numeri-
cal model. They predicted inter lamina failure using 
cohesive elements. Experimental and numerical results 
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of failure area on the plate and residual velocity of the 
projectile were compared in this study. After their model 
is validated, another study was conducted to investigate 
the high-velocity impact behavior due to projectile slen-
derness. With the model they developed, the number of 
experimental tests can be reduced considerably for future 
studies investigates the high-velocity impact response of 
aeronautic composite structures.

Mohotti et  al. [6] studied the high-velocity impact 
effects of projectiles on aluminum-polyurea compos-
ite plates. They proposed an analytical model to predict 
the residual velocity of projectiles impacted on alu-
minum–polyurea composite plates. Then, they verified 
the results with numerical and experimental studies. They 
represent stress–strain response under the composite sys-
tem’s high-velocity impact in the numerical analysis with 
Mooney–Rivlin and Johnson–Cook material models. It 
is concluded that polyurea content in composite plates 
reduces the residual velocity of the projectile.

Shear thickening fluids are exciting materials consid-
ered in ballistic applications lately because of their non-
Newtonian nature. Park et al. [7] investigated the advan-
tages of shear thickening fluids over traditional materials. 
They studied ballistic impact energy (IE) absorption behav-
iors of neat and shear thickening fluid impregnated Kev-
lar fabric by conducting a numerical study using LS-DYNA 
code. After comparing the results of both numerical and 
experimental, they were validated. Despite insufficiency in 
entirely indicating the effect of shear thickening impreg-
nated fabric under the high-velocity impact, it is found 
that the significant factor in the energy absorption pro-
cess is friction between the projectile, fabrics, and yarns.

In most of the studies from the literature, it is seen that 
the studies focused on highly specialized and narrow 
aims. However, the value of investigating a wide-angle 
of a specific topic at a time cannot be denied. One such 
study was conducted by Ansari and Chakrabarti [8]. Their 
study is about the progressive damage patterns and dam-
age evolution types besides the effects of many ballistic 
properties such as thickness to span ratio, the thickness 
of the Kevlar-29/epoxy plate, and span of the target plate 
on the residual velocity of the projectile, depth of penetra-
tion, contact force, and radius of the damaged area. The 
numerical investigation was done using AUTODYN hydroc-
ode and, the results are validated with those available in 
the literature. As a contribution, they generated many new 
results to understand the nature of three-dimensional 
progressive damage propagations and failure behavior of 
composite plates under the high-velocity impact.

Ballistic responses of C/C composites are among the 
trending topics in ballistic studies because of their excep-
tional thermal and mechanical properties. Xue et al. [9] 
studied hypervelocity impact on determining the effects 

of hypervelocity impact on ablation response of SiC coated 
C/C composites. Their motivation was the lack of studies 
about the hypervelocity impact property of C/C com-
posites. The extraordinary properties in an ultra-thermal 
environment make C/C composites significant materi-
als in the aerospace industry. The study investigated the 
phenomena experimentally and concluded that SiC–C/C 
composites experience fewer ablation rates than neat C/C 
composites, and impact velocity affects ablation rates and 
ablation areas. This study’s results can help increase aircraft 
service times by improving coated C/C composites’ anti-
ablation properties.

Xue et al. [10] studied another case again with C/C 
composites. They used an experimental method to 
obtain the impact direction interactions, residual flex-
ural strength and, damage propagation. The conclusions 
showed impact velocity affects impact resistance of C/C 
plates and exact positions of failure propagations; also, 
increasing impact velocity leads to fracture type becom-
ing more plastic than brittle. These results are also signifi-
cant because of the real-life applications of C/C composite 
plates in aerospace engineering.

Cunniff [11] approached the optimization of ballistic 
structures differently than the traditional ways. While ulti-
mate mechanical properties define the ballistic appropri-
acy, dimensionless groups’ indication success was inves-
tigated in his study both analytically and experimentally. 
The dimensionless groups established in the study allow a 
directed optimization process for ballistic textiles.

Patel et al. [12] introduced an innovative stochastic 
design method to determine composite beams’ ballistic 
impact behavior. They used fiber failure initiation models 
with sensitivity-based design optimization method and 
3D stochastic finite element method. It is concluded that 
the probability of failure of the anti-symmetric cross-ply 
arrangement is lower than the other ply lay-up arrange-
ments. Their results can be used for design optimization 
to obtain better ballistic properties and lighter composite 
beams.

Jolly and Williamsen [13] regressed relationship func-
tions to define the ballistic limit of dual-wall protection 
systems used in NASA’s Space Station Freedom project. 
A regression method of stepwise linear least squares and 
multiple nonlinear regression analysis methods were used 
for the optimization process. As a result, a set of expres-
sions was presented for use in computations of the prob-
ability of no critical failure for the space station.

According to Schonberg’s report [14], if Holly and Wil-
liamsen’s approach were used to reevolve the ballistic limit 
equations used in Bumper 3 software to provide estimate 
predictions, statistics based ballistic limit equations for 
wall structure and configurations would have obtained. 
Also, their statistics-based uncertainty information for 
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determining how accurate the results could be used with 
this approach’s help.

In the application areas of decision-making problems, 
such as banking, signal processing, and aerospace, the 
problems consist of minimizing or maximizing mathemati-
cal functions; the stochastic optimization process is the 
researchers’ preferred method. The stochastic optimiza-
tion process provides the extremum values of dependent 
parameters on random variables of these mathematical 
functions. [15]

Ozturk et al. [16] studied stochastic algorithms to mini-
mize surface roughness in a systematic cutting process 
problem. To avoid characteristic scattering of the stochas-
tic methods, they conducted four different optimization 
algorithms (Nelder–Mead, Simulated Annealing, Differen-
tial Evolution, and Random Search) on the problem. Their 
study found that minimizing Si wafers’ surface roughness 
can be successfully achieved by employing different 
rational regression models with stochastic optimization 
approaches.

Deveci et  al. [17] studied the effect of fiber angle 
domains on maximum buckling resistance in laminated 
composites. They introduced an optimization approach 
to determine the optimum stacking sequence for this 
purpose. Their approach consists trust-region reflective 
algorithm and genetic algorithm to establish higher accu-
racy of the results. Obtained results showed that when the 
Puck failure theory is under consideration for the buckling 
optimization, the approach presents dependable stacking 
sequence layouts.

Ozturk et al. [18] conducted an optimization study on 
the lapping processes of wire-sawn silicon wafers using 
lapping and polishing machine. Rotation speed and lap-
ping time were considered as the design variables of the 
optimization problem in their study. They concluded the 
importance of the combined experimental and stochastic 
optimization approach to surface roughness investigation 
on the silicon wafer lapping process.

Xie et al. [19] studied both experimentally and analyti-
cally on high-velocity impact effects on C/C composites 
at high temperatures. The ranges for projectile velocity 

and experimental temperatures are 1600–4600 m s−1 and 
25–1429 °C, respectively. A fast-electric heating system 
was used to obtain high temperatures in this study. Their 
study is taken as the base study for the present paper. 
Figure 1 shows the schematic drawing of the two-stage 
light gas gun and the impact chamber. In the base study’s 
experimental part, the spherical projectiles were acceler-
ated by a two-stage light-gas gun. The fast-electric heat-
ing system comprises copper electrodes, a cooling water 
tank, and a voltage transformer. Heating the C/C compos-
ite samples and measuring the temperature was done by 
the fast-electric heating system.

In the high-velocity impact case from the base study, 
C/C composite plates were impacted by projectiles at ele-
vated temperatures. The base study’s analytical part was 
conducted to obtain mathematical models of objective 
functions using the experimental results. Further predic-
tions can be made by operating the models without the 
necessity of any experimental procedure.

In the present study, to improve the base study’s men-
tioned models, the optimization process has been done 
using different regression models on Wolfram Mathemat-
ica 11.0 software. Their convergence of determination 
coefficient compares the results. Objective functions are 
constructed with the design variables, which are system 
inputs of the physical phenomena. The design variables 
are the temperature of the composite plate (°C), the impact 
velocity of the projectile (km/s), and the ratio between the 
laminate thickness and diameter of the projectile  (tw/dp).

Optimization study is applied to objective functions, 
which are system outputs of the physical phenomena. 
Two different models have been introduced in the present 
study using a second-order multiple nonlinear regression 
method to predict the dimensionless damaged areas eas-
ier than and yet equally accurate to the models presented 
in the base study. Another output, the impact energy 
(IE), is studied to be predicted, and another second-order 
multiple nonlinear regression model is developed for this 
purpose.

The present paper is organized as follows. Section 2 
describes and analyses the base study experiments used 

Fig. 1  Schematic drawing of a two-stage light gas gun
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to investigate the high-velocity impact response of C/C 
composites and includes discussing the present paper’s 
analytical approach. Section 2.1 covers the multiple non-
linear regression analysis and the nonlinear regression 
model’s decision progress. In Sect. 2.2, the present study’s 
optimization algorithm is introduced, and the algorithm 
options are discussed. Section 2.3 explains Mathematica’s 
implementation of the optimization process and intro-
duces the commands briefly. The main problem, the 
motive, and the solution approach are expressed in Sect. 3. 
In Sect. 4, regression model options are compared by their 
accuracies, the regression models of the phenomena are 
constructed, and results of the optimization study are pre-
sented by comparing the results with the results of base 
study. Also, by comparing the minimized output results, 
the most appropriate optimization method is decided, 
and at the end of the section, overall results are discussed. 
Finally, Sect. 5 presents our conclusions.

2  Materials and methods

In the base study, seventeen high-velocity impact tests 
were executed experimentally. As a result of the high-
velocity impact tests, damages were observed on the 
front and back surfaces of the C/C composite samples. The 
damages were measured quantitatively by calculating the 
failure zones’ areas on the composite samples’ front and 
back surfaces. Table 1 demonstrates the input and out-
put variables of the high-velocity impact test results and 
dimensionless damaged areas [19].

The experimental results show the input and output 
variables of each experimental case. T indicates the tem-
perature of the composite samples during the impact 
tests. A fast-electric heating system controlled the test 
specimen’s temperature, and thus extreme environmen-
tal conditions were simulated. The ratio  tw/dp is between 
the C/C laminate thickness and diameter of the  Si3N4 pro-
jectile. Taking these two dimension-variables into consid-
eration provided the effects of composite sample thick-
ness and the spherical projectile diameter altogether in a 
rational form.  Afront/dp

2 and  Aback/dp
2 ratios are between 

front and back damage areas of the C/C composite plate 
and the projectile squared diameter. The high-velocity 
impact of the projectile causes the damaged areas. Fron-
tal damage area occurs by a direct impact, while the direct 
effect of the penetration and the trauma caused by the 
impact can provoke the back damage area’s development. 
IE is one of the experiment outputs and defines the energy 
developed by impact and transferred from the projectile 
to the specimen plate.

The regression analysis method is used to obtain more 
accurate models for the objective functions. The regres-
sion analysis method can accurately determine which vari-
ables have how much impact on the relevant phenomena. 
Operating this method gives crucial information about the 
process of phenomena. It allows us to understand which 
factors matter most, which factors can be neglected, and 
how they affect each other.

Depending on the problem, different types of regres-
sion models can be used. The most used regression func-
tion types are linear, multiple, and polynomial regressions. 
These methods can be combined in order to approach the 

Table 1  Impact test results 
[19] (“1” represents perforation 
while “0” represents no 
perforation)

T (°C) ν0 (km/s) Test result tw/dp Afront/dp
2 Aback/dp

2 IE (J)

1205 1.690 1 1.667 3.537 4.207 69.449
1206 1.680 1 1.667 1.781 2.498 68.629
1225 1.710 1 2.5 1.268 2.198 21.067
1230 1.700 0 5 2.95 0 2.603
25 1.690 1 1.667 3.501 5.519 69.449
1212 1.980 1 1 3.100 3.225 441.334
1218 1.676 0 3 3.42 0 2.530
1270 2.000 0 5 3.82 0 3.602
1230 1.704 1 1 3.376 3.999 326.871
1193 1.760 1 1.667 2.928 3.799 131.374
1205 1.700 1 1 2.640 3.303 70.273
900 1.700 1 3.333 2.090 3.591 70.273
819 1.886 1 1.667 8.998 10.956 86.492
1429 1.608 1 1.667 4.143 10.754 62.873
1220 4.600 1 1.667 21.32 25.169 514.525
1205 3.090 1 1.667 11.133 11.364 232.171
1234 3.900 1 5 12.554 14.52 13.698
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problem properly. Linear regression provides a connec-
tion between a dependent variable and an independent 
variable with the help of a regression line. This line can 
be recognized as the best fit straight line of the relation-
ship graph [20]. Multiple linear regression is the appropri-
ate method to investigate the relationship between one 
continuous dependent variable and multiple independ-
ent variables. In the polynomial regression technique, the 
regression line is a curved line that fits into the data points 
than a straight line. The power of some independent vari-
ables can be more than 1 for a polynomial regression [21].

2.1  Multiple nonlinear regression analysis

Regression analysis is a convenient statistical tool to deter-
mine the process parameters’ connections in an engineer-
ing process. Regression models are used in literature in 
different forms such as Linear, Logistic, Nonlinear, and 
Stepwise. These forms of regression analysis are used to 
characterize the phenomena, and some forms of differ-
ent linear and nonlinear regression models are shown in 
Table 2. Linear regression models can describe some engi-
neering processes well, but not all of them. When linear 
regression models become insufficient, different nonlin-
ear modeling approaches with general functional classes 
are appropriate. Logarithmic, trigonometric, rational, and 
power functions are examples of the nonlinear functions 
in the literature [16].

One of the regression models is the second-order poly-
nomial nonlinear regression function. This method’s dif-
ference from the other methods is modeling the depend-
ent or criterion variables as a nonlinear function of model 
parameters and independent variables. Second-order 
multiple nonlinear regression forms define more than one 
independent variable (for the present case, input types) 
in the objective function. The objective function simply 
indicates each variable’s contribution to the value to be 
optimized. Basically, the objective function is a function 
of the design variables to be maximized or minimized. 
The multiple nonlinear regression analysis is chosen as the 
appropriate method to solve the present case. Considering 
the IE determination coefficient results, the linear rational 
model is chosen only for the IE optimization case.

The optimization process has been done by using 
Wolfram Mathematica 11.0 software. Design variables 
(system inputs) are defined, and for this case, the design 
variables are the temperature of the composite sample 
(°C), the impact velocity of the projectile (km/s), and the 
ratio between the laminate thickness and diameter of the 
projectile  (tw/dp). Any change in the experiment condi-
tions means a change in design variables; thus, leading 
to a change in the objective function and outputs. For 
the present case, if any of the temperatures of a compos-
ite sample, impact velocity of the projectile, or the ratio 
between the laminate thickness and diameter of the pro-
jectile variables changes, the outputs are dimensionless 
damage areas the impact energy are going to change. The 
objective functions define the system outputs, and they 
are dimensionless frontal damage area  (Afront/dp

2), dimen-
sionless back damage area  (Aback/dp

2), and impact energy 
(J), for the present case.

In the modeling step, the determination coefficients 
 (R2) adjusted coefficient of determination  (Radj

2), Akaike 
information criterion (AIC), and Bayesian information cri-
terion (BIC) have been calculated for each of the outputs. 
The model with the highest  R2 and  Radj

2 values and the 
lowest AIC and BIC values is preferred.

The system’s global minimum values are determined 
for each of the two objective functions of damaged areas 
and IE’s objective function. There are two solver functions 
in Mathematica to determine constrained optimal mini-
mum and maximum outputs of a problem: NMinimize and 
NMaximize. Using these solvers, implementation of vari-
ous algorithms to find constrained global optimum point 
is possible. Even non-differentiable functions can be dealt 
with by these methods [22]; NMinimize command is used 
to obtain the best scenario of the impact problem: mini-
mum back and front damage areas of the C/C composite 
target plate and IE of the physical phenomena.

2.2  Optimization algorithm

There are various optimization algorithms to work with 
problems focused on extremum designs, and these algo-
rithm types can be separated into traditional and non-
traditional methods. In the mathematical optimization 

Table 2  Forms of different linear and nonlinear regression models [16]

Model name Nomenclature Formula

Multiple linear L Y = a
0
+ a

1
x
1
+ a

2
x
2
+ a

3
x
3

Multiple linear rational LR Y =
a0+a1x1+a2x2+a3x3

b0+b1x1+b2x2+b3x3

Second-order multiple nonlinear SON Y = a
0
+ a

1
x
1
+ a

2
x
2
+ a

3
x
3
+ a

4
x
1
x
2
+ a

5
x
2
x
3
+ a

6
x
1
x
3
+ a

7
x
1
2
+ a

8
x
2
2
+ a

9
x
3
2
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process of modeling ballistic impact response, tradi-
tional optimization methods become insufficient to 
solve these optimization problems because of the high 
amount of nonlinear terms content to define the prob-
lem. Stochastic methods are required for these situa-
tions, such as Differential Evolution, Simulated Anneal-
ing, Genetic Algorithms, and Nelder–Mead methods. Rao 
[23] discussed many different optimization algorithms 
and methods with a great extent of scope. In the pre-
sent study, a modified version of the integer-based Dif-
ferential Evolution algorithm has been used to solve the 
minimum dimensionless front and back damage area of 
the C/C composite target plate and IE of the projectile 
design-optimization problems.

2.2.1  Modified differential evolution algorithm

Complex composite design problems can be solved by 
using the differential evolution algorithm. This stochastic 
optimization method operates a population of solutions 
and solves design problems through its four main phases. 
These phases are initialization, mutation, crossover, and 
selection. Even differential evolution algorithm does not 
obtain global optimum results for all cases; it is accepted 
and operated as an efficient algorithm.

In Mathematica, differential evolution algorithm con-
sists of a population of solutions called r points instead of a 
particular solution. The number of r points must be higher 
than the number of design variables.

For the iteration process, the differential evolution algo-
rithm generates a mutant vector for each element of the 
considered population of r points. The algorithm scales 
two random vectors with a scaling factor, F, and adds it to 
another vector. In the crossover phase, the present vector 
and mutant vector are operated together, and a trial vec-
tor is generated. After comparing the trial vector with the 

current population element, the best case is selected, and 
the operation continues [24].

The differential evolution algorithm consists of 4 main 
phases: initialization, mutation, crossover, and selec-
tion. These phases are shown in Fig. 2 as in the algorithm 
process.

2.2.2  Random search algorithm

One of the Mathematica commands and a stochastic 
optimization algorithm used in the present case for com-
parison is Random Search. The Random Search approach 
determines random starting points during the solution’s 
working process on the optimization problem and collects 
a population combined with the chosen random starting 
points. The final step of the algorithm process is the evalu-
ation of convergence. In this step, the algorithm occupies 
one of the local search approaches, FindMinimum, to 
determine the merging quality of selected starting points 
to the local minimum. The Random Search algorithm has 
four sub-process options. The first option, SearchPoints, 
implement the amount of starting points to the algorithm 
process. The other option, RandomSeed, assigns the initial 
value for the random sub-process. Whether the optimiza-
tion problem has constraints, the FindMinimum command 
minimizes the objective function by using the appropri-
ate process. The final option, PostProcess, fine-tunes the 
solution by using an appropriate combination of solution 
methods [25].

2.2.3  Nelder Mead algorithm

Nelder Mead is an optimization method that does not 
process with derivatives, and initially, it is developed to 
solve unconstrained optimization problems. For a given 
function of n variables, the Nelder Mead method gener-
ates an array of n + 1 points assigned for a polytope’s ver-
tices, an n-dimensional geometric object with flat sides. 

Fig. 2  Flowchart of the differential evolution algorithm
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The algorithm operates the iteration process of assigned 
points by producing and replacing the previous worst 
point. Once a new point better than the previous best one 
is obtained, that means the reflection of the trial point is 
successfully obtained on the centroid. Nelder Mead algo-
rithm gives better global optima results compared to Ran-
dom Search algorithm, but Differential Evolution outper-
forms it in our algorithm comparison study [25].

2.3  Mathematica implementation

The modeling and optimization process has been done 
by using Wolfram Mathematica 11.0 software. The FindFit 
command is an appropriate selection obtaining the opti-
mal fit between the parameters and the expression. It cal-
culates the best fitting parameters to its data in numerical 
forms. The data with the equal number of coordinates (x, 
y, …) and variables can be expressed in

The data with one coordinate system can also be 
expressed in the form of

The command FindFit by default, finds a least-squares 
fit. Possible Method command settings for being used with 
FindFit include ConjugateGradient, Gradient, Levenberg-
Marquardt, Newton, NMinimize, and QuasiNewton. In the 
present study, the NMinimize solver has been selected at 
this step.

NMinimize command minimizes the function concern-
ing the chosen variable. The capability of Mathematica 
commands FindMinimum, NMaximize and Nminimize, 
RandomSearch, NelderMead, and DifferentialEvolution 
are evaluated in finding the global minimum. The effect 
of options to find the global minimum is examined for 
each algorithm. Notably, changing the values of Search-
Points and RandomSeed options are more effective than 
altering the value of other options for these optimization 
algorithms. Mathematica functions to optimize complex 
problems in science and engineering with their certain 
characteristic features using search algorithms. Although 
these methods are efficient in finding global optima, it 
might be difficult to find optimum results even without 
constraints and boundary conditions.

Constraints might be either in the list form or in a 
rational combination of domain options, equalities, and 
inequalities. For example, if one needs to specify results 
in integer form, the unknown parameter z should be 
included as z ∈ Integers in line. Then, this constraint 
restricts the possible solutions as being only integers. 

{{

x1, y1,… , f1
}

,
{

x2, y2,… , f2
}

,…
}

{

f1, f2,…
}

Besides, the NMinimize command requires a rectangular 
starting region to begin optimization. It means that each 
variable in the given function should have a finite upper 
and lower bound. Using the Method option to apply other 
types of search algorithms is a way to provide non-auto-
matic set solutions.

The command DifferentialEvolution consists of specific 
adjustment options: CrossProbability, InitialPoints, Pen-
altyFunction, PostProcess, RandomSeed, ScalingFactor, 
SearchPoints, and Tolerance, whether none of them does 
guarantee to find global optima [22].

The Mathematica implementation process begins with 
creating a data table and defining its elements based on 
experimental results. The values of inputs and the out-
puts are defined for each variable as value groups. Then, 
the data table is constructed with the Table command as 
each row of the table contains the variables of each experi-
ment. The FindFit command is used by defining a second-
order polynomial expression format to be used with three 
variables as three input values, and the coefficients of the 
second-order polynomial model are obtained. The suitabil-
ity of the generated model is checked by comparing the 
results of the model and the experimental results’ output 
values. A table is created with the generated model results 
and experimental output results, and then the determi-
nation coefficient study is conducted over this table. If 
the generated model fits over the experimental findings 
properly, the determination coefficient value should be 
greater than 0.95. Finally, the NMinimize command is used 
to obtain minimum output values with specific input varia-
bles. The generated model of the physical phenomena and 
boundary conditions, which are the maximum and mini-
mum variable values obtained from experimental results, 
is defined in the NMinimize command. After running the 
command, the interest’s minimum output value with the 
specific input values is obtained from the command out-
put. To specify the optimization algorithm, Method built-in 
option is used. Differential Evolution algorithm is operated 
by using Method option in NMinimize command.

3  Problem definition

The base study [19] aimed to determine the dimension-
less front and back damage areas of C/C composites under 
high-velocity impacts and high-temperature conditions. In 
real-life applications of advanced C/C composites, they are 
being used under high-temperature conditions because of 
their material properties and the lack of equivalent oppo-
nents to stand under these conditions. The motivation 
was minimizing the need to do experiments, which are 
expensive and time-consuming, and to calculate the dam-
age behaviors analytically instead. To reach this goal, they 
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developed two different equations to solve and determine 
the dimensionless damaged areas.

In the present study, the motive is to develop the same 
equations presented in the base study, but in simpler 
forms and as accurate as possible. Simple prediction equa-
tions can give the results with less time and process power. 
Reaching this objective will provide a better approach to 
critical real-life applications of advanced C/C composites 
such as the aerospace industry and aeronautical structures 
under high-velocity impacts.

One of the stochastic optimization methods, differen-
tial evolution, is used to develop the prediction equations. 
Differential evolution algorithm permits to obtain global 
optimum results among the data, and the predictions 
belong to the data to perform the iteration process. Two-
second order polynomial models and one linear rational 
model are obtained with appropriate regression analysis. 
After implementing appropriate minimization command, 
the final models were able to give optimized input val-
ues, which are the temperature of the composite plate 
(°C), the impact velocity of the projectile (km/s), and the 
ratio between the laminate thickness and diameter of 
the projectile  (tw/dp) concerning the minimized output 
value. To consider the models as successful, determination 

coefficients should be over 0.95, and this is the defined 
criteria of the success of the present study.

4  Results and discussion

An optimization study has been conducted for three dif-
ferent regression models. The inputs and outputs of the 
case are determined. The temperature of the composite 
plate (°C), the impact velocity of the projectile (km/s), and 
the ratio between the laminate thickness and diameter of 
the projectile  (tw/dp) values are used as inputs, and dimen-
sionless frontal damage area  (Afront/dp

2) and dimensionless 
back damage area  (Aback/dp

2) are used as outputs. IE is also 
considered as an output of the problem as its values are 
given in the base study, but since its optimization study 
was not conducted in the base study, only its objective 
function and optimization results are given in the present 
case without comparison. The regression models and their 
accuracy criteria results are presented in Table 3.

The model with the highest (very close to 1)  R2 and  Radj
2 

values and the lowest AIC and BIC values is preferred. Two 
second-order multiple nonlinear regression models and 
one linear rational model are selected as the objective 
function and the constraints of the present optimiza-
tion problem considering each of the regression models’ 
results. After defining input variables in Mathematica, 
three models have been constructed as

(1)

Afront∕d
2

p
= −157.812958 + 0.126571x1 + 0.000002

(

x1
2
)

+ 95.199804x2 − 0.078081x1x2 + 1.069159
(

x2
2
)

− 1.450941x3 + 0.001062x1x3 − 0.127985x2x3 + 0.089770
(

x3
2
)

Table 3  Results of the regression models in terms of determination coefficients

Nomenclature Outputs Models R2 R2
adjusted AIC BIC

L Afront/dp
2 − 4.56311 − 0.00104357  x1 + 5.76027  x2 − 0.443356  x3 0.91 0.89 73.52 77.69

Aback/dp
2 − 3.01434 − 0.00173756  x1 + 6.78202  x2 − 1.37544  x3 0.83 0.79 91.90 96.07

IE 23.1586 + 0.0519974  x1 + 101.062  x2 − 70.7383  x3 0.62 0.54 213.00 217.17
LR Afront/dp

2 (829.744 + 0.431929  x1 + 254.285  x2 + 15.6286  x3)/(− 100.633 + 0.129407 
 x1 − 4.96005  x2 + 4.37702  x3)

0.98 0.98 57.54 65.03

Aback/dp
2 (219.432 + 0.00144065  x1 + 239.509  x2 – 132.813  x3)/(101.787 + 0.0243875  x1 

– 16.6879  x2 – 6.62985  x3)
0.85 0.81 99.79 107.29

IE (52,447.1 − 169.241  x1 + 73,808  x2 + 38,657.4  x3)/(4163.59 − 4.06858 
 x1 − 93.768  x2 + 1027  x3)

0.94 0.93 190.596 198.095

SON Afront/dp
2 − 157.813 + 0.126571  x1 + 2.25647 × 10–6  x1

2 + 95.1998  x2 − 0.0780818 
 x1  x2 + 1.06916  x2

2 − 1.45094  x3 + 0.00106288  x1  x3 − 0.127986  x2 
 x3 + 0.0897707  x3

2

0.99 0.98 56.55 65.71

Aback/dp
2 − 329.558 + 0.26045  x1 + 0.0000176041  x1

2 + 183.391  x2 − 0.158082  x1 
 x2 + 2.48883  x2

2 + 9.52724  x3 − 0.0103908  x1  x3 + 0.828026  x2  x3 + 0.163975 
 x3

2

0.99 0.98 64.52 73.69

IE 1642.21 − 1.17746  x1 − 0.0000711245  x1
2 − 948.709  x2 + 0.987922  x1 

 x2 − 6.78295  x2
2 + 35.7503  x3 − 0.222711  x1  x3 − 46.9808  x2  x3 + 43.5729  x3

2
0.83 0.79 216.43 225.60
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(2)

Aback∕d
2

p
= −329.557776 + 0.260450x1 + 0.000017

(

x1
2
)

+ 183.391072x2 − 0.158082x1x2 + 2.488831
(

x2
2
)

+ 9.527239x3 − 0.010390x1x3 + 0.828026x2x3

+ 0.163974
(

x3
2
)

(3)IE = (52447.1 − 169.241x1 + 73808x2 + 38657.4x3)∕(4163.59 − 4.06858x1 − 93.768x2 + 1027x3)

where  x1,  x2, and  x3 represent the temperature of the 
composite plate (°C), the impact velocity of the projec-
tile (km/s), and the ratio between the laminate thickness 
and diameter of the projectile  (tw/dp), respectively. After 
all, considering one model function, a mean prediction 
confidence interval table is given in Table 4 to show dif-
ferences between predicted and experimental results for 
each observation. It is evident that each of the selected 
model’s standard error values is smaller than 0.9 for calcu-
lated confidence intervals. Therefore, it shows a reasonable 
prediction capability of the model.

The determination coefficients have been calculated for 
three models. A comparison of these results with those in 
the base study is shown in Table 5. Also,  Radj

2 values are 
found for  (Afront/dp

2) and  (Aback/dp
2) as 0.984. The IE model’s 

determination coefficient is not shown in Table 5 due to 
the lack of the optimization study of IE in the base study. 
The determination coefficient of the objective function of 
IE is calculated as 0.940.

To minimize the dimensionless front and back damaged 
areas and impact velocity, NMinimize command is used 
with arbitrary constraints. The constraints are defined from 
the dataset presented in Table 1, as all values should be 
between the minimum and maximum values. After apply-
ing the dataset constraints, the output of the NMinimize 
command gives the results in Table 6.

x1,  x2, and  x3 represent the temperature of the compos-
ite plate (°C), the impact velocity of the projectile (km/s), 
and the ratio between the laminate thickness and diam-
eter of the projectile  (tw/dp), respectively.

It is observed that the Nelder Mead method gave 
slightly close minimized output results to Differential 
Evolution results than the Random Search approach. Com-
pared to similar temperature and projectile velocity values, 
the Nelder Mead approach predicts a 63.5% smaller ratio 
between the laminate thickness and diameter of projec-
tile than the Random Search approach for dimensionless 

Table 4  Mean prediction confidence interval table for  Afront/dp
2 

case

Observed Predicted Standard error Confidence interval

3.537 2.51877 0.360997 {1.66515, 3.37239}
1.781 2.47637 0.364496 {1.61447, 3.33826}
1.268 2.62081 0.501272 {1.43549, 3.80613}
2.95 3.38245 0.699374 {1.7287, 5.03621}
3.501 3.50955 0.896577 {1.38948, 5.62962}
3.1 3.88931 0.512197 {2.67816, 5.10046}
3.42 2.55822 0.547193 {1.26432, 3.85213}
3.82 3.37953 0.644798 {1.85483, 4.90424}
3.376 2.68335 0.492589 {1.51857, 3.84814}
2.928 2.88386 0.347048 {2.06322, 3.7045}
2.64 2.66293 0.49989 {1.48088, 3.84498}
2.09 2.01776 0.883683 {− 0.0718238, 4.10733}
8.998 8.98401 0.889929 {6.87966, 11.0884}
4.143 4.11178 0.882104 {2.02594, 6.19762}
21.32 21.321 0.892329 {19.211, 23.4311}
11.133 10.9306 0.839287 {8.94605, 12.9152}
12.554 12.6286 0.892537 {10.5181, 14.7391}

Table 5  Comparison of the determination coefficient results

Outputs Present study Base study [15]

Afront/dp
2 0.987 0.998

Aback/dp
2 0.987 0.944

IE 0.940 –

Table 6  Optimized input 
results and minimized 
dimensionless damage areas 
and impact energy values

Method Output Minimized value x1 (°C) x2 (km/s) x3  (tw/dp)

Nelder Mead Afront/dp
2 4.3 × 10–9 1329 2.305 1.87

Differential Evolution 9.64 × 10–10 471.38 1.666 2.905
Random Search 1.03 × 10–7 1428.98 1.953 2.945
Nelder Mead Aback/dp

2 4.5 × 10–8 1318.231 1.648 4.997
Differential evolution 2.13 × 10–8 1407.59 1.727 3.881
Random Search 1.52 × 10–7 1428.98 1.806 2.972
Differential Evolution IE (J) 1 1386.74 1.848 1.175
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frontal damage area case. In comparison, the same pre-
diction is 68.14% greater for dimensionless back damage 
area case.

For instance, in the first row, the output shows that 
between the defined constraints, and the values of 1329 °C 
of composite plate temperature, 2.305 km/s of projectile 
velocity, and 1.870 ratios between the laminate thickness 
and diameter of the projectile, the dimensionless frontal 
damaged area will be 4.3 × 10–9.

Optimization results show that temperature change 
did not substantially affect between front and back of 
dimensionless damage areas. On the other hand, the 
ratio between laminate thickness and the projectile 
diameter showed an astounding effect on the devel-
opment’s dimensionless damaged area. Despite more 
excellent optimized velocity value for the frontal dam-
age area case, the lesser value of laminate thickness and 
projectile diameter ratio gave similar dimensionless 
damage area results with the back-damage area case. 
In other words, the dimensionless frontal damage area 
can be minimized by decreasing the ratio between the 
projectile’s laminate thickness and diameter.

Unexpectedly, minimum impact energy data obtained 
for the high-velocity impact case depended not only on 
the impact velocity but also on the composite plate’s 
temperature and the ratio between the laminate thick-
ness and the diameter of the projectile. A specific tem-
perature value and a laminate thickness—projectile 
diameter ratio, other than the minimum impact velocity 
value, concluded minimum impact energy result.

5  Conclusion

In the base study from the literature, impact tests 
were conducted on C/C composite plates under high-
temperature conditions, and the aim was to determine 
connections between the ballistic resistance of the 
composites and various impact parameters. They pre-
sented two different equations to solve and determine 
dimensionless damage areas of C/C composites under 
high-temperature conditions. In the present study, three 
novel equations are presented to determine the dimen-
sionless damage areas and predict the impact energy 
response. The optimization process has been done by 
using Wolfram Mathematica 11.0 software. The new 
models presented in this study show fair determina-
tion coefficient agreements with the base study ones. 
Also, our prediction model of dimensionless back dam-
age area converges the experimental results by the rate 
of 98.7%, while the base model has a convergence rate 
of 94.4%. Finally, global minimum optima outputs are 

found with applied constraints. According to the global 
optima results, impact velocity is more effective than the 
temperature of the composite sample, the thickness of 
the composite sample, and the dimensions of the pro-
jectile on C/C composites’ ballistic resistance. It should 
be noted that the procedure involving modeling-opti-
mization outlined in this study is appropriate for similar 
tasks. However, the models obtained are valid only for 
the mentioned material, environmental conditions and, 
load cases. As future work, we are thinking of expand-
ing the modeling studies on C/C impact behaviors using 
hybrid approaches such as neuro-regression and ANN-
Fuzzy so that these behaviors can be modeled more 
accurately mathematically.
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