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Abstract
This paper investigates the state consistence of parametric data-driven reduced order models (ROMs) in a state-space 
form obtained by various system identification methods, including autoregressive exogenous (ARX) and subspace 
identification (N4SID), for aeroelastic analysis in varying flight conditions. The target flight envelop is first partitioned 
into discrete grid points, on each of which an aerodynamic ROM is constructed using system identification to capture 
the dependence of the generalized aerodynamic force on the generalized displacement of structural modes. High-fidelity 
aeroelastic modal perturbation simulations are used to generate the ROM training and verification data. Aerodynamic 
ROMs not on the grid point are obtained by interpolating those at neighboring grid points. Through a thorough analysis 
of the model coefficients and pole migration, it is found that only the ARX-based aerodynamic ROM preserves the state 
consistence, and hence, allowing direct interpolation of system matrices at the non-grid point and rapid aerodynamic 
ROM database development in the entire flight parameter space. In contrast, N4SID-based ROM destroys the state 
consistence and yields physically meaningless results when ROMs are interpolated. The origin of the difference in the 
state consistence caused by both methods is also discussed. The interpolated ARX aerodynamic ROMs coupled with the 
structural ROM for parametric aeroelastic analysis exhibit excellent agreement with the high fidelity full order model 
(mostly <5% relative error) and salient computational efficiency.
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Abbreviations
A-ROM  Aerodynamic Reduced Order Model
AE-ROM  Aeroelastic Reduced Order Model
AoA  Angle of Attack
ARX  AutoRegressive eXogenous
CFD  Computational Fluid Dynamics
DMD  Dynamic Mode Decomposition
FOM  Full Order Model
GAF  Generalized Aerodynamic Force
GD  Generalized Displacement of Structural 

Modes
IODD  Dynamic Mode Decomposition with Inputs 

and Outputs
NN  Neural Network

N4SID  Numerical Algorithm for Subspace State 
Space System Identification

ODE  Ordinary Differential Equation
POD  Proper Orthogonal Decomposition
ROM  Reduced Order Model
S-ROM  Structural Reduced Order Model
SVD  Singular Value Decomposition

Symbols
A, B, C, D  State, input, output, and feedthrough 

matrices of a state-space model, 
respectively

E  Matrix describing the damping of the 
structure
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e  Error between the model prediction out-
put and the actual output

F  Nodal force vector acting on the structure
I  Identity matrix
K  Matrix describing the stiffness of the 

structure
K  kth time instance
M  Matrix describing the mass of the structure
N  Linear based functional relationship 

between inputs and outputs
Nt  The number of time steps in the simulation
na , nb  The number of the previous inputs 

included in the model; the total number of 
the present and previous inputs

P  Parameter space consisting of a set of 
Mach numbers and the angle of attack

q  Dynamic pressure
u  Input vector
x  State vector
�f   Generalized aerodynamic force
�̈�sc , �̇�sc ,𝐘sc  Generalized acceleration, velocity, and 

displacement, respectively
y  Output vector
�̈�, �̇�, 𝐳  Acceleration, velocity, and displacement of 

the structure, respectively
� , �  Model parameter matrices obtained by the 

least-squares method
�  Set of vectors consisting of model param-

eter matrices
�  Low-dimensional mode shape subspace
�  Set of vectors consisting of the generalized 

aerodynamic forces and displacements
�  Diagonal matrix of the natural frequency 

of the structure to the power of 2
�  Diagonal matrix of the natural frequency 

of the structure

Superscripts
p  pth grid point in the parameter space
0  Quantities at equilibrium state

Subscripts
s  Structure

1 Introduction

The modern design of aerospace vehicles utilizes state-
of-the-art lightweight and flexible materials that push the 
limits to enhance maneuverability, endurance, and perfor-
mance, and hence, is more prone to complex dynamics, 
stability, and durability issues. The ability of data-driven 
reduced order models (ROMs) to accurately predict aeroe-
lasticity and flutter conditions is of foremost importance 

for developing safe and high-performance vehicles and 
has been well demonstrated in the limit cycle oscillations, 
flutter, and gust load alleviation analysis. Data-driven 
ROM is a non-intrusive method that extracts predictive 
models from response or training maneuver data and can 
be classified into several categories [1], including indicial 
response functions, Volterra series, state space models, 
and surrogate models.

Indicial response functions are constructed using the 
output response of a system due to a unit step change 
of inputs. Then the system responses to arbitrary inputs 
can be obtained through the convolution of the indicial 
response function. Ghoreyshi, Jirask, and Cummings [2] 
proposed a grid-movement method that uses compu-
tational fluid dynamics (CFD) simulation to generate the 
response data of a step function, and more importantly, 
allows to uncouple the input parameters, e.g., the angle 
of attack (AoA) and pitch rate. It then was used to predict 
the aerodynamic load through convolution step func-
tions with the derivative of the input. Van Rooij et al. [3] 
employed the indicial response function and grid motion 
techniques to obtain the nonlinear ROM for unmanned 
combat air vehicles.

Volterra series is a ROM technique used to model a non-
linear and time-invariant system by a series of polynomial 
linear and nonlinear terms based on multidimensional 
convolution integrals [4, 5]. Raveh, Yuval Levy, and Karpel 
[6] developed a ROM methodology based on the nonlinear 
Volterra series to predict the nonlinear generalized aero-
dynamic force (GAF) in the transonic flow regime for flut-
ter analysis, in which a time-domain CFD simulation was 
performed subjected to a modal step excitation of each 
structural mode to collect the response data for Volterra 
kernel extraction. Silva [4] proposed to use the analyti-
cal form of Volterra series and CFD simulation to develop 
computationally efficient aeroelastic ROM (AE-ROM). Bala-
jewicz and Dowell [5] presented an approach to construct 
a sparse representation of the Volterra series to reduce the 
identification cost of high-order Volterra kernels for mod-
eling flutter and limit-cycle oscillations.

A state space model is a mathematic representation of 
a dynamic system using a set of input, output, and state 
variables and has found widespread use in modern con-
trol engineering and aeroservoelastic analysis. The state 
space model is obtained through system identification 
of response data generated by input excitation, and the 
most widely used system identification techniques include 
Eigensystem Realization Algorithm [7, 8], Observer/
Kalman Filter Identification [9], Numerical Algorithm for 
Subspace State Space System Identification (N4SID) [10, 
11], among others. Kim [12] modified the classical eigen-
system realization algorithm and presented an efficient 
system identification method in discrete time-domain 
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using multiple inputs of statistically independent random 
samples, which significantly accelerates the ROM construc-
tion process. Silva [13] proposed a method for simultane-
ous excitation of multiple structural modes in CFD simu-
lation to expedite data generation for ROM generation. 
Four types of input signals, including lagged step, block 
pulse, Haar, and Walsh functions, were evaluated, and the 
results showed excellent agreement with the one-mode-
at-a-time approach. Winter, Heckmeier, and Breitsamter 
[14] used the linear system identification to construct a 
time-domain ROM and considered the parameter-varying 
structural model that approximates the mode shapes at 
different parameters through radial basis function and 
two-dimensional Chebyshev polynomials. Chen et al. [15] 
developed an autoregressive model with exogenous input 
(ARX) and took into account CFD-induced uncertainties in 
aerodynamic ROM (A-ROM) development. Mannarino and 
Dowell [16] proposed an approach to identify a nonlinear 
state space ROM for unsteady aerodynamic responses in 
aeroelasticity. The ROM is obtained through a two-step 
procedure, viz., subspace projection to identify the linear 
part and output error minimization to fit the coefficients 
of the nonlinear terms that are a function of aerodynamic 
states. The procedure was then modified by Quan et al. [17] 
who only added the nonlinear term of the aerodynamic 
states in the output equation, and by Huang et al. [18] and 
Yang et al. [19] where the nonlinear terms of aerodynamics 
states and inputs were added into both the state equa-
tion and the output equation to achieve lower state space 
orders. Huang, Hu, and Zhao [20] developed a nonlinear 
A-ROM consisting of a finite sum of Wiener-type cascade 
models, and each component model includes a linear 
dynamic state-space element followed by a single-layer 
neural network (NN) model. The approach computes the 
model coefficients through optimization to minimize the 
prediction residual from the previous component model.

Surrogate modeling for A-ROM constructs a black-box 
function that establishes a direct mapping between the 
vehicle motion and aerodynamic responses. Grauer and 
Morelli [21] proposed a multivariate orthogonal function 
approach to build a functional relationship between the 
flight rigid motion and aerodynamic responses, which tai-
lors the regressor terms based on Gram-Schmidt orthogo-
nalization and captures the nonlinearities in aerodynamics 
while keeping the regressors sparse, and hence, effectively 
mitigating the overfitting issues [22]. In contrast, most aer-
odynamic surrogate models are based on the formulation 
of Nonlinear AutoRegressive Moving Average with eXoge-
nous input (NARMAX) or implicit function theorem, which 
evaluates the output vector at a time instant as a function 
of its historical values of inputs and outputs [1], and is also 
termed surrogate-based recurrent model. Glaz, Liu and 
Friedmann [23] developed a Kriging-based recurrent ROM 

that accounts for flow unsteadiness, time-history effects, 
and nonlinearities at a constant or varying Mach number 
to predict unsteady lift, moment, and drag coefficients of 
a rotating airfoil. The Kriging-based surrogate model was 
utilized by Li, Jin, and Zhou [24] to obtain unsteady and 
nonlinear A-ROM for active flow-based synthetic jet con-
trol. Liu et al. [25] also developed a Kriging-based ROM to 
predict aeroelastic responses (pitch angle and plunge dis-
placement) of a NACA 64A010 airfoil in transonic flow with 
varying Mach numbers. Zhang et al. [26] developed radial 
basis function-based neural network ROM to predict aero-
dynamic responses subjected to nonlinear flow caused by 
large-scale shock motion, and the ROM is then used to 
investigate limited cycle oscillation behavior in the tran-
sonic flow regime. The approach was later improved by the 
width determination technique [27] and the center selec-
tion via the proper orthogonal decomposition (POD) tech-
nique [28], and their combinations [29]. Ghoreyshi, Jirasek, 
and Cummings [30] developed a radial basis function NN 
and extended the approach to multifidelity recurrent sur-
rogate modeling to incorporate secondary data (Euler sim-
ulation) that is cheaper to obtain relative to the primary 
data (Reynolds-averaged Navier–Stokes simulation). The 
nonlinear functional dependence is enhanced by adding 
the predicted aerodynamic responses into the input. The 
similar idea was also applied to generate flight dynamics 
aerodynamic tables using CFD simulations [31]. It should 
be noted that some surrogate models can be transform-
able to the state space model through its companion form. 
For example, Cowan, Arena, and Gupta [32] developed a 
discrete-time aerodynamic model based on the autore-
gressive moving average model and proposed a 3-2-1-1 
input profile, which allowed simultaneous excitation of the 
multiple structural modes to reduce CFD simulation cost. 
The explicit aerodynamic model and the structural model 
were then coupled and recast into the state space form.

Another active research area of A- and AE-ROM is to 
extend it from a single flight condition (e.g., Mach num-
ber, AoA) to a range of varying parameters, i.e., parametric 
model. It should be noted that there are two kinds of defi-
nitions currently in the ROM community for “parametric”: 
one from the statistical modeling perspective refers to the 
model that directly establishes the functional representa-
tion of the system inputs and outputs without the need 
for an explicit functional form [1, 33]; and the other defines 
the varying operational conditions of the model [34, 35]. 
In this paper, the latter definition is adopted.

In general, there are two approaches to consider the 
parametric effects in the data driven model. In the first 
one, the flight condition is treated as an additional input 
and included in the surrogate model along with the 
delayed aerodynamic force vectors and motion vectors. 
For example, Kou and Zhang [36] embedded the flight 
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parameters into their recursive NN to consider the effect of 
varying Mach numbers and structural parameters on time- 
and frequency-domain analysis and limit cycle oscillation 
analysis in a range of transonic flows. Glaz et al. [23, 37] 
included freestream Mach number and its change rate into 
their Kriging model and trained it using high-fidelity simu-
lation data of multiharmonic inputs at several flight condi-
tions to predict the aerodynamic load of rotor blades. Liu 
et al. [25] reported efficient parametric ROMs that included 
free-stream Mach numbers and mean AoA in their Kriging-
based recurrent surrogate model for unsteady aerody-
namic load prediction to analyze the aeroelastic problem 
of a NACA 64A010, and hence, eliminating the need to 
reconstruct ROMs when flight parameters are changed. 
Skujins et al. [38] presented a single ROM applicable to 
multiple Mach regimes by combining linear convolution 
with a nonlinear correction factors. Winter and Breitsamter 
[39] extended the recurrent surrogate modeling to aircraft 
with flexible structures and presented an A-ROM based on 
the recurrent local linear neurofuzzy method to predict 
the GAF, and the Mach number is incorporated into the 
NARMAX model as an additional input to account for the 
flow condition. The ROM was tested and verified in a broad 
flight regime from subsonic to supersonic. Chen et al. [40] 
presented a support vector machine-based A-ROM to 
investigate limit cycle oscillation in the 2-DOF aeroelastic 
system for the NACA 64A10 airfoil in the transonic regime.

In contrast, another method to parameterize ROM is 
the gridded domain [41, 42], in which the targeted flight 
regime is partitioned by grid points. At these grid points, 
a parametric database of local state-space ROMs is con-
structed, and each local ROM only captures the aerody-
namic or aeroelastic behavior at that flight condition. 
Specifically, the state-space ROM at the non-grid location 
where the ROM is not available initially can be obtained 
by interpolating the system matrices of those at the grid 
points [43]. The advantages of this method are: firstly, it 
only entails one-time interpolation at the non-grid loca-
tion whenever the new ROM is needed for use, which 
allows fast and accurate ROM construction at a new, non-
grid flight condition and eliminates the need for system 
identification for online applications. Second, the flight 
controller can be synthesized offline at the grid points, 
and the control law at non-grid points can be generated 
through interpolation. Lastly, the database can be eas-
ily expanded or locally refined without modifying ROMs 
at existing grid points, which is desirable for developing 
control law and aeroservoelastic analysis across a broad 
flight regime. Therefore, this parameterization approach 
is mostly adopted with the state-space ROMs for flight 
control and design engineering [44–47].

Both methods and their applications are different. 
A-ROM parameterization through the surrogate model 

is a global modeling method, i.e., a single mathematical 
function predicting aerodynamics in a wide range of flight 
parameters. Flight parameters and inputs (e.g., motion var-
iables) are combined together, and their interactions are 
depicted through nonlinear surrogate functions. Because 
modern control engineering is predominantly built on the 
state-space formulation and techniques, parameteriza-
tion through local state-space ROM and interpolation is 
broadly used for aeroelastic and aeroservoelastic analysis 
and control law design for vehicle stability and maneuver-
ability improvement. However, state-space ROMs at differ-
ent flight conditions usually suffer from a state inconsist-
ency issue, which is further illustrated in Fig. 1. To construct 
the aerodynamic state-space ROM, the data of aerody-
namic responses �f  subjected to a prescribed input profile 
of motion �sc is generated by physics-based simulation, 
such as CFD and is also flight condition dependent. System 
identification is then applied onto the discrete data set to 
extract the state space model at each grid point

where x is the state vector, [A, B, C, D] are the system 
matrices of the state space model, and superscript p is the 
pth grid point in the flight regime. Essentially system iden-
tification truncates less important information in the data 
and captures key dynamics in ROM. However, the informa-
tion truncated depends on the location of the grid points 
and the methods used. For methods that rely on singular 
value decomposition (SVD) to extract [�p,�p,�p,�p] , such 
as N4SID, the basis vectors of the oblique projection of 
Hankel matrices are computed and re-ordered according 
to the significance of their singular values. Therefore, the 
definition of the state vector x is solely from a mathemati-
cal perspective and non-physical and will be different at 
various grid points p. In other words, the state represen-
tation of the ROM is cast in different coordinate systems, 
which makes direct interpolation of system matrices 
meaningless. This can be illustrated by a simple example 
of a 2-state system at the bottom of Fig. 1, where xj and 
xk are, respectively, the coordinate systems of the states 
at the jth and kth grid point obtained through system 
identification, and subscript 1 and 2 denote the two coor-
dinates of the state-space ROM at the grid point. Appar-
ently, xj and xk do not align with each other spatially, and 
any given state vector x when expressed in xj and xk, will 
have completely different meanings, viz., state inconsist-
ency. As a result, at a non-grid location adjacent to the 
jth will have completely and kth grid, its system matrices 
[A, B, C, D] cannot be obtained through the interpolation 
of those at grid points. It should also be noted that the 
state inconsistence is different from the issue associated 

(1)
�p(k + 1) = �p�p(k) + �p�sc(k)

�f (k) = �p�p(k) + �p�sc(k)
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with identifiability that is caused by the ill-posedness and 
solution stability of the inverse problems, and can be miti-
gated through ‘a priori’ knowledge about constraints or 
penalty-regularization [48]. In contrast, the state consist-
ence in the present investigation refers to the expression 
of the identified parameters in the same/consistent coor-
dinate systems. The state inconsistence issue is also clearly 
revealed in Fig. 2a, which displays the vectorized elements 
in the “A” matrix of the state-space ROM obtained by 
N4SID, over a Mach domain and a AoA parameter space, 
and the matrix elements vary randomly and dramatically 
without a pattern across the parameter space. As a result, 
ROM interpolation directly on the “A” matrices between 
neighboring grid points is erroneous and creates physi-
cally meaningless results in aeroelastic responses. Fig. 2b 
depicts an example of aeroelastic responses, viz., the gen-
eralized displacement (GD) and GAF of the ROM at Mach = 
0.65. The ROM is obtained by interpolating those at Mach 
= 0.6 and 0.7. No correlation is observed between real CFD 
data and the interpolated ROM prediction. 

State inconsistence of the state space model is well rec-
ognized in the research of projection-based model order 
reduction [35, 49–51], but less studied in the data-driven 
ROM. One workaround to this issue of the state-space 

ROM is to interpolate on the output [42], i.e., �f  (instead 
of system matrices) in Eq. (1) because it has the physical 
meaning of aerodynamic responses, i.e., GAF regardless of 
state representation. For example, Liu et al. [42] developed 
parametric ROMs to consider varying Mach numbers in the 
transonic regime and predict unsteady GAFs for an elastic 
wing with the control surface. The GAF output data pre-
dicted by the precomputed ROMs at adjacent grid points 
is then interpolated to attain GAF at the Mach where the 
ROM is not available. In this approach, two or multiple 
ROMs at surrounding grid points need to be computed 
simultaneously in each time step during ROM simulation, 
leading to enormous computational costs.

Therefore, a fundamentally state consistent paramet-
ric ROM is desirable for practical use. The present effort 
addresses this by investigating and comparing the aerody-
namic ROMs obtained by two common system identifica-
tion methods, ARX and N4SID, in aeroelastic analysis with 
respect to state consistency. Our hypothesis is that ARX 
should preserve the state consistency better because it 
directly establishes the least squares relationship between 
the physical inputs and outputs, and its state space ROM 
is constructed by its companion form, in which the defi-
nition of states is physical and represents a vector of 

Fig. 1  Schematic of the grid-
ded domain methodology and 
the issue of state inconsistency 
in state-space ROM
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GAFs and GDs, and hence, enhancing state consistence. 
To prove this hypothesis, the AE-ROM that combines the 
aerodynamic state-space ROM generated by ARX and the 
structural ROM (S-ROM) is thoroughly inspected in two 
separate one-dimensional parameter spaces encompass-
ing the Mach number and the AoA. First, for each param-
eter space, state-space ROMs are generated and verified 
at each grid point. Second, different aspects of ARX ROMs 
are examined, such as state consistence for varying flight 
conditions and system poles and accuracy of interpolated 
ROMs. Third, the state consistence of new models obtained 
by ROM interpolation is examined using independent 
high-fidelity aeroelastic CFD data sets.

The key novelties that distinguish the present effort 
from existing research are: (1) unveiling the state incon-
sistence issue of the state-space ROM that is critical for 
data-driven parametric ROM development but has been 
overlooked; (2) through analysis of the model coefficients 
and pole migration, it is found that in contrast to other 
system identification techniques, the definition of states 

in ARX-based A-ROM is physical, and indeed maintains 
state consistence naturally without need for additional 
remedies. Hence, it allows direct model interpolation 
and coverage of the broad flight parameter space; (3) 
the construction of state consistent ROMs in the gridded 
parameter space enables the development of a parametric 
A- and AE-ROM database for the targeted flight envelop; 
and (4) it is also found that the local grid refinement in the 
parameter space will dramatically improve the state con-
sistence between grid points and increase the accuracy of 
the interpolated ROMs. Therefore, a strategy of adaptive 
grid refinement is necessary for the progressive construc-
tion of a parametric ROM database with minimal efforts/
costs. Potentially, the parametric ROM databased can be 
used as the plant model for control law design and aeros-
ervoelastic analysis.

It should be emphasized that the focus of the present 
effort is not on ROM interpolation but rather identifying 
a system identification method that could produce a con-
sistent state-space ROM amenable to direct interpolation 

Fig. 2  3D view of vectorized “A” matrix elements over a section of 
(a-1) Mach domain; and (a-2) AoA domain from the N4SID model; 
and (b) Comparison of GD in aeroelastic response between inter-

polated ROM (obtained by N4SID) and real FOM/CFD data at Mach 
= 0.65, and Mach step size of 0.1 is used for interpolation
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of system matrices and investigating the rationale. ROM 
interpolation only serves as a means to examine the state 
consistence. Indeed, with state consistence preserved, any 
interpolation method can be used to generate ROMs at 
non-grid points. The present research is also distinctly dif-
ferent from the work on interpolation in the space tangent 
to the Grassmann manifold in two aspects: (1) this paper 
studies how to preserve the consistence of ROM states (i.e., 
coordinate systems in Fig. 1) to enable direct system matrix 
interpolation at non-grid points, while the latter proposes 
an approach to interpolate the basis vectors of an ortho-
normal projection subspace at the non-grid points [35]. In 
fact, as discussed in [35], the state consistence is required 
prior to interpolation of basis vectors in Grassmann mani-
fold (e.g., through congruence transformation); and (2) 
the state inconsistence of ROMs investigated by the pre-
sent research is not caused by difference in basis vectors 
of projection at various grid points because in our work 
the distributed aerodynamic forces are projected on the 
structural modal shapes that are invariant with the flight 
conditions. Instead, the inconsistence arises from the sys-
tem identification process that relies on SVD of the oblique 
projection of Hankel matrices and uses non-physical states, 
and then casts the state-space model in different coordi-
nate systems. It should be noted that although initially 
proposed for projection-based linear parametric ROMs 
[35], the interpolation approach for Grassmann manifold is 
also applicable to nonlinear ROMs obtained through local 
reduced order basis [52] and hyper-reduction for system 
approximation [53] and even data-driven ROM [54].

The present work also distinguishes from the POD-
based [34, 55–59] and dynamic mode decomposition 
(DMD)-based [11, 60] methods for dynamic modeling. POD 
is a L2-optimal low-rank matrix approximation approach. 
Since it is completely data-driven, its main utility is to 
extract dominant basis vectors of snapshot data and to 
predict distributed field variables, such as surface pres-
sure. DMD is a dimensionality reduction technique that 
distills a set of normal modes from snapshot data, each 
with a constant frequency. When combined with Koop-
man theory, it can be used for constructing data-driven, 
non-intrusive ROM with inputs and outputs (i.e., dynamic 
mode decomposition with inputs and outputs, IODMD) 
[11, 60]. Our A-ROM is distinctly different from both POD- 
and DMD-based methods in the following: (1) our ROM 
aims to establish a functional mapping directly between 
the input of GD and the output of GAF, and physical modal 
shapes of elastic structures are used as the subspace for 
projecting the distributed aerodynamic force. However, 
in the POD-ROM and IODMD-ROM, basis vectors of snap-
shot data are used as the projection subspace, and POD 
modal coefficients are used as the output or states for 
ROM, respectively; and (2) the focus of the present study 

is on aeroelastic analysis rather than prediction of distrib-
uted aerodynamic responses/loads. It is rational to directly 
select GAF as the output of our A-ROM rather than POD 
modal coefficient as this will eliminate an additional step 
of POD to reconstruct the distributed aerodynamic forces 
during aeroelastic analysis.

The paper is organized as follows. The model formula-
tion and methodology including the A-ROM, S-ROM, ROM 
coupling and interpolation is first described in Section 2. 
Next, the case studies to verify the AE-ROMs and investi-
gate the state consistence along with the results and dis-
cussion are presented in Sect 3. The paper concludes with 
a summary of the scientific findings and insights gained 
from the modeling and case studies in Sect 4.

2  Model formulation and methodology

In this section, we present the methodology of the sys-
tem identification-based state-space ROM for aeroelastic 
analysis. As shown in Figs. 3 and 4, the entire ROM process 
includes three key steps: (1) Aerodynamic ROM: A set of 
local aerodynamic ROMs (abbreviated as A-ROM hereafter) 

Fig. 3  Data-driven parametric ROMs for aeroelastic analysis
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are constructed at selected flight conditions (i.e., grid 
points) in the flight envelop using the data generated by 
the full order model (FOM) of aerodynamic CFD simula-
tion. The local A-ROMs describe the mapping relationship 
between the GAF �f  and the GD of structure �sc at the grid 
points and will be obtained through system identification 
(see Sect 2.1 below). The A-ROM at any non-grid location 
within the flight envelope is obtained by interpolating 
the system matrices of the A-ROMs at the neighboring 
grid points attained in the previous step. Since interpo-
lated ROMs are based on locally optimal ROMs of low 
dimensions, in which only local aerodynamic character-
istics needs to be captured, it may potentially yield more 
compact model structure and faster simulation speed; (2) 
Structural ROM: The structural ROM (abbreviated as S-ROM 
hereafter) is based on the modal equations of structure 
dynamics. That is, the spatial distribution of the structural 
displacement is projected onto mode shapes, yielding the 
GD of structure �sc . Thus, the S-ROM uses �f  as the input 
and outputs �sc ; and (3) ROM assembly. The interpolated 
A-ROM at non-grid location then can be integrated with 
the S-ROM for coupled aeroelastic analysis as shown in 
Fig. 3. The results of the interpolated AE-ROM, such as 
GAF and GD responses and pole migration will serve as 
an effective means to evaluate the state consistence of the 
constructed A-ROM database at grid points. It also should 
be noted that separation of the flight parameters from aer-
oelastic variables ( �f  and �sc ), i.e., gridded domain and 
local ROM method, leads to simple ROM model structure, 
database organization, maintenance, and extension. 

2.1  Aerodynamic reduced order modeling

A-ROMs take the GD �sc as inputs in the time domain and 
outputs the GAF �f  , which can be described as

(2)
�̃f = �̃0

f
+ �

(
�̃sc − �̃0

sc

)
�f = �

(
�sc

)

where superscript “0” denotes the quantities at the equi-
librium state, e.g., modal displacements �̃0

sc
 due to asym-

metric GAF loads �̃0

f
 arising from non-zero AoAs and non-

symmetric geometry. �f = �̃f − �̃0

f
 and �sc = �̃sc − �̃0

sc
 

are, respectively, the variation/perturbation in the GD and 
GAF relative to the equilibrium state. N is the functional 
relationship between them and can be described by a lin-
ear function when the perturbation is small. In this paper, 
N is built using the multi-input and multi-output system 
identification method with training data generated by a 
high-fidelity CFD simulation [13]. The entire process of 
constructing A-ROM is summarized in pseudo-Algorithm 1 
and elucidated as follows:

Step 1: The flight parameter space is uniformly sampled 
with grid points P. In this paper, two separate one-
dimensional parameter spaces (Mach number and AoA) 
domain are given in Table 1, and those for AoA are given 
in Table 2
Step 2: The training data is generated based on the 
modal perturbation/excitation technique presented in 
[13, 61], which are briefly summarized here for the sake 
of completeness. It consists of three sub-steps:

Fig. 4  Meshes used in simula-
tion in the volume and along 
the wing surface.

Table 1  ARX-based Aeroelastic ROM verification for the Mach 
parameter space (AoA = 0°)

Mach GAF Error 
(%)

GD Error 
(%)

Mach GAF Error 
(%)

GD Error (%)

0.50 0.30 0.26 0.80 0.12 0.11
0.55 0.27 0.26 0.825 0.17 0.14
0.60 0.24 0.24 0.85 0.32 0.33
0.65 0.20 0.21 0.875 0.63 0.69
0.70 0.14 0.14 0.90 0.90 1.01
0.75 0.12 0.11 0.925 0.83 0.71
0.775 0.12 0.11 0.95 1.67 1.58
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Step 2.1 The simulation is initialized using a con-
verged steady-state CFD simulation assuming a rigid 
structure to provide an estimation of the main bulk 
flow and an initial condition for the next simulation;
Step 2.2 For any scenario involving a nonzero initial 
displacement (due to nonzero asymmetric loads 
on the top and bottom surface of the wing, such as 
nonzero AoA or an asymmetric wing shape), a static 
aeroelastic simulation is run to find the aeroelastic 
equilibrium with respect to the mean flow. This is a 
time accurate, fully coupled aeroelastic simulation 
but uses large structural damping with a value of 
0.99 to mitigate dynamic transients and quickly con-
verge to the aeroelastic equilibrium, �̃0

f
 and �̃0

sc
 [13, 

61]. These static aeroelastic quantities are then used 
to initialize the next simulation;
Step 2.3 A dynamic aerodynamic response simulation 
is performed. A perturbation of �sc around �̃0

sc
 fol-

lowing a prescribed time-dependent input profile is 
imposed throughout the transient CFD simulation 
that collects the GAF responses �f  arising from the 
perturbation. Several input profiles capable of cap-
turing wide frequency contents were proposed and 
widely used for training data generation for aeroe-
lastic modeling, including Walsh functions [53]; ran-
dom-like and noisy sweep signal [16]; filtered white 
Gaussian noise [17]; and 3-2-1-1 profile [15, 32]. In 
this paper, the 3-2-1-1 profile verified by our previous 
work [62] is used, which is able to excite a relatively 
broad frequency range that accommodates the tar-
geted frequency in this study. In this simulation, a 
realistic and conservative value (zero) of structural 
damping is used [61, 63]. The data of �sc and �f  form 
Nt input-output pairs for system identification and 
A-ROM construction, where Nt is the number of time 
steps in the simulation.
The training simulation procedure above will be per-
formed at specified grid points P within the flight 

parameter space. For symmetric wings (e.g., ARARD 
445.6 in this study) at AoA = 0°, step 2.2 for static 
aeroelastic simulation is not needed.

Step 3 : Given the data pair ( �sc and �f  ) from the train-
ing simulation, the mapping relationship N above at 
a single grid point can be obtained using a variety of 
system identification methods, including the Volterra 
series [58], eigenvalue realization algorithm [12, 64], 
and regression [15, 32, 40]. Specifically, in this paper, 
two methods based on ARX [65] and N4SID [10] are 
adopted and investigated in terms of state consistence 
of the state-space ROM. In the ARX model, the GAF �f  is 
expressed as a sum of the previous outputs and the pre-
sent and previous inputs �sc in a discrete time-domain

where k is the kth time step; na is the number of the previ-
ous inputs included in the model; and nb is the total num-
ber of the present and previous inputs. �i and �i are the 
model parameter matrices and can be obtained by the 
least-squares regression, and e is the error between the 
model-predicted GAF output and the actual output of the 
kth data point. Eq (3) can be transformed into a vector form, 
defined as:

where �T(k) is the set of vectors consisting of [
�f (k − 1),… ,�f

(
k − na

)
,�sc(k),�sc(k − 1),… ,�sc

(
k − nb

)]
 , 

a n d  �  i s  a  s e t  o f  v e c t o r  m a d e  u p  o f [
�1,… ,�na

,�0,�1,… ,�nb

]T
 . By stacking up the data of 

�T(k) for each time instant k = 1, …, Nt during the train-
ing simulation, � can be computed using the least-squares 
method. Once θ is determined, the ARX model in Eq. (3) 
can be transformed into the state-space representation, 

(3)�f (k) =

na∑
i=1

�i�f (k − i) +

nb−1∑
j=0

�j�sc(k − j) + �(k)

(4)�f (k) = �T(k)�

Table 2  ARX-based Aeroelastic 
ROM verification for the AoA 
parameter space (Mach = 0.5)

AoA (°) GAF Error (%) GD Error (%) AoA (°) GAF Error (%) GD Error (%)

0 0.30 0.26 2.75 0.46 0.44
0.25 0.27 0.19 3.00 0.51 0.61
0.50 0.29 0.20 3.25 0.63 0.82
0.75 0.31 0.22 3.50 0.82 1.08
1.00 0.36 0.21 3.75 1.02 1.38
1.25 0.51 0.31 4.00 1.28 1.72
1.50 0.55 0.30 4.25 1.55 2.08
1.75 0.39 0.31 4.50 1.87 2.49
2.00 0.51 0.26 4.75 2.27 2.91
2.25 0.49 0.22 5.00 2.72 3.28
2.50 0.42 0.28 5.25 3.34 3.73
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i.e., Eq. (1) by introducing a state-vector �(k) as follows [15, 
32]:

and [A, B, C, D] of the identified system matrices are 
given by

(5)�(k) =

⎡⎢⎢⎢⎢⎢⎢⎣

y(k − 1)

⋮

y
�
k − na

�
u(k − 1)

⋮

u
�
k − nb + 1

�

⎤⎥⎥⎥⎥⎥⎥⎦

(6)

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 �2 … �
na−1

�
na

�1 �2 … �
nb−2

�
nb−1

� 0 … 0 0 0 0 … 0 0

0 � … 0 0 0 0 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 … � 0 0 0 … 0 0

0 0 … 0 0 0 0 … 0 0

0 0 … 0 0 � 0 … 0 0

0 0 … 0 0 0 � … 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 0 0 0 0 … � 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�0

0

0

⋮

0

I

0

0

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� =
�
�1 �2 … �

na−1
�
na

�1 �2 … �
nb−2

�
nb−1

�
� =

�
�0

�

The A-ROM can also be identified using the N4SID tech-
nique. It constructs the Hankel matrix consisting of the 
past inputs/outputs and the future inputs/outputs. The 
Hankel matrix is then processed by the oblique projec-
tion, and SVD of the oblique projection determines the 
system order and the state vector, which then can be used 
to identify [A, B, C, D] in the state-space form. N4SID is 
capable of extracting the GAF response using simultane-
ous excitation of multiple structural modes with arbitrary 
input functions, and hence, is efficient for training data 
generation and ROM development. More details about 
N4SID are given in "Appendix 1" , and in this paper MAT-
LAB’s built-in function ‘n4sid’ in the system identification 
toolbox was used.

2.2  Structural dynamics reduced order modeling

The full-order governing equation of the structural dynam-
ics for the elastic structure is given by

where � , � , and � are the matrices describing the mass, 
damping, and stiffness of the structure, respectively; � is 
the vector of distributed forces acting on the structure; �̈ , 
�̇ , and � are the acceleration, velocity, and displacement of 

(7)��̈ + �ż +�z = �
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the structure, respectively. An S-ROM can be formulated 
based on the principle of the modal superposition, that 
is, the displacement of the structure is treated as a super-
position of leading modal shapes �=��sc, in the range 
of target frequency, where � is a low-dimensional mode 
shape subspace obtained from the structurally undamped 
system, and �sc is the GD of modes. Substituting �=��sc 
into Eq. (7) and pre-multiplying by �T yields

where �f  = �T�∕q is the GAF mentioned above; q is the 
dynamic pressure; � is the critical damping ratio (a scalar); 
and � are the natural frequencies of the structure in free 
vibration arranged as diag(ω1, ω2, …, ωn). A linear struc-
tural damping and stiffness is assumed in Eq. (8). The prop-
erty of the orthogonality of the modes is used in deriv-
ing Eq. (8): �T�� = � ; �T�� = 2�� ; and �T�� = � = 
diag(ω1

2, ω2
2, …, ωn

2). In computational flutter studies, the 
damping ratio � is set to 0 in an effort to be conservative 
following the previous studies [61, 63]. Eq. (8) is a second-
order ordinary differential equation (ODE) set, and can 
be reduced by introducing the rate of the GD (i.e., modal 
velocity �̇sc),

Eq. (9) can be numerically solved in two ways: directly 
integrating by ODE solvers (e.g., ode15s in MATLAB) or dis-
cretization using the same time step as that in CFD simula-
tion for A-ROM training, yielding the state-space model of 
the discrete systems 

[
�s,�s,�s,�s

]
.

2.3  Reduced order model coupling

The A-ROM and S-ROM can be coupled and solved itera-
tively. Specifically, the coupling is expressed as an overall 
equation set

where the subscript s corresponds to the quantities of 
S-ROM. Eq. (10) shows that A-ROM takes �sc as the input 
and outputs �f  and S-ROM takes �f  as the input and calcu-
lates �sc . Therefore, the equation forms closure for direct 
integration in the time domain. The coupled aeroelastic 
ROM is supplied only with an initial condition, and then 
left to respond spontaneously. Since A-ROM is developed 
using system identification of CFD-generated training 
data, it has to use the same time step as CFD, which typi-
cally is a constant. In order to harness advanced adaptive 

(8)

𝚽T𝐌𝚽�̈�sc +𝚽T𝐂𝚽�̇�sc +𝚽T𝐊𝚽𝐘sc

= 𝚽T𝐅 ⇒ �̈�sc + 2𝜉��̇�sc +𝛀𝐘sc = q𝐘f

(9)�s =

[
�sc

�̇sc

]
and �̇s =

[
0 �

−� 0

]
�s + q

[
0

�

]
�f

(10)

{
x(k + 1) = Ax(k) + B�sc(k)

�f (k) = Cx(k) + D�sc(k)
and

{
�s(k + 1) = �s�s(k) + �s�f (k)

�sc(k) = �s�s(k) + �s�f (k)

time stepping techniques of ODEs for further computa-
tional acceleration, the discrete A-ROM can also be con-
verted into a continuous state-space model in the form 
of ODEs.

2.4  Aerodynamic reduced order model 
interpolation

The A-ROM described above is only applicable to a single 
flight condition because the CFD training data is gener-
ated at that specific condition. To attain an AE-ROM at a 
non-grid location within the flight envelop, system matri-
ces ([A, B, C, D]) of A-ROMs at the neighboring grid points 
are interpolated if their state consistence is preserved. 
Since in this study, the S-ROM is assumed flight condition-
independent, and interpolation of the S-ROM is not neces-
sary. Interpolation of the system matrices only needs to 
be undertaken once at the beginning of the simulation, 
which is computationally efficient and allows a new model 
to be explicitly obtained at each flight condition while 
keeping the ROM size the same as those at the grid points.

The parameter space P could be extended to include 
multiple dimensions. In the present paper two flight 
parameters, Mach number and Angle of Attack (AoA) are 
considered individually. Also, if the system initially has 
asymmetric aerodynamic loads as discussed in Sect 2.1 the 
initial conditions �̃0

f
 and �̃0

sc
 at grid points P will need to be 

similarly interpolated at the non-grid point. A key require-
ment of system matrices interpolation is that each A-ROM 
needs to have matrices of the same size, and more impor-
tantly, the state vectors x in the neighboring points must 
have the same state representation as discussed in Sect 
1 above. In this paper, the state consistence of A-ROMs 
across varying flight parameters obtained using N4SID and 
ARX is investigated and compared by observing the trends 
of the vectorized matrix elements and the pole migration 
of the interpolated ROMs. According to the analysis above, 
we will show that ARX better preserves the state consist-
ence, and hence, the local ROM can be interpolated to new 
grid points, which however is not true for N4SID.

2.5  Error quantification

A cumulative error metric is also defined to compare ROM 
and full order model (FOM) results using the following 
equation:

where FOM represents the results of using CFD model for 
GAF computation, which is coupled with the modal solver 
of structure (i.e., Eq. (8)) within the FUN3D package; �ROM 

(11)Err =
∥ �

ROM
− �

FOM
∥2

∥ �
FOM

∥2
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and �FOM , respectively, denote the aeroelastic results (GAF 
and GD) computed by the ROM and the FOM. The compari-
son can be performed at the grid point or non-grid flight 
condition where the ROM is obtained through interpola-
tion. In addition to ROM evaluation, the comparison and 
error metric can also be used for identifying the location 
within the parameter space for grid refinement.

3  Results and discussion

Next the case studies to generate and verify ARX ROM are 
performed. State consistence of the ROM is examined, and 
ROM results and their comparison against the FOM/CFD 
model at both the grid and the non-grid point in the flight 
parameter space are presented using the widely studied 
AGARD 445.6 wing.

3.1  High fidelity simulation

As discussed above, two separate one-dimensional param-
eter spaces (Mach number and AoA) are considered in the 
present work. At each grid point, training data is generated 
using the A-ROM training simulation following the pro-
cedure summarized in Sect 2.1. Such a process generates 
input-output data pairs of �sc and �f  that are processed 
by system identification above to extract A-ROM. In the 
verification simulation, given an initial modal velocity per-
turbation, the A-ROM and S-ROM respond spontaneously, 
which is different from the training simulation where GDs 
are prescribed throughout the time accurate simulation. 
Each grid point and interpolation point within the flight 
parameter space is verified using these data sets.

Two case studies are evaluated in this paper. In the first 
one that investigates the effect of the Mach number, an 
AoA = 0° is assumed. This simplifies the simulation ini-
tialization because the AGARD 445.6 wing is symmetric in 

geometry, and therefore with AoA = 0° the initial steady-
state deflection is 0. This means the aeroelastic equilibrium 
step of the training simulation in Sect 2.1 can be skipped. 
The second case study aims to evaluate the effect of AoA, 
and the A-ROM is trained about the aeroelastic equilib-
rium points as described by Eq. (2) above. Both the training 
and verification data for all cases is obtained using NASA’s 
research code FUN3D [66]. The aerodynamics is simulated 
by solving the inviscid Euler equations, and a moving mesh 
algorithm is used to accommodate the surface deforma-
tion (See "Appendix 2"). In all the simulations, the wing 
root is fixed while the rest is allowed to deform freely. The 
first four structural modes of the wing are used to calcu-
late the deformation and the GAF and the GD of the wing. 
Their modal frequencies are 60.31, 239.80, 303.78, and 
575.19 rad/s, respectively. Note that these are the same 
modal frequencies and mode shapes that are used for the 
S-ROM. The numbers of the meshes used in the simulation 
are given as follows: 2,381,922 cells and 430,866 nodes in 
volume and 50,827 nodes along the wing surface in CFD 
of aerodynamic flow. 121 nodes are used to describe the 
modal shapes of the wing structure. FUN3D has the func-
tionality to directly output the modal forces rather than 
the distributed force vector F at the structural nodes for 
ROM construction. In other words, FUN3D exports �T� in 
Eq. (8), viz., the force vector F projected onto the modal 
shapes to yield the GAF. A 3-2-1-1 multistep function for 
the prescribed GDs in Fig. 5a is adopted, which carries 
excellent harmonic contents and wide bandwidths at the 
low end of the frequency spectrum [67]. Another widely 
used input profile, a Walsh function offering orthogonal-
ity among individual inputs, is also applicable [13]. Fig. 5b 
illustrates the four corresponding GAFs subjected to the 
prescribed GDs. In the training runs of the nonzero AoA 
cases, the prescribed GDs are of the same magnitude 
added to the nonzero GD equilibrium values.

Fig. 5  A 3-2-1-1 multistep input profile for training simulation: (a) GD and (b) GAF response to prescribed GDs
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3.2  State consistence

As discussed above, the system matrices 
[
��,��,��,��

]
 

of the A-ROM at surrounding grid points P will be interpo-
lated to attain the A-ROM at the target non-grid condition. 
However, the requirement for system matrix interpolation 
is that the states at varying flight conditions need to have 
consistent representation, i.e., coordinates of the states as 
discussed in Sect 1. In other words, the physical mean-
ing of the states in the ROMs remains the same across the 
flight envelop [41]. In this section, the state consistence of 
the ROM obtained by ARX and N4SID is examined by two 
means: the change of the system matrix elements and the 
poles with varying flight parameters.

Figure 6a shows the vectorized elements in the “A” 
matrix of the ARX state-space ROM over a Mach domain. 
It is clear that the elements of the A matrix in the ARX ROM 
vary continuously and smoothly with the Mach number, 
while those for the N4SID ROM illustrate significant incon-
sistence (Fig. 2). Therefore, ARX ROM enhances state con-
sistence relative to N4SID and should be more amenable to 
system matrix interpolation of ROMs. The trends shown for 
the “A” matrix hold true for the other matrices as well, i.e., 

B, C, and D (results not shown). Similar plots can be seen 
for the AoA dimension in Fig. 6b, and state consistence of 
AoA in the ARX plot is similar to the Mach parameter and 
is better than that of N4SID in Fig. 2b. It is interesting to 
note that the A matrix changes more dramatically at the 
low AoA range, and therefore, more grid refinement (i.e., 
adaptive grid sampling) is needed to improve the interpo-
lation accuracy there, e.g., at AoA = 1° and 2°.

A more direct approach to examine the state con-
sistence of the parametric state-space ROM for system 
matrix interpolation is to examine the pole migration of 
the interpolated ROM [41, 68]. If the poles of the interpo-
lated ROM migrate smoothly within the parameter space 
and follow similar patterns of those at the grid points, the 
state consistence of ROMs is confirmed, and vice versa. 
It should be noted that smooth pole migration of ROMs 
at the grid points is not sufficient for state consistence 
confirmation [41]. This is because the pole distribution is 
a dynamic characteristic of the system, while consistence 
refers to the coordinates used to express the states of the 
dynamic system. ROMs at two grid points that have similar 
dynamic behavior but cast in different coordinates (by a 
coordinate rotation) can still exhibit similar pole locations, 

Fig. 6  3D view of vectorized “A” matrix elements over a section of (a) Mach domain; and (b) AoA domain from the ARX model

Fig. 7  ARX system poles throughout Mach range for (a) ROMs constructed directly using CFD/FOM data at grid points; and (b) interpolated 
ROMs
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which however is not true for ROMs interpolated between 
them. Figure 7a and b, respectively, show the pole migra-
tion of the ROMs at the grid points obtained by ARX and 
the interpolated ROMs using adaptive step sizes. That is, 
a larger step size of 0.1 is used in the lower Mach range 
and a smaller step size of 0.01 towards the flutter regime. 
Due to the wide range of the pole values, the region at 
the lower frequency including that of the positive poles 
is enlarged to facilitate visualization, in particular, around 
the stable/unstable transition. It is clear that the poles of 
the interpolated ROMs match very well the ROMs directly 
constructed using the FOM training data, and the agree-
ment in the frequency domain then translates to the com-
parison in time response as shown in the next sections. 
Figure 8a and b show the pole migration of the ROMs at 
the grid points obtained by N4SID and the corresponding 
interpolated ROMs, respectively. There are two interesting 
observations: (1) the poles of the former change smoothly 
across the Mach number similar to that by ARX in Fig. 7a, 
which confirms that the dynamic behavior of the system 
and its dependence on Mach is accurately captured; and 
(2) the distribution of poles of the interpolated ROM scat-
ters almost randomly without any pattern as a result of 

inconsistent state representation of the ROMs at the grid 
points. This also verifies the statement above, i.e., only pole 
migration of the interpolated ROMs (rather than those at 
the grid points) is a convincing indicator of state consist-
ence. Figure 9 shows the pole plots of the ROMs at the grid 
points and the interpolated ROMs across the AoA using a 
step size of 0.25 degrees throughout. It can be seen that 
the poles of the interpolated ROMs are in the similar trend 
and pattern as those of ROMs at the grid points although 
they are not exactly the same and the individual pole of 
the interpolated ROM seems to vary in a wider range, 
which may be caused by the abrupt changes in the aero-
dynamic behavior due to non-zero AoAs, and an even finer 
AoA step size is needed for enhanced state consistence 
between neighboring grid points. This is another confir-
mation of the slightly less consistent matrices as shown 
in the Fig. 6b above. Since it is already verified that ROMs 
extracted by N4SID are not consistent in the Mach range, 
their results along the AoA are not shown for the sake of 
paper conciseness.  

A further analysis can identify the root of difference 
in state consistence of both ROM methods. In N4SID, the 
physical meaning of the states of the ROM is dictated by 

Fig. 8  N4SID system poles throughout Mach range for (a) ROMs constructed directly using CFD/FOM data at grid points; and (b) interpo-
lated ROMs

Fig. 9  ARX system poles throughout AoA range for (a) ROMs constructed directly using CFD/FOM data at the grid points; and (b) interpo-
lated ROMs
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the SVD that ranks and reorders the basis vectors accord-
ing to significance of the singular values, and the informa-
tion truncated is not the same among the ROMs. Therefore, 
the dominant bases of each ROM and state representation 
in the model for various flight conditions are different, and 
the system matrices cannot be directly interpolated by this 
method. Normally, N4SID ROMs need to be converted to a 
global reference states through transformation (rotation) 
or a canonical form [41, 44, 68], prior to ROM interpola-
tion, which however may not be an excellent remedy as 
the information truncated at varying flight conditions is 
not consistent. In contrast, the ARX method is not a sub-
space identification method. Instead, it relies on the least 
squares method to build the relationship between the 
physical inputs and outputs of consistent meanings, and 
the state-space ROM is constructed by its companion form 
in which the states are also physical, and hence, preserv-
ing better state consistency. This fundamental difference 
is the reason for the enhanced interpolatability of ARX 
state-space ROM.

3.3  Aeroelastic ROM validation at grid points

Each grid point ROM must be validated before it can be 
used in the parametric ROM. This section presents the 
verification of the AE-ROM in the time domain at discrete 
grid points throughout the two parameter spaces. Since 
N4SID ROM cannot produce state consistent ROM, their 
results will not be presented hereafter. Figure 10 shows 
the results of comparing the FOM/CFD and ARX ROM in 
terms of GAF and GD at Mach = 0.85. We can see that FOM 
and ROM match very well, and the discrepancy is almost 
indistinguishable.

Table. 1 illustrates the quantitative comparison in the 
Mach range 0.5-0.95 with an increment of 0.05 (while hold-
ing AoA = 0°), and Table 2 does the same for AoA ranging 

from 0°-5.5° with an increment of 0.25° at constant Mach 
= 0.5. All aeroelastic ROMs exhibit excellent agreement 
with FOMs in the specified Mach range. As discussed pre-
viously for matrix interpolation, all the model matrices 
must be the same size, which corresponds to the fit order. 
Therefore, the fit orders of all the ARX ROM at different 
grid points are the same. It can also be seen that in the 
AoA range the ROMs and FOMs match very well, although 
towards the higher AoA the ROM generally becomes 
worse. This can be attributed to the fact that at the higher 
AoA the governing equations being used (Euler solver) do 
not accurately represent the aerodynamics of the system, 
such as flow separation.

3.4  Aeroelastic ROM validation at Non‑grid points

Next the ROMs at the non-grid points obtained by inter-
polating ROMs at grid points are examined. Cubic splines 
are used to interpolate the system matrices of the ROM. 
Likewise, matrix interpolation is also attempted for N4SID 
AE-ROMs, and the results are physically meaningless. 
Therefore, interpolated AE-ROM presented in the varying 
flight conditions only includes ARX ROM. The results for 
the Mach parameter space will be presented first, followed 
by the AoA parameter space. In addition, since A-ROM and 
S-ROM are coupled in the aeroelastic analysis, only GAF 
results are presented graphically in this section to avoid 
redundancy.

3.4.1  Mach parameter space

Figure 11 illustrates the GAF results of the aeroelastic ROM 
at the non-grid point of Mach = 0.65 that is obtained by 
interpolating those at the grid points with a Mach step 
size of 0.1 based on the ARX method. That is, AE-ROMs 
at Mach = 0.6 and Mach = 0.7 are interpolated to obtain 

Fig. 10  Comparison of (a) GAFs and (b) GDs in aeroelastic response between ARX ROM and real FOM/CFD at Mach = 0.85
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the AE-ROM at Mach = 0.65. Table 3 lists the prediction 
error of the interpolated AE-ROM compared against FOM/
CFD simulation with the Mach step size of 0.1. It shows 
good agreement from the subsonic to transonic regime 
with the ARX method. However, when approaching the 
flutter regime (around Mach = 0.85-0.95), where aerody-
namics behavior exhibits strong nonlinear dependence on 
the flight parameters, the performance of system matrix 
interpolation begins to deteriorate. In particular, the error 
of the GAF and GD predicted by the AE-ROM relative to the 
FOM reaches 10%. This is clearly shown in Fig. 12 by com-
paring the FOM with the interpolated ROM at Mach = 0.85 
in terms of GAF, and the ROM is obtained by interpolating 

Fig. 11  Comparison of GAF in 
aeroelastic response between 
interpolated ARX ROM and 
FOM/CFD at Mach = 0.65 with 
a Mach step size of 0.1 for 
interpolation

Table 3  Prediction errors of interpolated AE-ROM (ARX) with a 
Mach step size of 0.1

Mach GAF Error (%) GD Error (%)

0.55 5.13 5.87
0.60 2.36 2.94
0.65 0.69 0.58
0.70 1.46 1.96
0.75 3.21 4.62
0.80 2.44 3.38
0.85 9.98 12.94

Fig. 12  Comparison of GAF in 
aeroelastic response between 
interpolated ARX ROM and 
FOM/CFD at Mach = 0.85 with 
a Mach step size of 0.1 for 
interpolation
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those at Mach = 0.8 and 0.9 with the step size of 0.1. The 
attempt to use system matrix interpolation for N4SID mod-
els quickly shows unstable behavior in Fig. 2, yielding non-
physical results, confirming the lack of state consistence 
and difficulty of direct interpolation for the N4SID-based 
parametric aeroelastic ROM.  

An effective avenue to address the strong depend-
ence of ROM state consistence and interpolation on flight 
parameters is to decrease the grid spacing at the flutter 
regime. Figure 13 shows the results of the interpolated 
ROM at Mach = 0.85 using the Mach step size of 0.05, 

viz., ROMs at the grid point of Mach = 0.825 and 0.875 
are used for interpolation to enhance state consistence 
among neighboring points. It is evident that the ROM pre-
diction accuracy is dramatically improved. However, it can 
be seen in Table 4 that even with the Mach step size of 
0.05, the error between the ROM and FOM/CFD at Mach 
= 0.925 is still appreciable and reaches up to 27.7%. To 
further boost ROM state consistence between grid points 
and interpolation accuracy, the local flight regime (i.e., the 
flutter regime) is again refined with a smaller Mach step 
size of 0.01, viz., interpolating ROMs at the grid point of 
Mach = 0.92 and 0.93. Table 5 shows the results of the new 
interpolated ROM and its comparison against the FOM in 
GAF. We can see that while only the local range (around 
Mach = 0.92) is refined, the state consistence and inter-
polation accuracy is improved significantly. This confirms 
that an accurate parametric ROM at non-grid points can 
be achieved through the adaptation and refinement of 
offline ROM database grid spacing and improvement in 
state consistence. Table 4 also shows that below the flut-
ter regime the implementation of a finer grid to a Mach 
step size of 0.05 is adequate for interpolation to construct 
ROMs at non-grid points, while the GAF and GD results are 
not plotted here to avoid being repetitive Fig. 14.   

It should be noted that while system matrix interpola-
tion is desirable and has been shown to be effective with 
grid refinement, it is observed in Tables 3 and 4 that it is 
a fairly sensitive method, meaning it potentially requires 
a fine grid spacing. This is because each element in the 
matrix has an individual contribution to the fundamen-
tal characteristics of the system (such as eigen-frequency, 
poles, and others) with respect to the other matrix ele-
ments. This means that some of the characteristics may be 

Fig. 13  Comparison of GAF in 
aeroelastic response between 
interpolated ARX aeroelastic 
ROM and FOM/CFD at Mach = 
0.85 with a Mach step size of 
0.05 for interpolation

Table 4  Prediction errors of interpolated AE-ROM (ARX) with a 
Mach step size of 0.05

Mach GAF Error (%) GD Error (%)

0.80 0.16 0.16
0.85 1.96 2.36
0.90 12.89 15.51
0.925 27.69 24.27

Table 5  Prediction errors of interpolated AE-ROM (ARX) with a 
Mach step size of 0.01

Mach GAF Error (%) GD Error (%)

0.90 1.09 1.23
0.91 0.95 1.01
0.92 0.77 0.68
0.925 2.57 2.20
0.93 2.35 2.01
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notably sensitive to particular matrix elements or combi-
nations of elements (and interpolation on those elements), 
leading to sensitive prediction errors. This is particularly 
important when dealing with the ARX ROM matrices. Since 
they are very similar to each other over the Mach range, 
a small variation of a particular element could have a sig-
nificant impact on the results.

3.4.2  Angle of attack parameter space

Next, a similar interpolation and grid refinement scheme is 
carried out for the second parameter, AoA. As mentioned 

previously, this is a one-dimensional parameter space, 
holding Mach = 0.5 while varying AoA from 0° to 5.5°. Fig-
ure 14 shows the results of the ROM obtained by system 
matrix interpolation at an AoA of 2° using a step size of 
2°. That is, ROMs at AoA = 1° and 3° are used to interpo-
late to obtain ROM at AoA = 2°. Table 6 shows the results 
for the whole grid resolution and step size. First it is clear 
that the step size is too large for matrix interpolation as 
the results are non-physical indicated by divergence of 
both GAFs and GDs, which again is attributed to the fact 
that matrix interpolation is sensitive to the step size of 
interpolation as elements in system matrices contribute 
differently to dynamics and modal characteristics of the 
interpolated ROM. Table 7 shows the interpolation errors 
in the parameter space of AoA using a step size of AoA = 
1°. It again shows that resolving the grid spacing increases 
accuracy. However, using a step size of 1° is still inadequate 
to resolve the local aeroelastic behavior around AoA = 1°, 
and a second refinement is required. Note that the inter-
polation error is not necessarily always trending higher 
at higher AoAs. This is because aeroelasticity of the sys-
tem does not become more nonlinear as AoA increases 

Fig. 14  Comparison of GAF in aeroelastic response between interpolated AE-ROM and FOM/CFD at AoA = 2° with an AoA step size of 2°

Table 6  Prediction errors of interpolated AE-ROM (ARX) with an 
AoA step size of 2°

AoA (°) GAF Error (%) GD Error (%)

1.0 4.88e+114 1.54e+111
2.0 6.52e+16 3.71e+15
3.0 26.01 25.29
4.0 4.61e+13 1.04e+10

Table 7  Prediction errors of 
interpolated AE-ROM (ARX) 
with an AoA step size of 1°

AoA (°) GAF Error (%) GD Error (%) AoA (°) GAF Error (%) GD Error (%)

0.5 22.20 28.55 3.0 2.23 1.44
1.0 9.36e+14 2.14e+14 3.5 4.36 3.83
1.5 6.24 8.79 4.0 2.11 2.02
2.0 8.46 8.57 4.5 5.32 4.53
2.5 4.43 5.12 5.0 12.34 14.72
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towards a specific point as it does with the Mach param-
eter space towards flutter. In fact, as shown in Fig. 15, the 
system actually becomes more damped as AoA increases. 
This is likely due to larger initial equilibrium load and dis-
placement at the larger AoAs. This artificially stiffens the 
system in terms of perturbations about the equilibrium 
point because not only does the displacement have less 
distance to go before it reaches its restoring point, but it is 
more difficult to return to equilibrium (or go past it) due to 
the increased force on the wing. The locations of the high 
error are likely due to the slightly less consistent matrix 
elements observed in Fig. 6b.  

Figures 16 and 17 show the second grid refinement 
used to improve state consistence and interpolation 
accuracy, in particular, at AoA = 1° and 2°. We can see that 

the interpolated ROM and FOM/CFD match very well in 
GAF. Table 8 shows the interpolation errors with a step 
size of 0.5° throughout the parameter space. The error at 
AoA = 5° is still notable, however, the parameter space of 
AoA = 0°−4.75° is resolved reasonably well. As with the 
Mach parameter space, there are local areas that may not 
require uniform spacing, which can be accomplished with 
adaptive sampling. This will be explored in future work. 
In terms of computational performance, our coupled AE-
ROM engines demonstrated excellent accuracy with rela-
tive error generally <5%.  

The computational time for CFD training simulation 
(Step 2.1-2.3 in Sect 2.1), ROM construction (Step 3), veri-
fication simulation using CFD or ROM is listed in Table 9. 
Due to the license and the ITAR-requirements of the 

Fig. 15  AoA downrange view 
of the first GD about the aeroe-
lastic equilibrium point

Fig. 16  Comparison of GAF in 
aeroelastic response between 
interpolated AE-ROM and 
FOM/CFD at AoA = 1° with an 
AoA step size of 0.5°
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software, CFD simulation and ROM are conducted on dif-
ferent computing platforms. Although a direct compari-
son in speedup is not made, it is apparent that ROM can 
be simulated at a very fast speed. It should be noted that 
CFD training simulation is a one-time cost. The generated 
ROM can be simulated with different model configura-
tions and scenarios, such as different initial conditions, 

physical simulation time, and controller design. The estab-
lished ROM database can also be used to obtain ROMs at 
non-grid flight conditions where the ROM is not initially 
available.

4  Conclusions

The state consistence of the data-driven parametric ROMs 
in the state-space form obtained by different system iden-
tification methods for coupled aeroelastic analysis within 
a broad flight regime is systematically studied. In order to 
construct parametric ROMs, the flight regime is first par-
titioned using grid points, where high-fidelity CFD simu-
lation is conducted to generate training and verification 
data. Local A-ROMs at grid points capturing the relation-
ship between the GAFs and GD are then built using two 
different system identification methods for comparison, 
such as the N4SID and ARX, yielding a parametric A-ROM 
database that covers the entire flight parameter space. The 
A-ROM at any location (non-grid point) within the flight 
envelope is obtained by interpolating the system matrices 
[A, B, C, D] of the ROMs at the neighboring grid points. The 

Fig. 17  Comparison of GAF in 
aeroelastic response between 
interpolated AE-ROM and 
FOM/CFD at AoA = 2° with an 
AoA step size of 0.5°

Table 8  Prediction errors of interpolated AE-ROM (ARX) with an 
AoA step size of 0.5°

AoA (°) GAF Error GD Error AoA (°) GAF Error GD Error

0.25 3.11 2.88 2.75 1.44 1.48
0.50 4.63 5.32 3.00 2.48 3.10
0.75 1.85 2.14 3.25 4.33 5.10
1.00 1.87 0.60 3.50 5.31 6.98
1.25 1.75 2.14 3.75 3.71 6.20
1.50 3.30 3.70 4.00 2.45 2.05
1.75 2.49 2.10 4.25 1.90 2.79
2.00 2.98 1.76 4.50 1.93 2.49
2.25 4.55 5.45 4.75 4.30 7.37
2.50 3.73 3.23 5.00 8.82 10.34

Table 9  Computational time of CFD training simulation, ROM construction, and CFD and ROM verification simulation

Simulation Type Time Computing hardware

Training simulation Steady-state CFD (Step 2.1) 5.8 mins Dual Intel Xeon CPU E5-2680 v4 (14 Cores), 2 Nodes
Static Aeroelastic CFD (Step 2.2) 3.08 Hrs Dual Intel Xeon CPU E5-2680 v4 (14 Cores), 4 Nodes
Dynamic Aeroelastic CFD (Step 2.3) 4.4 Hrs

ROM generation System Identification/ARX (Step 3) 0.4 secs Dual Intel Xeon CPU E5-2690 v4 (14 Cores), 1 Node
Verification simulation Dynamic Aeroelastic (CFD) 5.0 Hrs Dual Intel Xeon CPU E5-2680 v4 (14 Cores), 4 Nodes

Dynamic Aeroelstic (ROM) 0.01-0.03 secs Dual Intel Xeon CPU E5-2690 v4 (14 Cores), 1 Node
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interpolated A-ROM is then coupled with the mode-based 
S-ROMs in the form of the state-space model for coupled 
aeroelastic analysis under various flight conditions.

The case studies to evaluate the state consistence of 
ROMs are carried out. Although both N4SID and ARX con-
struct accurate A-ROMs and AE-ROMs at the grid point, it 
is found that ARX exhibits salient state consistence, which 
is confirmed by the continuous variation of the matrix 
elements and smooth migration of the interpolated ROM 
poles across flight parameter space. In contrast, N4SID 
ROM cannot generate state consistent A-ROMs and yield 
physically meaningless interpolation. It can be attributed 
to the nature of these methods, specifically, ARX uses the 
least squares to directly capture the relationship between 
physical inputs and outputs without intermediate basis 
vector computation or ranking/sorting steps, and the 
state-space model obtained from the companion form 
that uses physical GAF and GD as the states, which is 
fundamentally different from the approaches based on 
SVD, such as N4SID. Therefore, ARX allows direct inter-
polation of model system matrices to generate A-ROMs 
at non-grid flight conditions. In terms of parametric AE-
ROM construction, it is noted that the demand for the 
grid points to resolve non-uniform aerodynamic behav-
ior depends on the flight regime. When approaching the 
flutter or transonic regime, more grid points (and offline 
ROM construction) would be needed therein to enhance 
state consistence between them for accurate construction 
of parametric ROMs. Also, although desirable and efficient 
for online ROM computation and control engagement. For 
the benchmark cases presented, our coupled AE-ROMs 
demonstrate excellent accuracy with relative error <5%, 
and in general the AE- ROM only takes ~0.01-0.03 seconds.

This effort provides a path forward to optimally train 
and construct a parametric aeroelastic ROM database with 
state consistence. The future work will focus on (1) extend-
ing the state consistent aeroelastic ROM to higher-dimen-
sional parameter space and more complex vehicles; and 
(2) develop adaptive sampling scheme and error estimator 
to automatically select the flight regimes for adaptive grid 
refinement.
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Appendix 1: Numerical Algorithm 
for Subspace State Space System 
Identification (N4SID)

The state-space model of the combined deterministic-
stochastic system used in N4SID is defined as:

where �(k) and �(k) are the process and the measurement 
noise at the k-th time instance with covariance matrices 
E
[
�k�

T

k

]
= � , E

[
�k�

T

k

]
= � , and E

[
�k�

T

k

]
= � [69]. The 

first step of N4SID arranges the input �sc and output data 
into Hankel signal matrices �̂p

sc , �̂f
sc

 , �̂p

f
 , and �̂f

f
 , where the 

superscript p and f  denote the past and future, respec-
tively. The oblique projection method is first applied to 
�̂

p
sc , �̂f

sc
 , �̂p

f
 , and �̂f

f

Note that the operator P̂
�

�
(�) indicates the oblique pro-

jection of � along � onto � . The singular value decomposi-
tion (SVD) of � yields:

where � is the matrix consisting of left-singular vectors; 
� is the diagonal matrix of singular values; � is the matrix 
for right-singular vectors; and the subscript 1 means the 
retained components in � , � , and � of SVD corresponding 
to non-zero singular values � . The state vector then can 
be estimated by:

Through Eq. (15), the state sequences can be deter-
mined as

(12)
�(k + 1) = ��(k) + ��(k) + �(k)

�(k) = ��(k) + ��(k) + �(k)

(13)� ∶= P̂
�̂f

f

�̂f
sc

([
�̂

p

f

�̂
p
sc

])

(14)� = ���T =
[
�1 �2

][ �1 0

0 0

][
�T

1

�T
2

]
= �1�1�

T

1

(15)� = �
1∕2

1
�T

1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:267 | https://doi.org/10.1007/s42452-021-04252-w

where Nt is the number of the data points used in the sys-
tem identification. The matrices of the state-space model 
� , � , � , and � are estimated after forming a set of linear 
equations, and the solution can be obtained by applying 
the least-square regression

Appendix 2: Moving Mesh Algorithm

In FUN3D, the general aerodynamic and aeroelastic CFD 
simulation package developed by NASA, the general mesh 
deformation algorithm is formulated as a linear elasticity 
problem for the varying geometry. From the definition 
of the linear elasticity equations where body forces are 
neglected, Gauss Theorem in a differential form of a con-
trol volume is written as

where � represents the displacement vector, i.e., 
� =

[
z1, z2, z3

]T
 , � and � are the material properties define 

as a function of Young’s modulus and Poisson’s ratio [70], 
and 

=

� denotes the identity tensor. Then,

 � here is expressed by the sum of an initial guess and 
displacement, i.e., � = �0 + Δ� ; ��el

��
 is the Jacobian matrix 

independent of � . The generalized minimum residual 
method is utilized to obtain the solution of Eq. (19), which 
is the displacement vector. Then, a CFD mesh is updated 
for deformation.
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