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Abstract
In this work, a new graphical technique is furnished for acceleration analysis of four bar mechanisms through locating 
the instantaneous center of zero acceleration IC

a
 of the coupler link. First, the paper observes the coupler’s IC

a
 locus and 

then proceeds with a series of graphical constructions that eventually lead into locating the IC
a
 and obtaining the linear/

angular accelerations of the coupler and follower (or slider) links. Based on the proposed graphical technique, the ease 
of acceleration analysis for four-bar mechanisms with varying driver’s angular acceleration is demonstrated. Simultane-
ously, the inflection circle of the coupler curve is constructed without the need to apply Euler-Savary equations. With 
fewer constructions than classical graphical techniques, the robustness and simplicity of the proposed method are 
demonstrated by performing acceleration analysis of a slider-crank (RRRP) and a planar quadrilateral linkage (RRRR).

Keywords Planar mechanisms · Instantaneous center of zero acceleration · Inflection circle

1 Introduction

Understanding the kinematics of planar linkages is the 
first building-block in designing functional mechanisms. 
From the simple four bar mechanisms to the more com-
plex higher order linkages, planar mechanisms have 
gained lots of attention from researchers. Investigating 
the performance of planar linkages covers various fields 
of study; from kinematic and kinetic analysis [23, 31, 50] 
to mechanisms synthesis [2, 9, 21, 22, 25, 26] and design 
optimization [8, 38–40, 42, 46]. Understanding the behav-
ior of these mechanisms serves in developing more com-
plex kinematic bodies [33, 37, 45], robots [6, 28, 36] and 
grippers [5, 20, 43, 47, 49]. Among the most prominent 
kinematic properties of a planar mechanism are the loca-
tions of the instant centers of zero velocity and accelera-
tion. For a simple four bar mechanism, the instant centers 
of zero velocity ( ICv ) are easily located by Aronhold-Ken-
nedy’s rule which states that the ICv for any three links 
undergoing planar motion are collinear. For higher order 

mechanisms whose instant centers of zero velocity are not 
easily detected, several techniques have been proposed 
in literature that can be divided into two main categories; 
analytical and graphical.

Yang and Hsu [51] used the loop closure equations and 
singularities of the coefficient matrix obtained from veloc-
ity analysis to numerically solve for the ICv of kinemati-
cally indeterminate systems. Di Gregorio [16] presented an 
analytical algorithm to locate the instant centers in 1-DOF 
planar mechanisms based on the linkages configuration 
and loop-closure equations. Kung and Wang [24] catego-
rized the ICv of planar mechanisms into different levels 
according to their geometric dependencies. Accordingly, 
they recursively located the ICv of the planar linkages by 
analytically solving second and fourth order polynomial 
equations.

The main disadvantage of the aforementioned analyti-
cal methods is that velocities need to be calculated prior 
to locating the ICv . From here rises the importance of 
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graphical methods in locating ICv where the visualization 
of the velocity fields is rendered feasible.

Dijksman [12] used a graphical method to locate instan-
taneous centers of zero velocity that depends on first-
order reduction through joint-joining. Later, the author 
developed his technique to second-order joint-joining 
[13] to locate the coordinated centers of curvature in a 
network mechanism. Zarkandi [52] presented a graphical 
method to locate the ICv of 1-DOF kinematically indeter-
minate spherical mechanisms. Pennock and Sankaranaray-
anan [29] located the instant centers of a geared seven-bar 
mechanism by removing one binary link from the original 
mechanism and thus transforming it from a 1-DOF seven 
bar to a 2-DOF six bar mechanism. Chang and Her [4] pre-
sented a graphical based method for locating ICv by intro-
ducing a translational cam in contact with one link of the 
kinetically indeterminate linkage. Foster and Pennock [15] 
proposed a new method to locate the secondary instan-
taneous centers of zero velocity for an eight-bar double 
butterfly linkage by fixing the ternary link and disconnect-
ing the resulting 2-DOF nine-bar linkage at the coupler 
point. Lately, the author of this paper proposed a new 
graphical technique [7] based on transforming the 1-DOF 
mechanism into a 2-DOF counterpart by converting any 
ternary link adjacent to the ground into two connected 
binary links. Fixing each of these two binary links, one at 
a time, results in two different 1-DOF mechanisms where 
the intersection of the loci of their instantaneous centers 
will determine the location of the desired instantaneous 
center of zero velocity for the original 1-DOF mechanism.

Kinematicians have long been working on studying 
the characteristics and significance of the ICa in analyzing 
the kinematics of planar linkages. It is worth noting at this 
point that the IC of zero velocity where a body appears to 
be in pure rotation with respect to velocity does not nec-
essarily coincide with the IC of zero acceleration where a 
body appears to be in pure rotation with respect to accel-
eration. The ICa has been extensively used as a point on 
the inflection circle to analyze the kinematics of planar 
motion for different systems and applications [10, 17, 44]. 
The importance of the inflection circle is that it contains 
all points on the body (or its extension) that are instanta-
neously undergoing a straight line path (i.e. velocity and 
acceleration have same direction). Several work in litera-
ture focused on constructing the inflection circle using 
both analytical and graphical techniques [1, 11, 19, 34] 
that are based on different forms of the Euler-Savary equa-
tion [3]. This commonly used equation has four different 
forms [48] and is used to obtain the center and radius of 
curvature of any point on the coupler curve known as the 
osculating circle [14, 18]. The osculating circle facilitates 
the analysis of all properties of a planar linkage’s motion 
up to second-order and hence is very useful in analyzing 

instantaneous velocities and accelerations of any point 
on a planar mechanism. Those specific points with infi-
nite radius of curvature (i.e. moving instantaneously on 
a straight line path) define the inflection circle. Pennock 
and Kinzel [30] proposed a new method, independent of 
the Euler-Savary equation, to find the center and radius 
of curvature of a coupler point trajectory by attaching a 
virtual link from the coupler point to the center of its cor-
responding osculating circle.

While all the aforementioned techniques are useful in 
constructing the inflection circle for the coupler linkage 
and the osculating circle for the coupler point path of a 
four bar mechanism, locating the specific point on the 
former circle corresponding to the ICa needs additional 
graphical constructions as discussed by Schiller [35]. These 
graphical constructions are dependent on the angular 
velocity and acceleration of different links of the planar 
linkage in addition to its position. This is inevitable since 
the ICa is dependent on both, the linkages’ angular veloci-
ties/accelerations and positions, whereas the inflection 
and osculating circles are solely dependent on the latter. 
Having located the ICa , getting the acceleration of the cou-
pler/follower joint for RRRR mechanisms or the slider accel-
eration for RRRP mechanisms needs further implementa-
tion of some readily available basic analytical techniques. 
Sun and Liu [41] presented an analytical method for locat-
ing the ICa for a rigid body in plane motion. Their method 
is based on applying some mathematical manipulations 
(vector algebra) of the relative acceleration between any 
two points on the planar body to prove the existence of 
the ICa and to calculate its position. However, the coordi-
nates of the ICa were determined as a function of the angu-
lar acceleration of the body itself which is usually unknown 
prior to acceleration analysis of the coupler link in four bar 
mechanisms. Therefore, the method of [41] can locate the 
ICa merely after performing an acceleration analysis over 
the four bar mechanism and does not benefit from the 
unique features of the ICa to conduct acceleration analysis 
on planar linkages.

In this work, a genuine graphical method is proposed 
to perform acceleration analysis of a four bar mechanism 
based on the unique location of the ICa . The proposed 
method requires appreciably fewer graphical construc-
tions than techniques previously reported in literature 
and doesn’t require prior construction of the inflection 
circle for the coupler linkage. In case the inflection circle 
is to be constructed after locating the ICa , this can be 
done in a straightforward manner without the need to 
use the Euler-Savary equation. Two points of that circle 
are readily available (i.e. the ICv and ICa ) while the third 
point on the inflection circle diametrically opposite to 
the ICv , known as inflection pole, can be located in one 
simple graphical construction as will be demonstrated 
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later in this paper. Most importantly, the method for-
mulated in this work not only locates the ICa , but also 
obtains the acceleration of the coupler/follower joint or 
slider simultaneously.

The following section reviews the properties of the 
unique location of the instantaneous center of zero 
acceleration for planar mechanisms. It is followed in 
sect.  3 by the proposed graphical methodology that 
details the formulations of the genuine graphical tech-
nique adopted in this work. Following this formulation 
are two case studies to demonstrate the ease of use of 
the proposed graphical technique in acceleration analy-
sis of four bars; the first addresses a slider crank (RRRP) 
mechanism while the second addresses a quadrilateral 
linkage (RRRR). Section 6 illustrates the exploitation of 
the graphical technique proposed in this study for accel-
eration analysis of a four-bar mechanism with varying 
driver’s angular acceleration. All results obtained are 
discussed in sect. 7 and conclusions extracted from this 
work are furnished in the last section.

2  Instantaneous center of zero acceleration

In this section, the location of the instantaneous center 
of zero acceleration ( ICa ) is revisited where the angle 
between the acceleration vector of any point on a pla-
nar linkage and the line joining that point to the ICa is 
derived analytically. As shown in Fig. 1, let AB be a pla-
nar linkage undergoing complex motion (with angular 
velocity �AB and angular acceleration �AB ) and Z repre-
sents its ICa . In what follows, the angle ( �  ) between the 
acceleration vectors ���⃗aA  and ���⃗aB  with ����⃗AZ  and ����⃗BZ  respec-
tively will be derived.

For the coordinate system A − xyz with unit vectors 
x̂ , ŷ and ẑ:

The relative acceleration equation between points A and 
Z is given by:

But ���⃗aZ = 0,

Since A is the origin of our coordinate system, xA = yA = 0 , 
therefore solving the above equation for xZ and yZ gives:

Substituting Eqs. 4 and 5 in Eq. 1 gives:

3  Proposed graphical methodology

For a classical acceleration analysis problem of a 4-bar 
mechanism, all link dimensions in addition to the angular 
velocity and acceleration of the driver link are known and 
it is required to get the angular acceleration of the cou-
pler and follower links in addition to the acceleration of 
the coupler-follower joint. For a slider-crank mechanism, 
the angular acceleration of the coupler in addition to the 
linear acceleration of the slider are solved for. The classi-
cal approach in solving such problems is to perform posi-
tion analysis (i.e. get coupler and follower orientations) 
by either graphical or analytical methods. This is followed 
by velocity analysis (i.e. get coupler and follower angular 
velocities) which is also performed by either graphical or 
analytical methods. The graphical method is commonly 
divided into two techniques; the first depends on the 
velocity polygon while the second uses the ICv . Finally 
to perform acceleration analysis, graphical and analyti-
cal techniques are also used where the most common 
technique for the graphical method is the acceleration 

(1)
yZ

xZ
= tan(∠����⃗AZ) = tan(∠���⃗aA + 𝜓) =

aAy

aAx
+ tan(𝜓)

1 − tan(𝜓)
aAy

aAx

(2)���⃗aA = ���⃗aZ + ������⃗aA∕Z

(3)
⟹ aAx x̂ + aAy ŷ = 𝛼ABẑ ×

((
xA − xZ

)
x̂ +

(
yA − yZ

)
ŷ
)

− 𝜔2

AB

((
xA − xZ

)
x̂ +

(
yA − yZ

)
ŷ
)

(4)xZ =
�2

AB
aAx − �ABaAy

�2

AB
+ �4

AB

(5)yZ =
�2

AB
aAy + �ABaAx

�2

AB
+ �4

AB

(6)tan(�) =
�AB

�2

AB

Fig. 1  Location of the instantaneous center of zero acceleration for 
a planar linkage
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polygon. As discussed earlier in the introduction section, 
the graphical methods for performing acceleration analy-
sis that take advantage of the unique features of the ICa 
are relatively lengthy and incomprehensive in finding the 
acceleration of the coupler-follower joint or slider as they 
require additional analytical computations and/or graphi-
cal constructions. In what follows, a new graphical meth-
odology for simultaneously performing acceleration analy-
sis and locating the ICa of RRRR and RRRP mechanisms is 
furnished. Figure 2 displays a 4R mechanism where the 
ground, driver, coupler and follower links are numbered 
as 1, 2, 3 and 4 respectively. Accordingly, the orientations, 
angular velocities and angular accelerations of the ground, 
driver, coupler and follower are given by ( �1 , �2 , �3 , �4 ), ( �1 , 
�2 , �3 , �4 ) and ( �1 , �2 , �3 , �4 ) respectively. This terminol-
ogy will be adopted all throughout this work. If Z is the 
point locating the ICa of the coupler link AB, then the cou-
pler appears to be in pure rotation with respect to point 
Z (strictly from an acceleration point of view) and conse-
quently the normal component of the relative acceleration 
of point A with respect to Z is given as:

In the above equation, the location of point A is known 
and the values of aA and �3 are available (the latter is 
obtained through the velocity analysis phase). The two 
unknowns are the location of the coupler’s ICa(i.e. point Z) 
and � . It is obvious that as the angular velocity ( �2 ) and/
or angular acceleration ( �2 ) of the driver link change, the 
angular acceleration of the coupler link ( �3 ) changes 
accordingly and so does � since tan(�) =

�3

�2

3

 . Therefore, 

for the 4R mechanism in Fig.  2, varying the angular 

(7)an
A∕Z

=(aA) cos(�) = (ZA)�2

3

(8)⟹ ZA =(
aA

�2

3

) cos(�)

acceleration of the coupler link will change the location of 
the coupler’s instantaneous center of zero acceleration 
( ICa ) in a pattern to be yet determined from Eq. 8.

Assume �1 = 0 , then the coupler’s ICa given by Z1 is a 
point along ���⃗aA and at a distance aA

�2

3

 from A. If we vary the 

angular acceleration of the coupler link, the new position 
of the coupler’s ICa (i.e. point Z2 ) will be at a distance 
Z2A = (Z1A) cos(�2) from A and at angle �2 from AZ1  . In 
general, for any value of the yet unknown angular accel-
eration of the coupler link ( �3 ), the location of its instanta-
neous center of zero acceleration (i.e. point Zi ) is located 
by:

where Zi is the locus of the coupler’s ICa representing all 
possible locations of point Z for different coupler’s angular 
accelerations.

From Eq. 9, it can be concluded that ∠Z1ZiA =
�

2
 (Fig. 2) 

and therefore:
For varying coupler’s angular acceleration, the instantane-

ous center of zero acceleration of the coupler link of a four bar 
mechanism traces a circle of center O′ located along the direc-
tion of ���⃗aA and radius O�A =

aA

2�2

3

.

It is important to mention at this point that the afore-
mentioned circle does not define the inflection circle of 
the coupler curve and will be referred to as locus circle in 
this study. In fact, as will be demonstrated later, the ICa is 
the intersection point between the circle in Fig. 2 and the 
coupler’s instantaneous inflection circle. Next step is to 
locate the exact point on circle of Fig. 2 that corresponds 
to the coupler’s instantaneous center of zero acceleration 
for a specific angular acceleration ( �3 ). This specific value 
of the coupler’s angular acceleration is the kinematic 

(9)ZiA = (Z1A)cos(�i) = (
aA

�2

3

)cos(�i)

Fig. 2  Circle traced by the coupler’s IC
a
 for varying coupler’s angu-

lar acceleration

Fig. 3  Unique location of the coupler’s IC
a
 on the traced circle of 

Fig. 2
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analysis solution corresponding to the pre-specified angu-
lar acceleration ( �2 ) of the driver link. As shown in Fig. 3, 
let’s assume Z to be the ICa of the coupler. By referring back 
to Fig. 1 and Eq. 9, similar analogy can be conducted on 
point B of the coupler where (aB)cos(�) = (ZB)�2

3
 and 

therefore the instantaneous center of zero acceleration of 
the coupler link traces a circle of center O′′ located along 
the direction of ���⃗aB and radius O��B =

aB

2�2

3

 . Accordingly, ������⃗BO′′ 

defines the acceleration vector of point B (i.e. ���⃗aB ) where its 
projection on the follower BBn =

an
B

2�2

3

=
�2

4
(O4B)

2�2

3

 . This is very 

important since an
B
 , the normal component of ���⃗aB , is readily 

available following the velocity analysis phase. Figure 3 
shows that △ZO′′B  is  similar to △ZO′A since 
∠O�AZ = ∠O�ZA = ∠O��BZ = ∠O��ZB = �  .  Th e re fo re , 
△ZO′O′′ is similar to △ZAB since ZO�

ZO��
=

ZA

ZB
 and 

∠O�ZO�� = ∠AZB . From here, it can be concluded that the 
angle between O′O′′ and the coupler link AB is nothing 
but � , the angle between O′Z  and ZA (i.e. ∠O�ZA ) and the 
angle between O′′Z  and BZ  (i.e. ∠O��ZB ). From the same 
pair of similar triangles, it can concluded that 
O�O��

AB
=

ZO��

ZB
=

O��B

ZB
 ⟹ O�O�� =

(O��B)(AB)

ZB
 but (O��B) cos� =

ZB

2
 

therefore,

The last equation is the key for the proposed graphical 
method as it states:

The projection of O′O′′  on the coupler AB with which it 
makes an angle � is AB

2
.

All of the above will be summarized in the following 
steps needed to perform acceleration analysis of four-bar 
mechanisms and will be illustrated in Fig. 4: 

(1) Plot a circle of center O′ along ���⃗aA where O�A =
aA

2�2

3

(2) Copy coupler AB from point A and paste it at point O′ 
while keeping its orientation fixed (i.e. O′B′)

(3) Draw the perpendicular bisector of the relocated cou-
pler link ( O′B′  ) and intersect it with the normal 
dropped from point Bn located at distance 

�2

4
(O4B)

2�2

3

 from 

B. The intersection of the two normals is point O′′ . For 
a slider-crank mechanism, the perpendicular bisector 
of the relocated coupler link is intersected with the 
line along the sliding direction (i.e. along ���⃗aB  ) to give 
point O′′

(4) The angle obtained between O′B′ and O′O′′ is � and 
therefore the intersection of the circle of center O′′ 
and radius O′′B with the circle of center O′ and radius 
O′A locates the ICa (i.e. point Z) of the coupler link.

(10)(O�O��) cos� =
AB

2

The above listed four steps will give all the information 
needed for the acceleration analysis of the 4R mechanism 
in Fig. 4. For instance, the acceleration of joint B ���⃗aB =

����⃗BO��

2𝜔2

3

 , 

its tangential acceleration ���⃗at
B
=

�����⃗BnO
��

2𝜔2

3

 , angular acceleration 

of coupler link �3 = tan(�)�2

3
 , and angular acceleration of 

follower link �4 =
at
B

O4B
 . In addition, the coupler’s instantane-

ous center of zero acceleration (i.e. point Z) can be located 
by simply rotating ������⃗BO′′ through angle � and intersecting 
it with the circle of step 1. Moreover, the inflection circle 
can be easily constructed since two of its points are already 
available (the instantaneous centers of zero velocity (call 
it point P) and acceleration (i.e. Z) for the coupler link). For 
the slider-crank mechanism, the coupler/slider joint con-
stitutes the third point of the inflection circle as it under-
goes a straight line motion. For the 4R mechanism, the 
third point can be located by one of two methods, graphi-
cal or analytical. The first graphical method uses Juokowski 
theorem [32] which states that the angle between the rela-
tive acceleration vector of any two points and the line join-
ing these two points is equal to the angle between the 
acceleration vector of any point and the line joining that 
point to the ICa . Accordingly, the acceleration vector of the 
coupler’s ICv (i.e. point P) makes an angle � with line PZ  
and the intersection of this line with the velocity vector 
dropped from point Z (i.e. line normal to PZ  ) locates the 
third point on the inflection circle (Q) diametrically oppo-
site to P. It is worthnoting that point Q belongs to the cen-
trode normal and is referred to in literature as the inflec-
tion pole. The second method is analytical and based on 
the quadratic form of the Euler-Savary equation given by:

Fig. 4  Proposed graphical method to locate the IC
a
 of the coupler’s 

link of a planar mechanism
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where � is the radius of curvature of any point R on the 
inflection circle and IR is the intersection of line RP with the 
inflection circle. This can be used at any of the two joints 
of the 4R mechanism’s coupler link since these two points 
undergo a circular trajectory with known centers and radii 
of trajectory. Therefore, Eq. 11 can be applied to the joint 
connecting the driver and coupler links to get the third 
point on the inflection circle i.e. IR . This work concentrates 
on graphical methods to locate instantaneous centers and 
construct inflection circles. Accordingly, the former graphi-
cal method presented earlier will be implemented.

4  Case study I: slider crank mechanism

Consider the slider crank mechanism shown in Fig. 5 where 
the driver length is 1m at an angle of 30◦ with the horizontal 
ground and the coupler length is 1.5m. The instantaneous 
angular velocity and angular acceleration of the driver link 
are 5rad/sec and 20rad∕sec2 respectively. All positive values 
of angular velocities and accelerations in this work are con-
sidered in the counter clockwise direction. In what follows, 
acceleration analysis will be performed analytically starting 
with the classical relative velocity equation between the two 
coupler joints (i.e. points B and C):

The vector equation above constitutes 2 algebraic equa-
tions that can be solved to get the desired coupler’s angu-
lar velocity (i.e. �3):

(11)� =
RP

RIR

(12)

���⃗VC = ���⃗VB + ������⃗VC∕B

⟹ VC⃗ i = 𝜔2(AB) sin(𝜃2 )⃗i − 𝜔2(AB) cos(𝜃2)⃗j

+ 𝜔3(BC) sin(𝜃3 )⃗i + 𝜔3(BC) cos(𝜃3)⃗j

(13)�3 =
�2(AB) cos(�2)

(BC) cos(�3)
= 3.062rad∕sec

Similarly, relative acceleration is performed between the 
two coupler joints:

The vector equation above constitutes 2 algebraic equa-
tions that can be solved for the unknown angular accel-
eration of the coupler and the acceleration of the slider: 
�3 = 17.772rad∕sec2 and aC = −16.023m∕sec2.

Next, acceleration analysis of the slider crank will be 
performed through the proposed graphical method by 
following steps 1 through 4 listed in the previous section 
as seen in Fig. 6 :

( 1 )  O�B =
aB

2�2

3

=

√(
�2

2

(
AB

))2

+
(
�2

(
AB

))2

2�2

3

= 1.708m .  ���⃗aB 

makes an angle of 38.66◦ (i.e. tan−1( �2
�2

2

) ) with ���⃗AB ⟹ O′ 

lies at a distance of 1.708m from B along the direction of 
���⃗aB .

(2) Copy coupler BC  from point B and paste at O′ . Call it 
O′C′ and sketch its perpendicular bisector.

(3) Intersect the perpendicular bisector from step 2 with 
the slider direction (i.e. AC  ) to locate O′′.

4) Angle between O′C′ and O′O′′ gives � = 62.19◦.
Now all acceleration analysis data are available. For 

example, we can get the angular acceleration of the 

(14)

���⃗aC = ���⃗aB + ������⃗aC∕B

⟹ aC⃗ i = −𝜔2

2
(AB) cos(𝜃2 )⃗i − 𝜔2

2
(AB) sin(𝜃2)⃗j

+ 𝛼2(AB) sin(𝜃2)⃗i − 𝛼2(AB) cos(𝜃2)⃗j−

𝜔2

3
(BC) cos(𝜃3 )⃗i + 𝜔2

3
(BC) sin(𝜃3 )⃗j

+ 𝛼3(BC) sin(𝜃3)⃗i + 𝛼3(BC) cos(𝜃3 )⃗j

Fig. 5  Slider crank mechanism
Fig. 6  Graphical constructions to determine � for the slider crank 
mechanism
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coupler link (BC) as: �3 = tan(�)�2

3
= 17.774rad∕sec2 . 

The magnitude of  the  accelerat ion of  the 
slider can be simply measured from Fig.  6 as 
aC = (2�2

3
)CO�� = 2(3.0622)(0.855) = 16.022m∕sec2 

directed to the left as indicated by ������⃗CO′′.
The obtained results from the analytical and proposed 

graphical methods perfectly agree. The instantaneous 
center of zero acceleration of the coupler link (i.e point 
Z) is readily available by rotating the acceleration vector 
of the driver/coupler joint (i.e. point B) given along �����⃗BO′ or 
the acceleration vector of the slider given along ������⃗CO′′ by 
an angle � = 62.19◦ . The same result can be achieved by 
intersecting the circle of center O′′ and radius O′′C  with 
the circle of center O′ and radius O′B . All aforementioned 
constructions are shown in Fig. 7.

Moreover, the inflection circle can now be easily con-
structed (see Fig. 8) as it passes through the instantaneous 
center of zero velocity of the coupler link (i.e. point P), the 
instantaneous center of zero acceleration of the coupler 
link (i.e. point Z) and the coupler/follower joint (i.e. point 
C).

5  Case study II: four bar mechanism

In what follows, the four-bar mechanism in Fig.  9 is 
considered for acceleration analysis. All link dimen-
sions in addition to the driver’s orientation ( �2 ), angular 
velocity ( �2 ), and angular acceleration ( �2 ) are given: 
O2A = 30mm ,  AB = 100mm ,  O4B = 90mm ,  �2 = 20◦ , 

�2 = 10rad∕sec , and �2 = 25rad∕sec2 . The orientation 
of the coupler ( �3 ) and follower ( �4 ) links can be easily 
measured to give 50◦ and 75◦ respectively. The classical 
analytical method will be first used to find the angular 
accelerations of the coupler ( �3 ) and follower ( �4 ) links 
in addition to the acceleration of the coupler/follower 
joint (i.e. point B).

Starting with the relative velocity equation:

Fig. 7  Graphical constructions to determine the location of the IC
a
 

for the slider crank mechanism

Fig. 8  Inflection circle of the slider crank mechanism

Fig. 9  Four bar mechanism
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The vector equation above constitutes 2 algebraic equa-
tions that can be solved to get the desired coupler’s and 
follower’s angular velocities as �3 = −3.648rad∕sec and 
�4 = 2.035rad∕sec.

Similarly, relative acceleration is performed between 
the two coupler joints:

The vector equation above constitutes 2 algebraic equa-
tions that can be solved for the angular accelerations 
of the coupler’s and follower’s angular accelerations: 
�3 = −1.157rad∕sec2 and �4 = −45.31rad∕sec2.

The acceleration of point B can be calculated:  
���⃗a
B
= 4.035 × 103⃗i + 6.956 × 102 j⃗(a

B
= 4.095m∕sec2,∠���⃗a

B
= 9.781◦).

Next, acceleration analysis of the four bar will be per-
formed through the proposed graphical method as seen 
in Fig. 10:

(1) O�A =
aA

2�2

3

=

√(
�2

2

(
O2A

))2

+
(
�2

(
O2A

))2

2�2

3

= 116.159mm . 

���⃗aA  makes an angle of 14.036◦ (i.e. tan−1( �2
�2

2

) ) with 
������⃗O2A ⟹ O′ lies at a distance of 116.159 mm from A along 
the direction of ���⃗aA.

(2) Copy coupler AB from point A and paste at O′ . Call it 
O′B′ and sketch its perpendicular bisector.

(3) Intersect the perpendicular bisector from step 2 with 
the normal dropped from point Bn at distance 
�2

4
(O4B)

2�2

3

= 13.995mm from B. The intersection of the two 

normals is point O′′.
(4) Angle between O′B′ and O′O′′ gives � = 4.967◦.
Now all acceleration analysis data are available. For exam-

ple, we can get the angular acceleration of the coupler link 
( AB ) as: �3 = tan(�)�2

3
= 1.157rad∕sec2 . The magnitude of 

the acceleration of the coupler can be simply measured from 
Fig. 9 as aB = 2�2

3
BO�� = (2)(3.64)2(153.82) = 4.095m∕sec2 

(15)

���⃗VB = ���⃗VA + ������⃗VB∕A

⟹ 𝜔4(O4B) sin(𝜃4 )⃗i + 𝜔4(O4B) cos(𝜃4 )⃗j =

− 𝜔2(O2A) sin(𝜃2)⃗i + 𝜔2(O2A) cos(𝜃2)⃗j

− 𝜔3(AB) sin(𝜃3)⃗i + 𝜔3(AB) cos(𝜃3 )⃗j

(16)

���⃗aB = ���⃗aA + ������⃗aB∕A

⟹ ���⃗an
B
+ ���⃗at

B
− ���⃗an

A
− ���⃗at

A
− ������⃗an

B∕A
− ������⃗at

B∕A
= 0

⟹ 𝜔2

4
(O4B) cos(𝜃4 )⃗i − 𝜔2

4
(O4B) sin(𝜃4 )⃗j

+ 𝛼4(O4B) sin(𝜃4 )⃗i + 𝛼4(O4B) cos(𝜃4 )⃗j

+ 𝜔2

2
(O2A) cos(𝜃2)⃗i + 𝜔2

2
(O2A) sin(𝜃2 )⃗j

+ 𝛼2(O2A) sin(𝜃2 )⃗i − 𝛼2(O2A) cos(𝜃2 )⃗j

+ 𝜔2

3
(AB) cos(𝜃3)⃗i + 𝜔2

3
(AB) sin(𝜃3 )⃗j

+ 𝛼3(AB) sin(𝜃3)⃗i − 𝛼3(AB) cos(𝜃3 )⃗j = 0

and the angular acceleration of the follower link ( O4B ) as: 
�4 =

at
B

O4B
=

2�2

3
(BnO��)

O4B
=

2(3.64)2(153.182)

90
= 45.31rad∕sec2.

The obtained results from the analytical and proposed 
graphical methods perfectly agree. The instantaneous 
center of zero acceleration of the coupler link (i.e point 
Z) is readily available by rotating the acceleration vector 
of the driver/coupler joint (i.e. point A) given along �����⃗AO′ or 
the acceleration vector of the coupler/follower joint (i.e. 
point B) given along ������⃗BO′′ by an angle � = 4.967◦ . Alterna-
tively, point Z can be located as the intersection of the 
circle of center O′ and radius O′A with that of center O′′ and 
radius O′′B . All aforementioned constructions are shown 
in Fig. 11.

Moreover, the inflection circle can now be easily con-
structed (see Fig. 12) as it passes through the points P, Z 
and Q where the latter is obtained as the intersection of 
the acceleration vector at point P (at an angle � from PZ) 
with the velocity vector at point Z.

6  Varying the driver’s angular acceleration

The graphical method presented above can be easily 
extended into a simple and straightforward technique 
for performing acceleration analysis of four bars (RRRR or 
RRRP) at different driving angular accelerations. The key to 
this proposed technique is in locating the intersection of 
circle C traced by the coupler’s ICa and the instantaneous 
coupler’s inflection circle as shown in Fig. 12.

Obviously, from Eq. 6, the location of Zi is dependent 
on the value of �2 and consequently on the value of �i . In 
other words, for each value of the driver’s angular accel-
eration ( �2 ), a unique circle ( Ci ) as shown in Fig. 2 can be 

Fig. 10  Graphical constructions to determine � for the 4R mecha-
nism
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constructed and the intersection of that circle with the 
inflection circle locates point Zi and consequently gives 
the values of �i and �3 as explained earlier. In general, 
these circles intersect at two points, one of them is point 
Zi which depends on the value of �2 (and consequently �i ) 
while the other is a special fixed point (R) located along 
the direction of the driver’s link (Fig. 12). In what follows, 
an analytical prove is given to locate the second point of 
intersection (R) between circle Ci and the inflection circle.

For point R to be the instantaneous center of zero accel-
eration of the coupler link (i.e. to coincide with point Z), 

the angle of the acceleration vector of point A with respect 
to the driver ( O2A ) should be of the same magnitude but 
opposite direction to �i . This special circle, unlike all other 
circles ( Ci ), will intersect the inflection circle at only one 
point since R and Z coincide and hence circle Ci will be 
internally tangent to the inflection circle. The value of the 
driver’s angular acceleration ( �2 ) corresponding to this 
special circle Ci can be found as follows. The value of �i at 
which R is coincident with Z is given by

But from Eq. 9,

Therefore, Eqs. 17 and 18 give,

The above equation proves that all circles Ci pass through 
point R which is independent of �i . It is very important to 
clarify that the aforementioned point R is the instantane-
ous center of zero acceleration when and only when �2 
attains the value indicated in Eq. 17. For all other values of 
�2 , point R will represent the other point of intersection of 
circle Ci with the inflection circle besides the instantaneous 
center of zero acceleration ( Zi).

Case study: RRRR mechanism

The four-bar mechanism in Fig. 9 is revisited herein for 
acceleration analysis under varying driver’s angular accel-
eration where �2 is varied and takes the values 0, 10, 25 and 
35 rad∕sec2 respectively.

Table 1 lists the angular accelerations of the coupler and 
follower links for different values of the driver’s angular 
acceleration as obtained by the loop closure analytical 
equations in 16.

The same analysis is now conducted with the graphical 
method proposed in this work. The first step is to locate 
point Z (or R) along O2A as per Eq. 19 (Fig. 13). Since �2 is 
fixed, as �2 is varied, point O′ will trace line n normal to RA 

(17)tan(�i) =
�2

�2

2

=
�3

�2

3

⟹ �2 =
�3�

2

2

�2

3

(18)ZiA = (
aA

�2

3

)cos(�i) =

√
(O2A�2)

2 + (�2

2
O2A)

2

�2

3

cos(�i)

(19)

ZiA = O2A

�
�2

�3

�2
⎛
⎜⎜⎜⎝

�����
�

�3

�2

3

�2

+ 1

⎞
⎟⎟⎟⎠
cos(�i)

= O2A

�
�2

�3

�2�√
tan2(�) + 1

�
cos(�i)

= O2A

�
�2

�3

�2

Fig. 11  Graphical constructions to determine the location of the IC
a
 

for the 4R mechanism

Fig. 12  Inflection circle of the 4R mechanism
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at point O′
1
 . Therefore, for any given value of �2 , the follow-

ing simple steps are followed to find the corresponding 
values of �3 and �4:

(1) The circle Ci of center O′
i
 located at a distance �2O2A

2�2

3

 

from O′
1
 (along n) and radius O′

i
A is constructed where 

it intersects the inflection circle at points R and Zi (i.e. 
ICa of the coupler link)

(2)  Having located point Zi , the angle �i defined by 
∠O�

i
ZiA is measured and the value of �3 can be easily 

calculated through Eq. 17
(3) Locate point O′′

i
 where ∠O��

i
ZiA equals �i and calculate 

�4 =
2�2

3

(
BnO

��

)

O4B

The above steps 1 through 3 will be repeated to get �3 
and �4 for any given value of �2 as shown in Fig.’s 13 and 14. 
The values obtained from the proposed graphical method 
are in complete agreement with the values obtained ana-
lytically as listed in Table 1.

7  Discussion of results

As demonstrated in the three case studies of Sects. 4, 
5 and 6, the graphical technique proposed in this work 
presents a genuine approach for acceleration analysis 
of four bar mechanisms. One advantage for this new 
technique is its ability to simultaneously locate the ICa 
of the coupler link and solve, without further formula-
tions, for the acceleration at any point on the mecha-
nism. This is a prominent advantage over other tech-
niques previously discussed in literature [10, 17, 35, 41, 
44] that require lengthy and additional steps to analyze 
the kinematics of planar mechanisms after locating the 
ICa . As another advantage, the technique proposed in 
this study generates the inflection circle of the coupler 
link in a straightforward manner without the need to 
formulate Euler-Savary equations as presented in litera-
ture [1, 11, 19, 34]. The inflection circle is exploited in a 
genuine approach to easily perform acceleration analy-
sis of four bar linkages with varying driver’s acceleration 
as shown in Sect. 6. Acceleration analysis for the slider-
crank and four-bar mechanisms are benchmarked with 

Table 1  Coupler’s and 
Follower’s angular 
accelerations for varying 
Driver’s angular acceleration 
obtained by analytical and 
proposed graphical methods

α2 ( rad∕sec2) Analytical solution Proposed graphical solution

α3 ( rad∕sec
2) α4 ( rad∕sec2) � (deg.) α3 ( rad∕sec

2) α4 ( rad∕sec2)

0 7.964 −50.397 30.892 7.964 −50.396
10 4.316 −48.362 17.963 4.316 −48.362
25 −1.157 −45.31 −4.969 -1.157 −45.308
35 −4.805 −43.276 −19.851 -4.805 −43.276

Fig. 13  Locating the coupler’s IC
a
 and evaluating its angular accel-

eration �
3
 for varying Driver’s angular acceleration �

2

Fig. 14  Locating O′′ and evaluating the Follower’s angular accelera-
tion �

4
 for Varying Driver’s angular acceleration �

2
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those generated from classical kinematic equations [27] 
and the results matched with high accuracy (details in 
Sects. 4, 5 and 6).

8  Conclusion

This paper presents a new graphical based method for 
performing acceleration analysis of planar linkages. The 
proposed approach requires very few graphical con-
structions that are sufficient to determine the unknown 
angular accelerations of all links and the acceleration at 
any point on the mechanism. In the proposed method 
and unlike previous work in literature, performing accel-
eration analysis, locating the instantaneous center of zero 
acceleration and constructing the inflection circle of the 
coupler link are all accomplished simultaneously. The ease 
of construction and potential of the proposed method in 
obtaining various kinematic properties of planar linkages 
is believed to be of high added value to the literature 
of kinematics. As the current study is limited to four bar 
planar mechanisms with one degree-of-freedom, future 
development of this work is to extend its applicability to 
more complex planar and spatial mechanisms with single- 
or multi-degree-of-freedom.
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