
Vol.:(0123456789)

SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x

Research Article

IoT‑based group size prediction and recommendation system using
machine learning and deep learning techniques

Deepti Chopra1  · Arvinder Kaur1

Received: 28 July 2020 / Accepted: 5 January 2021 / Published online: 20 January 2021
© The Author(s) 2021   OPEN

Abstract
In an open source software development environment, it is hard to decide the number of group members required for
resolving software issues. Developers generally reply to issues based totally on their domain knowledge and interest,
and there are no predetermined groups. The developers openly collaborate on resolving the issues based on many fac-
tors, such as their interest, domain expertise, and availability. This study compares eight different algorithms employing
machine learning and deep learning, namely—Convolutional Neural Network, Multilayer Perceptron, Classification and
Regression Trees, Generalized Linear Model, Bayesian Additive Regression Trees, Gaussian Process, Random Forest and
Conditional Inference Tree for predicting group size in five open source software projects developed and managed
using an open source development framework GitHub. The social information foraging model has also been extended
to predict group size in software issues, and its results compared to those obtained using machine learning and deep
learning algorithms. The prediction results suggest that deep learning and machine learning models predict better than
the extended social information foraging model, while the best-ranked model is a deep multilayer perceptron((R.M.S.E.
sequelize—1.21, opencv—1.17, bitcoin—1.05, aseprite—1.01, electron—1.16). Also it was observed that issue labels
helped improve the prediction performance of the machine learning and deep learning models. The prediction results
of these models have been used to build an Issue Group Recommendation System as an Internet of Things application
that recommends and alerts additional developers to help resolve an open issue.

Keywords  Internet of things · Machine learning · Deep learning · Software repositories · Open source software
development · Edge computing

1  Introduction

Open source software development [1, 2] is different from
proprietary software development. While proprietary
software does not provide source code to the users, open
source software, on the other hand, makes the source
code available to the world, allowing them to redistribute
original or modified versions. Open source software (O.S.S.)
not only makes free software available to the world but
also changed the way software development worked until
then. It allowed a collaborative and distributed software

development environment [3], which allowed software
developers to collaborate with developers from across
the globe.

The team size in a software organization is mostly
determined by project managers through careful plan-
ning using various effort estimation methods. Effort
estimation can be done using various methods such as
analogies with past projects [4, 5] and machine learning
[6–8], among others. Managers use effort estimates to
determine the number of people on a team and assign
people with the required skills to the relevant teams. In an

 *  Deepti Chopra, dchopra27@gmail.com; Arvinder Kaur, arvinder70@gmail.com | 1University School of Information and Communication
Technology (U.S.I.C.T.), Guru Gobind Singh Indraprastha University (G.G.S.I.P.U.), New Delhi, India.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-021-04162-x&domain=pdf
http://orcid.org/0000-0002-4355-8034

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x

O.S.S. development environment, estimating group size
for a task is not that simple. The developers of open source
software work in a collaborative environment, and why
they decide to contribute to a particular task is still not
clear. A lot of research has been attempted to determine
patterns in the participation of O.S.S. developers [9–11].
However, since the developers undertake the respon-
sibility of a particular task or issue at their own will and
interests, hence in O.S.S. development group size cannot
be fixed by a single person. Bhowmik et al. [12] used the
social information foraging model [13] to predict optimal
group size in software change tasks. The optimal group
size was determined for software change tasks by associat-
ing productivity with group size. In this paper, the group
size prediction has been made for software issues reported
in an open source development environment. Issues are
any task, feature enhancement requests, and bugs that are
reported for the software. Unlike change tasks, issues may
or may not involve changes to the software. Change tasks
are mostly carried out to add features, bug resolution, and
maintenance activities after thorough analysis. In contrast,
issues are reported and resolved by the open source devel-
opment community and do not necessarily require any
changes in the software. Some issues may be resolved just
by providing required guidance to the initiator of the issue.
It is essential to predict the group size for software issues
so that they can be resolved quickly and efficiently. Predic-
tion of group size may help get the required number of
people to work on the issue and thus minimize the issue’s
resolution time. An estimation of the group size helps in
planning for faster resolution of the software issue at hand.
For instance, if the actual group size is less than the pre-
dicted group size and there are many pending tasks (i.e.,
tasks which have no developer assigned) for issue resolu-
tion, this estimation will suggest to the project members
that more developers are required for resolution of the
issue. Thus group size prediction is essential even in the
O.S.S. development environment for better planning and
resource utilization. We extend the social information
foraging approach used to predict optimal group size in
software change tasks given by Bhowmik et al. [12] and
apply it for prediction of group size in software issues. We
also apply eight algorithms employing machine learning
and deep learning, namely, Convolutional Neural Network
(CNN), Multilayer Perceptron (M.L.P.), Classification and
Regression Trees (CaRT), Generalized Linear Model, Bayes-
ian Additive Regression Trees, Gaussian Process, Random
Forest, and Conditional Inference Tree to predict group
size based on past issues in the software project. Employ-
ing machine learning and deep learning methods not only
helps in faster and automated decision making but also
have the capability to continuously improve the results as
more historical data becomes available for learning.

We further compare the extended social information
foraging model results to those obtained using machine
learning and deep learning algorithms. Predicting group
size is only beneficial if we can use it to recommend and
alert the developers that may help resolve the issue effi-
ciently. For this reason, we propose I.G.R.S., an IoT-based
recommendation system that uses the prediction done
by a machine learning or deep learning model to recom-
mend/not recommend additional developers on the issue.
This IoT based application can use platforms like cloud and
edge computing to perform the analysis. An IoT-based
I.G.R.S. will not only recommend additional developers
for quick resolution of software issues but also alert them
on their IoT devices. This way, an unresolved issue can be
brought to the attention of developers who have resolved
similar issues in the past, who may then choose to join the
issue resolution group. Thus an IoT-based I.G.R.S. would
help speed up issue resolution by alerting potential resolv-
ers, rather than just waiting for a developer to notice the
issue on its own and picking it up for resolution.

The background and related work for our research is
described in Sect. 2. The research approach is presented
in Sect. 3, and the analysis of results is done in Sect. 4. Sec-
tion 5 discusses the threats to the validity of the proposed
model. Section 6 proposes the Issue Group Recommen-
dation System (I.G.R.S.), and finally, Sect. 7 concludes this
study.

2 � Background and related work

Group size for handling software issues is generally prede-
termined and fixed for proprietary software. In the case of
O.S.S., which is developed in a collaborative community-
based approach, this group size is not fixed and predeter-
mined by a manager, i.e., anyone can contribute on topics
of their interest [14]. While group size prediction is made
using various effort estimation models [15–17] in the case
of proprietary software, for O.S.S., such an approach can-
not be used. In this study, we extend the social informa-
tion foraging model of predicting optimal group size for
software change tasks given by Bhowmik et al. [12] for
prediction of group size in software issues. Further, we
also apply eight different techniques employing machine
learning/deep learning algorithms namely, Convolutional
Neural Network (CNN), Multilayer Perceptron (M.L.P.), Clas-
sification and Regression Trees (CaRT), Generalized Linear
Model, Bayesian Additive Regression Trees, Gaussian Pro-
cess, Random Forest and Conditional Inference Tree for
predicting group size in five open source software pro-
jects. In Sect. 2.1, an overview of social information for-
aging [13] model has been provided, while Sect. 2.2–2.9
describe Convolutional Neural Network (CNN), Multilayer

Vol.:(0123456789)

SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x	 Research Article

Perceptron (M.L.P.), Classification and Regression Trees
(CaRT), Generalized Linear Model, Bayesian Additive
Regression Trees, Gaussian Process, Random Forest and
Conditional Inference Tree techniques.

2.1 � Social information foraging

Information foraging theory was given by Pirolli [18], and
it attempts to model the information-seeking pattern of
users on the Web, analogous to optimal foraging theory in
biology [19]. Optimal foraging in the context of informa-
tion seeking aims at maximizing the information gain per
unit of foraging. If each valuable information site is taken
as a patch, a web user is either collecting information from
a relevant patch or searching for a valuable patch. Let the
time that is spent collecting information from a valuable
patch be called inside-patch search time (denoted by tIS),
and the time that is spent searching for a valuable patch
be called the outside-patch search time (denoted by tOS).
The information foraging environment can be illustrated,
as shown in Fig. 1. The Information Gain (denoted by I) can
thus be depicted as in (1), where G denotes the expected
net gain.

Pirolli [13] augmented the information foraging theory
to a social environment such as an O.S.S. development
environment with multiple users to formulate the social
information foraging theory. The major hypothesis in
social information foraging is that hints are shared regard-
ing the potential location of valuable data. Apart from the
signs obvious in the environment, foragers also profit from
the hints shared by the community. Information Gain for
an individual in a group on n foragers can be depicted as
follows: [12]. Let the time taken by an individual forager
for processing a patch in a group consisting of n foragers
be denoted by τ(n) = cnz, where 0 < z < 1 is the rate param-
eter, and c depicts the time spent foraging for a patch in a
solo environment. The information gain for a single group
member is then given by G/n. Similarly, let λ(n) represent

(1)I =
G

tIS + tOS

the individual search rate. Thus the search rate for a group
of n foragers becomes n · λ(n). Hence the expected time
for n foragers required for finding a valuable information
patch will be tV = 1/[n λ(n)]. If λ(H) depicts the rate of dis-
covering valuable patches of information with H distinct
hints. Then the outside-patch search time and inside-
patch search time for n foragers is tOS = λ(H)/[n·λ(n)] and
tIS = τ(n)/[n · λ(n)] respectively. Thus the information gain
for an individual member of a group of n foragers can be
given by (2).

In this paper, the social information foraging theory
model has been extended for predicting group size for
software issues from five different software projects on the
GitHub repository. The extended social information forag-
ing model required for predicting group size of software
issues in O.S.S. development environments is described
in Sect. 3.2.1.

2.2 � Convolutional neural network (CNN)

A Convolutional Neural Network (CNN) [20] is a deep learn-
ing technique that consists of an input layer, an output
layer, and multiple hidden layers. These hidden layers are
generally composed of a sequence of convolutional layers.
A convolutional layer simply applies a filter to an input,
which results in activation. When there are multiple con-
volutional layers, repeatedly applying the same filter to an
input returns a feature map. The feature map suggests the
strength and location of a detected feature in an input. The
novelty of CNN is its capability to automatically learn not
one but multiple filters in parallel for a particular training
dataset and prediction problem. CNN is a quite popular
technique for image and video classification [21–25]. Apart
from that, it has also been used for medical diagnosis [26],
computer vision [27], and weather analysis [28], among
other applications.

2.3 � Multilayer perceptron (M.L.P.)

A multilayer perceptron (M.L.P.) [29, 30] is an artificial neu-
ral network used for deep learning. An M.L.P. consists of an
input layer to obtain the input, an output layer that returns
the prediction result about the input, and several hidden
layers acting as computational engines of the M.L.P. In fact,
M.L.P.s are so powerful that an M.L.P. with only one hidden
layer can approximate all continuous functions. M.L.P. is
used for supervised learning problems, where the neural
network trains on a training dataset. The training process

(2)

I(n,H) =
G∕n

tV + tOS + tIS
=

G∕n

1

n.�(n)
+

�(H)

n.�(n)
+

�(n)

n.�(n)

=
�(n).G

1 + �(H) + �(n)

Fig. 1   Information foraging environment

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x

adjusts the parameters, including weights and biases,
such that the resulting model minimizes the error prob-
ably using backpropagation. An M.L.P. generally works in
two passes:

•	 Forward pass—In this, the input moves from the input
layer through the hidden layers to finally the output
layer, and the prediction made by the output layer is
measured against the actual labels.

•	 Backward pass—This employs backpropagation. Back-
propagation calculates the gradient of the loss function
with respect to the weights of the network for each
sample. The backpropagation algorithm calculates
the gradient of the loss function with respect to each
weight, calculating the gradient one layer at a time,
iterating backward from the last layer. The weights
were updated to minimize loss until changing the
weights has no impact.

M.L.P. is used extensively for classification [31, 32] and
pattern recognition [33, 34] in various fields such as medi-
cal science [31, 32], communication systems and networks
[35, 36], and software maintainability [37, 38].

2.4 � Classification and regression trees (CaRT)

CaRT is a machine‐learning model that constructs a predic-
tion tree using a dataset [39, 40]. The results of the model
are determined by recursively dividing the dataset and
then fitting a straightforward prediction model for each
division of the dataset. These divisions can be represented
as a decision tree [41]. Decision trees in machine learn-
ing have been used for both classification and regression.
Classification trees are generally intended for predicting
variables that can take a value belonging to a finite set of
unordered values, and the error in prediction is measured
as miss-classification cost. Regression trees are used for
predicting variables that can take continuous or ordered
values, with the error in prediction being commonly esti-
mated by measures like mean absolute error (M.A.E.) and
root mean square error (R.M.S.E.). There have been many
applications of CaRT in areas such as finance [42], health
care [43, 44], computer networks [45], remote sensing [46],
and software engineering [6, 47, 48].

2.5 � Generalized linear model

Generalized Linear Model (G.L.M.) [49] is a universal gen-
eralization of standard linear regression that considers
predictors that have error distribution other than a nor-
mal distribution. The G.L.M. generalizes the linear model
by permitting the linear model to be identified with the
predictor variable through a link function and permitting

every measure’s variance to be a function of its predicted
value.

The generalized linear model unifies various other sta-
tistical models such as linear regression, logistic regres-
sion, and Poisson regression. Unlike linear regression,
which works only in case of normal distribution, G.L.M.
works for all types of distribution. Hence there are many
applications of G.L.M. such as for prediction [50, 51], pat-
tern recognition [52], and trend analysis [53].

2.6 � Bayesian additive regression trees

Bayesian additive regression trees (B.A.R.T.) [54] is a flexible
machine learning algorithm. It is considered flexible since
it is able to handle nonlinear predictors and multi-way
interactions. It relies on an underlying Bayesian probabil-
ity model. In fact, B.A.R.T. provides a Bayesian approach for
nonparametric function estimation using regression trees.
Regression trees carry out a recursive binary partitioning
of predictor space for approximating the value of some
unknown function, say f. The predictor space dimension is
equal to the number of variables used for prediction, say p.

B.A.R.T. is a sum-of-trees model, whose estimation
approach relies on a Bayesian probability model. The
B.A.R.T. model can be expressed as given in (3).

where Y represents the n × 1 output vector of predicted
values, X represents the n × p predictors matrix, and E rep-
resents the n × 1 noise vector. The value of f(X) is calculated
using the sum of trees approach. There is a wide range
of applications for the B.A.R.T. model, such as prediction
of avalanches on mountain area roads [55], prediction of
interaction of transcription factors with D.N.A. [56], and
rain forecasting [57].

2.7 � Gaussian process

The Gaussian process is nothing but a stochastic process
such that the finite collection of random variables has
a multivariate normal distribution. A Gaussian process
machine-learning algorithm [58] employs lazy learning
and a measure that determines the similarity between
points (known as kernel function) for predicting the value
of unseen data.

The prediction not only gives an estimate for that data
point but also provides uncertainty information. For sim-
ple kernel functions, matrix algebra is utilized to calculate
the predicted values using the kriging technique [59]. For
a more sophisticated kernel, optimization approaches are
utilized for fitting a Gaussian process model. There are vari-
ous applications of Gaussian process machine learning,

(3)Y = f (X) + E

Vol.:(0123456789)

SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x	 Research Article

including slope stability evaluation [60], traffic flow pre-
diction [61], and black-box modeling of bio-systems [62].

2.8 � Random forest

Random forests [63] are a popular machine learning model
used for classification, regression, and other tasks. Random
forests construct a large number of decision trees using a
training dataset and while predicting it took the mode of
the classifications or mean value (in case of regression).
In this way, Random forests try to correct the overfitting
to the training dataset done by individual decision trees.

The basic principle of Random forest is that the decision
made by a group of unrelated models is going to be better
than the decision of a single tree alone. The advantage of
having multiple decision trees or, as we call it, a forest of
decision trees is that while some of the trees may predict
wrong and have large errors, but as a group, we get a pre-
diction in the correct direction and mostly better than that
given by a single tree alone. As a result, there are many
applications of random forest, such as fault prediction [64,
65], anomaly detection [66], and cancer diagnosis [67].

2.9 � Conditional inference tree

Conditional Inference tree [68] is a nonparametric decision
tree approach that employs unbiased recursive partition-
ing. It selects the predictor variables using permutation-
based significance tests instead of selecting a predictor
that maximizes information measures like information

gain. It thus eliminates the biasness that other decision
trees have towards the variable that maximizes the infor-
mation measure. It uses multiple test procedures to decide
when no significant correlation exists between any of the
predictor variables and the predicted variable and then
decides to stop the recursion and state the prediction. The
conditional inference trees have been used in many appli-
cations like reliability analysis of automobile engines [69],
crash severity analysis of asteroid corridors [70], among
others.

3 � Research methodology

One of the primary objectives of this study is to propose a
model for predicting group size for software issues in an
O.S.S. development environment, which in turn feeds the
I.G.R.S. that recommends and alerts the developers that
may be helpful for quick and efficient resolution of the
software issue. The research methodology is depicted in
Fig. 2. The first step involves project selection and data
extraction, which is described in Sect. 3.1. In the second
step, the extended social information foraging model and
the different machine learning/ deep learning algorithms
are applied to predict the group size of software issues.
These prediction approaches are summarized in Sect. 3.2.
Finally, the results of the prediction approaches are
compared based on the evaluation measures described
in Sect. 3.3. The predictions of machine learning/ deep

Fig. 2   Research methodology

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x

learning algorithms are also fed to the IoT-based I.G.R.S.,
which is proposed in Sect. 6.

3.1 � Project selection and data extraction

The machine learning and deep learning models and
extended social information foraging model are applied
to software issues data of five different software projects:
sequelize, opencv, bitcoin, aseprite, and electron. All
these five software projects are developed and managed
in an open source environment. More specifically, it uses
GitHub, which is a Web based community of open source
developers and helps developers collaborate around the
globe. Table 1 provides a brief description of the five soft-
ware projects that we selected for our analysis.

Issues can be classified as either open issue or closed
issue. A closed issue is an issue that has been resolved,
while an open issue is an issue that has not yet been
resolved and is currently under discussion. While collecting
the data for our prediction models, only the closed issues
were considered since the group size may be unstable for
open issues. The data collected for each issue includes the
following fields:

•	 Issue number—is used for uniquely identifying an
issue.

•	 Open date—represents the date on which the issue
was raised.

•	 Close date—represents the date on which the issue
was marked as resolved.

•	 Group size—represents the total number of partici-
pants that contribute towards issue resolution.

•	 Number of Comments (N.O.C.)—is the total comments
made by participants while discussing the issue.

•	 Issue Label—used for describing the issue type, cat-
egory, location, etc.

•	 Duration—is the number of days between issue close
Date and issue open Date.

The data extraction process was performed using R pro-
gramming with the help of the rvest package to scrape
the relevant data from GitHub. It included two significant
steps. First, the URLs of closed issues were extracted and
stored in a CSV file. Second, for each issue using the URL
from the CSV file, the above data fields were extracted
using appropriate CSS selectors and regular expressions.

3.2 � Prediction models

The extended social information foraging and the param-
eters for machine learning and deep learning models are
described in the subsections below, and their results are
analyzed in Sect. 4.

3.2.1 � Extended social information foraging model

The predictions of various machine learning and deep
learning models are compared with the group size predic-
tion done by modifying the model given by Bhowmik et al.
[12] for optimal group size prediction of software change
tasks. Optimal group size prediction for software issues is
made by setting up the parameters in (2) as:

(a)	 Every issue is viewed as a patch wherein social or solo
information foraging can happen. An issue is taken to
be a solo patch if just a single individual handles the
issue; else, it is viewed as a social patch.

(b)	 Similar to Pirolli [13] let n (group size) = H, and the in-
patch information gain G be equivalent to the quan-
tity of hints (denoted by H). Subsequently n = G = H
[12].

(c)	 The group rate of discovering significant information
λ(H) = λ(n) = duration of the issue [12], which is calcu-
lated using issue open and close time.

(d)	 The time taken by an individual forager to process
a patch in a group comprising of n foragers, i.e.,
τ(n) = cnz, is determined by setting aside c (solo for-
aging effort) to be equivalent to the average dura-

Table 1   Selected software projects

Project Sequelize Opencv Bitcoin Aseprite Electron

Issues URL https​://githu​b.com/
seque​lize/seque​lize/
issue​s

https​://githu​b.com/
openc​v/openc​v/
issue​s

https​://githu​b.com/
bitco​in/bitco​in/
issue​s

https​://githu​b.com/
asepr​ite/asepr​ite/
issue​s

https​://githu​b.com/
elect​ron/elect​
ron/issue​s

Programming lan-
guage

JavaSript C++ C++ C++ C++

Number of contribu-
tors

683 1114 688 42 932

Analysis begin date 20-Aug-10 27-Jul-15 22-Jan-13 20-Aug-14 05-Jun-13
Analysis end date 11-May-18 16-Mar-20 16-Mar-20 16-Mar-20 16-Mar-20
Number of issues 6317 4625 4512 1320 11,420

https://github.com/sequelize/sequelize/issues
https://github.com/sequelize/sequelize/issues
https://github.com/sequelize/sequelize/issues
https://github.com/opencv/opencv/issues
https://github.com/opencv/opencv/issues
https://github.com/opencv/opencv/issues
https://github.com/bitcoin/bitcoin/issues
https://github.com/bitcoin/bitcoin/issues
https://github.com/bitcoin/bitcoin/issues
https://github.com/aseprite/aseprite/issues
https://github.com/aseprite/aseprite/issues
https://github.com/aseprite/aseprite/issues
https://github.com/electron/electron/issues
https://github.com/electron/electron/issues
https://github.com/electron/electron/issues

Vol.:(0123456789)

SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x	 Research Article

tion of solo patches in the considered time window.
Note that a time window of three months is taken to
predict the ideal group size for issues in the window.
The window depends on the close time of the issue
and not on the open time. The rate parameter z is
aligned to get the best lognormal curve for informa-
tion gain (I(n, H), as depicted in (2)) [13]. For our study,
z is equivalent to 0.3.

(e)	 I(n, H) is then used to decide the ideal group size for
the issues.

3.2.2 � Parameters of machine learning and deep learning
models

Machine learning and deep learning models analyzed in
this study have been described in Sect. 2 already. In this
section, the parameters of the machine learning and deep
learning models are described. Firstly, group size is taken
to be the predicted variable (also known as the depend-
ent variable). N.O.C., issue label, and duration are set up
as predictor variables (also known as independent vari-
ables). The models are also built excluding issue label as
one of the predictor variables since the extended social
information foraging model does not take issue label into
account. The machine learning models are built using the
caret library in R Studio, whereas the deep learning models
are implemented with the help of the keras library. The
configuration parameters of the machine learning and
deep learning models are specified in Table 2.

3.3 � Evaluation measures

An assessment of the prediction models is fundamental for
figuring out which model ought to be favored over others
in real-time prediction. The data gathered is partitioned

into training data (about 80%) and testing data (about
20%). The predicted and actual values of group size for the
test data are utilized to assess the models. A well-known
error metric, i.e., Root Mean Square Error (R.M.S.E.) [71], is
utilized for analyzing the prediction performance of the
models. R.M.S.E. is determined utilizing the formula given
in (4), where pi is the predicted value of group size, oi is the
actual value of group size for the ith issue, and t is the total
number of predictions done.

R.M.S.E. is chosen as error measure over Mean Absolute
Error (M.A.E.) for assessment of models as it gives more
weight to large errors. While predicting group size, we do
not wish the model to make an incredibly colossal error.
Thus a model with lower R.M.S.E. is chosen.

4 � Analysis of results

In this section, the results of the prediction models are
compared. The eight machine learning/ deep learning
models, i.e., Convolutional Neural Network (CNN), Mul-
tilayer Perceptron (M.L.P.), Classification and Regression
Trees (CaRT), Generalized Linear Model, Bayesian Additive
Regression Trees, Gaussian Process, Random Forest and
Conditional Inference Tree, are trained on software issues
data from five software projects, i.e., sequelize, opencv,
bitcoin, aseprite and electron. The models are trained in
two ways, once excluding issue label as one of the predic-
tors and once including it as one of the predictors. Since
the extended social information foraging model does not
take issue label into account for predicting optimal group

(4)R.M.S.E . =

�

∑n

i=1
(pi − oi)

2

t

Table 2   Configuration
parameters for prediction
models

Prediction Model Configuration parameters

CNN No. of hidden layers = 3
Hidden layer 1—nodes = 10, activation function = ”relu”
Hidden layer 2—nodes = 5, activation function = ”relu”
Hidden layer 3—nodes = 1

Multilayer perceptron No. of hidden layers = 3
Hidden layer 1—nodes = 5, activation function = ”relu”
Hidden layer 2—nodes = 2, activation function = ”relu”
Hidden layer 3—nodes = 1, activation function = ”linear”

CART​ Method = rpart, cp = 0.01
GLM Method = glm
BART​ Method = bartMachine, num_trees = 50, k = 2,

alpha = 0.95, beta = 2, nu = 3
Gaussian process Method = gaussprLinear
Random forest Method = rf, mtry = 2
Conditional inference tree Method = ctree, mincriterion = 0.95

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x

size, its prediction results are compared with models built
excluding issue label as a predictor.

4.1 � Results excluding issue label as a predictor

Firstly, let us consider the performance of machine learn-
ing and deep learning models, excluding issue label as
one of the predictors, and compare the results with those
of the extended social information foraging model. The
R.M.S.E. values are depicted in Table 3. Figure 3, 4, 5, 6, 7
display these results graphically.

Figure 3 depicts the results for sequelize project. It
can be clearly seen that machine learning and deep
learning models perform better than the Extended
social information foraging model (R.M.S.E. = 3.13).
Also amongst the machine learning and deep learning
models the minimum prediction error was obtained
for CNN (RMSE = 1.18), followed by M.L.P. (RMSE = 1.21),
Random Forest (RMSE = 1.38), B.A.R.T. (RMSE = 1.65),

Gaussian process (RMSE = 1.65), CART (RMSE = 1.69),
G.L.M. (RMSE = 1.71) and Conditional Inference Tree
(RMSE = 1.89).

Figure 4 depicts the performance of the models on
opencv project. It is noticed that all the machine learn-
ing and deep learning model perform better than the
extended social information foraging model (RMSE = 2.94).
Also MLP (RMSE = 1.17) model gives the best results, fol-
lowed by CNN (RMSE = 1.19), Random Forest (RMSE = 1.23),
BART (RMSE = 1.37), CART (RMSE = 1.54), Gaussian Process
(RMSE = 1.62), GLM (RMSE = 1.65) and Conditional Infer-
ence Tree (RMSE = 1.73).

Figure 5 displays the results for bitcoin project.
It can be clearly seen that all the machine learn-
ing and deep learning models have a lower predic-
tion error than the social information foraging model
(RMSE = 2.67). The minimum error is obtained using CNN
(RMSE = 1.02) model, followed by MLP (RMSE = 1.05),
BART (RMSE = 1.12), Random Forest (RMSE = 1.21),

Table 3   Model results
excluding issue label as a
predictor

Project Sequelize Opencv Bitcoin Aseprite Electron
Model RMSE

CNN 1.18 1.19 1.02 1.02 1.22
Multilayer perceptron 1.21 1.17 1.05 1.01 1.16
CART​ 1.69 1.54 1.56 1.49 1.78
GLM 1.71 1.65 1.72 1.63 1.89
BART​ 1.65 1.37 1.12 1.28 1.59
Gaussian process 1.65 1.62 1.58 1.34 1.67
Random forest 1.38 1.23 1.21 1.08 1.35
Conditional inference tree 1.89 1.73 1.67 1.59 1.45
Extended social information foraging 3.13 2.94 2.67 2.12 3.65

Fig. 3   Results for sequelize
project (excluding issue label)

Vol.:(0123456789)

SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x	 Research Article

Fig. 4   Results for opencv pro-
ject (excluding issue label)

Fig. 5   Results for bitcoin pro-
ject (excluding issue label)

Fig. 6   Results for aseprite pro-
ject (excluding issue label)

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x

CART (RMSE = 1.56), Gaussian Process (RMSE = 1.58),
Conditional Inference Tree (RMSE = 1.67) and GLM
(RMSE = 1.72).

Figure 6 depicts the performance of models for the
issues of aseprite project. It is seen that extended social
information foraging model (RMSE = 2.12) gives the maxi-
mum prediction error. MLP (RMSE = 1.01) model gives the
minimum error, followed by CNN (RMSE = 1.01), Random
Forest (RMSE = 1.08), BART (RMSE = 1.28), Gaussian Process
(RMSE = 1.34), CART (RMSE = 1.49), Conditional Inference
Tree (RMSE = 1.59) and GLM (RMSE = 1.63).

Figure 7 depicts the results for electron project. It is
clearly seen that all the machine learning and deep learn-
ing models outperform the extended social information
foraging model (RMSE = 3.65). The lowest prediction error
is noticed for MLP (RMSE = 1.16) model, followed by CNN
(RMSE = 1.22), Random Forest (RMSE = 1.35), Conditional
Inference Tree (RMSE = 1.45), BART (RMSE = 1.59), Gauss-
ian Process (RMSE = 1.67), CART (RMSE = 1.78) and GLM
(RMSE = 1.89).

The above results clearly show that the Extended social
information foraging model gives the maximum error
for all five software projects. However, there is no single
model that gives the best result in all cases. Therefore in
order to compare the performance of the algorithms, the
Friedman Test is applied to the results. There was a statisti-
cally significant difference in the prediction error depend-
ing on the algorithm used for prediction, χ2(8) = 37.035,
p = 0.000. According to the Friedman test, we get the
average ranks for all models, as given in Table 4. It was
observed that Multilayer Perceptron (M.L.P.) gets Rank 1
and can thus be considered the best performing model
amongst all nine models. It was further noticed that both
deep learning algorithms have a better rank than machine
learning models.

Post hoc analysis using Wilcoxon signed-rank tests
was also conducted with a Bonferroni correction applied,
resulting in a significance level set at p < 0.0014. There
were no significant differences between any of the two
algorithms taken at a time, and for all cases, it was noticed
that p > 0.0014.

4.2 � Results including issue label as a predictor

Secondly, in this section, we analyze the results of the
eight machine learning/ deep learning models, i.e., Con-
volutional Neural Network (CNN), Multilayer Perceptron
(M.L.P.), Classification and Regression Trees (CaRT), Gener-
alized Linear Model, Bayesian Additive Regression Trees,
Gaussian Process, Random Forest and Conditional Infer-
ence Tree including issue label as one of the predictor
variables. Since the extended social information forag-
ing model does not consider issue label for prediction,
its result will be the same as those depicted in Sect. 4.1.

Fig. 7   Results for electron pro-
ject (excluding issue label)

Table 4   Friedman test average ranks

Model Average rank
(obtained using Fried-
man Test)

Assigned
rank

CNN 1.60 2
Multilayer perceptron 1.40 1
CART​ 5.80 6
GLM 7.60 8
BART​ 4.10 4
Gaussian process 5.50 5
Random forest 3.20 3
Conditional inference tree 6.80 7
Extended social information

foraging
9.00 9

Vol.:(0123456789)

SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x	 Research Article

Table 5 displays the R.M.S.E. values obtained by machine
learning and deep learning models when the issue label
is included as one of the predictors.

Figure 8 depicts the RMSE obtained by each of the eight
machine learning and deep learning models for sequelize
project. The minimum error is obtained using CNN
(RMSE = 1.11), followed by MLP (RMSE = 1.15), Random For-
est (RMSE = 1.21), BART (RMSE = 1.59), CART (RMSE = 1.61),
Gaussian Process (RMSE = 1.65), GLM (RMSE = 1.67) and
Conditional Inference Tree (RMSE = 1.77).

Figure 9 displays the results for opencv project for
machine learning and deep learning models, includ-
ing issue label as one of the predictors. It is observed
that minimum prediction error is reported by MLP
(RMSE = 1.06), followed by CNN (RMSE = 1.09), Random For-
est (RMSE = 1.15), BART (RMSE = 1.31), CART (RMSE = 1.38),
GLM (RMSE = 1.56), Gaussian Process (RMSE = 1.62) and
Conditional Inference Tree (RMSE = 1.68).

Figure 10 depicts the results of machine learning and
deep learning models, including the issue label as one
of the predictors for bitcoin software project. The model
that gives minimum prediction error is CNN (RMSE = 1.01),

followed by MLP (RMSE = 1.03), BART (RMSE = 1.12), Ran-
dom Forest (RMSE = 1.16), CART (RMSE = 1.48), Gauss-
ian Process (RMSE = 1.48), Conditional Inference Tree
(RMSE = 1.54) and GLM (RMSE = 1.68).

The results of machine learning and deep learning
models, including issue label as one of the predictors for
aseprite project, are depicted in Fig. 11. The best results
are obtained using MLP (RMSE = 0.94) model, followed
by CNN (RMSE = 0.98), Random Forest (RMSE = 1.01),
BART (RMSE = 1.17), Gaussian Process (RMSE = 1.26), CART
(RMSE = 1.34), Conditional Inference Tree (RMSE = 1.52) and
GLM (RMSE = 1.54).

The R.M.S.E. values for electron project for the eight
machine learning and deep learning models using issue
label as one of the predictors are depicted in Fig. 12.
MLP (RMSE = 1.12) model gives the minimum prediction
error, followed by CNN (RMSE = 1.18), Random Forest
(RMSE = 1.35), Conditional Inference Tree (RMSE = 1.43),
BART (RMSE = 1.48), Gaussian Process (RMSE = 1.62), CART
(RMSE = 1.67) and GLM (RMSE = 1.82).

In order to compare the prediction performance of
the models, the Friedman test is applied. There was

Table 5   Model results
including issue label as a
predictor

Project Sequelize Opencv Bitcoin Aseprite Electron
Model RMSE

CNN 1.11 1.09 1.01 0.98 1.18
Multilayer perceptron 1.15 1.06 1.03 0.94 1.12
CART​ 1.61 1.38 1.48 1.34 1.67
GLM 1.67 1.56 1.68 1.54 1.82
BART​ 1.59 1.31 1.12 1.17 1.48
Gaussian process 1.65 1.62 1.48 1.26 1.62
Random forest 1.21 1.15 1.16 1.01 1.35
Conditional inference tree 1.77 1.68 1.54 1.52 1.43

Fig. 8   Results for sequelize
project (including issue label)

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x

Fig. 9   Results for opencv pro-
ject (including issue label)

Fig. 10   Results for bitcoin pro-
ject (including issue label)

Fig. 11   Results for aseprite
project (including issue label)

Vol.:(0123456789)

SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x	 Research Article

a statistically significant difference in the prediction
error depending on the algorithm used for prediction,
χ2(7) = 30.957, p = 0.000. According to the Friedman test,
we get the average ranks for all models, as given in Table 6.
It is observed that Multilayer Perceptron (M.L.P.) is ranked
first among all models, while G.L.M. is ranked last. Also,
both the deep learning models, i.e., M.L.P. and CNN, are
better ranked than machine learning models.

Post hoc analysis using Wilcoxon signed-rank tests
was also conducted with a Bonferroni correction applied,
resulting in a significance level set at p < 0.0018. There
were no significant differences between any of the two
algorithms taken at a time, as for all cases, it was observed
that p > 0.0018.

Finally, we compare the results of the machine learn-
ing and deep learning models obtained using the issue
label as one of the predictors to those obtained without
using the issue label as a predictor. The comparison is
depicted in Fig. 13. It was observed that all the machine
learning and deep learning models, including issue
label as one of the predictors, performed better than or

equivalent to models that did not use the issue label as
one of the predictors. Issue labels help improve the pre-
diction performance of the models as they provide vital
information about the type of issue. It is generally based
on the labels and issue description that O.S.S. develop-
ers decide whether or not they can contribute towards
issue resolution.

A quick summarization of the observed results high-
lights the following:

•	 All the machine learning and deep learning prediction
models performed better than the extended social
information foraging model.

•	 M.L.P. (R.M.S.E. sequelize—1.21, opencv—1.17, bit-
coin—1.05, aseprite—1.01, electron—1.16) was the
best performing model amongst all nine models for
prediction of group size when issue label was excluded
as one of the predictors.

•	 M.L.P. (R.M.S.E. sequelize—1.15, opencv—1.06, bit-
coin—1.03, aseprite—0.94, electron—1.12) was the
best performing model among all eight models for
prediction of group size when issue label was included
as one of the predictors.

•	 The deep learning models, i.e., M.L.P. and CNN, ranked
better than machine learning models in the Friedman
Test.

•	 The best ranked deep learning model provided an
improvement of 61.34%, 60.2%, 61.8%, 52.36% and
68.22% over the extended social information foraging
model, for sequelize, opencv, bitcoin, aseprite and elec-
tron datasets respectively.

•	 The machine learning and deep learning models,
including issue label as one of the predictors, per-
formed better than or equivalent to models that did
not use issue label as one of the predictors.

Fig. 12   Results for electron
project (including issue label)

Table 6   Friedman test average ranks (including issue label)

Model Average rank (obtained
using Friedman Test)

Assigned
rank

CNN 1.60 2
Multilayer perceptron 1.40 1
CART​ 5.70 5
GLM 7.40 8
BART​ 4.00 4
Gaussian process 5.90 6
Random forest 3.20 3
Conditional inference tree 6.80 7

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x

•	 The best ranked model when included issue label as
one of the predictors provided an improvement of
8.26%, 9.4%, 0.98%, 6.93% and 3.45% for sequelize,
opencv, bitcoin, aseprite and electron datasets respec-
tively, over the prediction of best ranked model exclud-
ing issue label as one of the predictors.

5 � Threats to validity

Threats to the validity of a study are generally classified
into internal and external. Threats to internal validity arise
when the true facts and foundations on which the experi-
mental results are based are misinterpreted. Threats to
external validity are threats that revolve around the vali-
dation of results in different settings or the generalizability
of the results.

5.1 � Threats to internal validity

One of the significant threats to the internal validity of any
study is the misinterpretation of underlying data and facts.
This threat is eliminated by extracting data directly from
GitHub, where all the O.S.S. development data is main-
tained and updated in real-time. So the data collected for
building the prediction models is collected from a reliable
source.

Another limitation that may impact the study is that in
the social information foraging model, we take into account
a time window of three months. The reason for selecting

three months time window is that it has been shown to pro-
vide meaningful and reliable results in previous studies [12,
72]. Also, the issues are classified in a three month window
based on the close date alone. The reason for not using both
the close date and open date to classify an issue in a three
month time window is that certain issues might open in one
time window and close in another time window. Thereby
making them not wholly fall within one time window and
leaving them out of consideration. To avoid this, issues are
classified in a time window based on the close date alone.

5.2 � Threats to external validity

The external validity of a study relates to the generaliz-
ability of the results of the study. Since the analysis is per-
formed on data from GitHub, which has one of the big-
gest open source community of developers working on
software projects, the results of our study should hold for
other O.S.S. systems. Also, the five projects selected for the
study are established projects and have been under active
development; hence the community participation on
issues is also similar to other active open source projects.

6 � Issue group recommendation system
(I.G.R.S.)

We also propose an IoT-based I.G.R.S. that will input from
one of the machine learning/ deep learning models to
predict the group size of a software issue and, based on

Fig. 13   Comparison of model results including and excluding issue label

Vol.:(0123456789)

SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x	 Research Article

the prediction, will either recommend addition of other
developers working on the project to the software issue or
recommend no addition of software developer. Figure 14
depicts the flow diagram for the proposed I.G.R.S. This sys-
tem uses data from the closed issues of a project to build
the prediction model for predicting the group size of an
open issue.

The predicted group size is then compared with the cur-
rent group size of the open issue. If the predicted group
size is greater than the current group size, then the I.G.R.S.
recommends additional developers for the issue. I.G.R.S.
will use the past participation data of the developers work-
ing on the project. It associates the issue labels of closed
issues that a developer has previously worked on with
the developer. Then it matches the issue label of the open
issue with the issue labels associated with the developers.
If the issue label of the open issue matches any of the issue
labels associated with a developer, then that developer is
alerted about the issue, and his expertise is solicited on
the issue at hand. In case an open issue has a new label
not previously used for other issues, then the developers
associated with issues having no label (represented as
Blank) are alerted. If the predicted group size is less than
or equal to the current group size, the system recommends
no additional developers for the issue, and no alert needs
to be sent to them.

It should be noted that not all developers who are
alerted may participate in the issue; therefore, it is neces-
sary to alert all developers with matching issue labels and
not just the number of developers required to make the
group size equal to the predicted group size. Also, no addi-
tional developers are recommended for the issue when
the group size already exceeds the predicted group size;
this does not mean that additional developers cannot join
the issue. It only means that I.G.R.S. will not send alerts to
additional developers, but developers may join the issue
depending on their interests and other factors. The pur-
pose of the system is to reach out to the O.S.S. developers
with relevant experience and expertise who may help to
resolve the issue efficiently and timely; for this reason, the
system alerts only the developers having matching issue
labels and not all the developers who have been working
on the project.

Internet of Things (IoT) has been changing how data
sharing and communication used to take place. IoT ena-
bles things, i.e., objects of interest, to process, commu-
nicate, and transmit information on their own [73, 74].
There are many IoT applications in areas such as transport
systems [75], traffic management [76], healthcare [77],
and military [78], among others. This system can be built
in such a way that with just internet connectivity on the
server and an IoT device, the recommended developers

Fig. 14   Issue group recommendation system

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x

can be alerted on the fly. Thus, making it a useful IoT appli-
cation [79, 80], which at periodic intervals (which can be
set by an administrator) can be used to alert the develop-
ers regarding the software issue automatically they may
help resolve. This way, the developers need not browse
manually through issues; they will be alerted if an open
issue exists similar to an issue they resolved in the past.
Each developer is assigned a unique identifier (UID) [81]
and can be recommended on open issues using the rec-
ommendation system. I.G.R.S. can be implemented with all
the analyses being done using a cloud or edge computing
infrastructure [82–84].

7 � Conclusion and Future Work

After careful analysis of the results, the use of deep learn-
ing and machine learning models, most preferably the
best-ranked model, i.e., Multilayer Perceptron, is pre-
scribed for group size prediction of software issues in O.S.S.
development. The R.M.S.E. values using M.L.P. when issue
label was excluded as a predictor were 1.21, 1.17, 1.05,
1.01, 1.16 for sequelize, opencv, bitcoin, aseprite, and elec-
tron datasets, respectively. It helps us determine a group
size in a development environment that allows developers
across the world to collaborate. In comparison to the social
information foraging model, all the eight deep learning
and machine learning models provided better prediction
results. The best ranked deep learning model provided an
improvement of 61.34%, 60.2%, 61.8%, 52.36% and 68.22%
over the extended social information foraging model, for
sequelize, opencv, bitcoin, aseprite and electron datasets
respectively. It is additionally seen that issue labels gives
significant information about the issue and improves the
prediction performance. The best results were obtained
using M.L.P. (R.M.S.E. sequelize—1.15, opencv—1.06,
bitcoin—1.03, aseprite—0.94, electron—1.12) when the
issue label was included as one of the predictors. In fact
using issue label as one of the predictors provided an
improvement of 8.26%, 9.4%, 0.98%, 6.93% and 3.45% for
sequelize, opencv, bitcoin, aseprite and electron datasets
respectively, compared to when issue label was excluded
as one of the predictors. Hence, it is recommended to use
issue label for prediction of group size using machine
learning and deep learning models. This paper also pro-
posed an IoT-based I.G.R.S. to recommend and alert addi-
tional developers that may help resolve the software issue
timely and efficiently. I.G.R.S. uses the prediction results
of a machine learning/deep learning model (suggested
M.L.P.) to determine whether or not additional developers
should be recommended for the issue. It also recommends
preferable developers for resolving the issue and alerts
them. I.G.R.S. is proposed to be used as an IoT application

that alerts developers on the fly about software issues they
may help resolve and can be implemented using cloud
and edge computing framework. Our future work incorpo-
rates studying and predicting the behavior of developers
in an O.S.S. development environment, implementing and
testing the efficiency of I.G.R.S. in an open source develop-
ment environment.

Acknowledgements  I would like to acknowledge the “Visvesvaraya
Ph.D. Scheme for Electronics & I.T." instituted by the Ministry of Elec-
tronics and Information Technology, Government of India for pro-
moting research in Indian universities.

Author contributions  All authors contributed to the study concep-
tion and design. Data collection and analysis were performed by
[DC]. The first draft of the manuscript was written by [DC], which
was reviewed and edited by [AK]. All authors read and approved the
final manuscript.

Data availability  The data is extracted from the GitHub repository,
which is an open source repository. The links are provided in the
Project Selection and Data Extraction Section.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creat​iveco​mmons​
.org/licen​ses/by/4.0/.

References

	 1.	 Von Krogh G (2003) Open-source software development. M.I.T
Sloan Manag Rev 44(3):14

	 2.	 Feller J, Fitzgerald B (2002) Understanding open source software
development. Addison-Wesley, London, pp 143–159

	 3.	 Herbsleb JD, Mockus A (2003) An empirical study of speed and
communication in globally distributed software development.
IEEE Trans Software Eng 29(6):481–494

	 4.	 Shepperd M, Schofield C (1997) Estimating software project
effort using analogies. IEEE Trans Software Eng 23(11):736–743

	 5.	 Benala TR, Mall R (2018) D.A.B.E.: dDifferential evolution in
analogy-based software development effort estimation. Swarm
Evolut Comput 38:158–172

	 6.	 Srinivasan K, Fisher D (1995) Machine learning approaches to
estimating software development effort. IEEE Trans Softw Eng
21(2):126–137

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Vol.:(0123456789)

SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x	 Research Article

	 7.	 García-Floriano A, López-Martín C, Yáñez-Márquez C, Abran
A (2018) Support vector regression for predicting software
enhancement effort. Inf Softw Technol 97:99–109

	 8.	 Pospieszny P, Czarnacka-Chrobot B, Kobylinski A (2018) An
effective approach for software project effort and duration
estimation with machine learning algorithms. J Syst Softw
137:184–196

	 9.	 Chełkowski T, Gloor P, Jemielniak D (2016) Inequalities in
open source software development: Analysis of contributor’s
commits in Apache Software Foundation projects. PLoS ONE
11(4):e0152976

	10.	 Iskoujina Z, Roberts J (2015) Knowledge sharing in open source
software communities: motivations and management. J Knowl
Manag 19(4):791–813

	11.	 Ahmed, F., Campbell, P., Jaffar, A., & Capretz, L. F. (2015).
Myths and realities about online forums in open source soft-
ware development: an empirical study. arXiv preprint arXiv:
1507.06927.

	12.	 Bhowmik T, Niu N, Wang W, Cheng JRC, Li L, Cao X (2016) Opti-
mal group size for software change tasks: a social information
foraging perspective. IEEE Trans Cybern 46(8):1784–1795

	13.	 Pirolli, P. (2009, April). An elementary social information for-
aging model. In Proceedings of the S.I.G.C.H.I. Conference on
Human Factors in Computing Systems (pp. 605–614). A.C.M.

	14.	 Kogut B, Metiu A (2001) Open-source software develop-
ment and distributed innovation. Oxford Rev Econ Policy
17(2):248–264

	15.	 Amasaki S, Lokan C (2015) On the effectiveness of weighted
moving windows: experiment on linear regression based soft-
ware effort estimation. J Softw: Evol Process 27(7):488–507

	16.	 Ahn Y, Suh J, Kim S, Kim H (2003) The software maintenance pro-
ject effort estimation model based on function points. J Softw:
Evol Process 15(2):71–85

	17.	 Haapio T, Eerola A (2010) Software project effort assessment. J
Softw: Evol Process 22(8):629–652

	18.	 Pirolli P (2007) Information foraging theory: adaptive interaction
with information. Oxford University Press, Oxford

	19.	 Stephens DW, Krebs JR (1986) Foraging theory. Princeton Uni-
versity Press, Princeton

	20.	 Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of
deep neural network architectures and their applications. Neu-
rocomputing 234:11–26

	21.	 Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D. D., & Chen, M. (2014,
December). Medical image classification with convolutional
neural network. In 2014 13th International Conference on Control
Automation Robotics & Vision (ICARCV) (pp. 844–848). IEEE.

	22.	 Mallick PK, Ryu SH, Satapathy SK, Mishra S, Nguyen GN, Tiwari
P (2019) Brain M.R.I. image classification for cancer detection
using deep wavelet autoencoder-based deep neural network.
IEEE Access 7:46278–46287

	23.	 Rajmohan G, Chinnappan CV, John William AD, Chandrakrishan
Balakrishnan S, Anand Muthu B, Manogaran G (2020) Revamp-
ing land coverage analysis using aerial satellite image mapping.
Trans Emerg Telecommun Technol. https​://doi.org/10.1002/
ett.3927

	24.	 Kong F, Li J, Jiang B, Zhang T, Song H (2019) Big data-driven
machine learning-enabled traffic flow prediction. Trans Emerg
Telecommun Technol 30(9):e3482

	25.	 Medapati PK, Murthy PHST, Sridhar KP (2020) LAMSTAR: For IoT-
based face recognition system to manage the safety factor in
smart cities. Trans Emerg Telecommun Technol 31:e3843. https​
://doi.org/10.1002/ett.3843

	26.	 Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M (2017)
Application of deep convolutional neural network for auto-
mated detection of myocardial infarction using E.C.G. signals.
Inf Sci 415:190–198

	27.	 Hongtao L, Qinchuan Z (2016) Applications of deep convolu-
tional neural network in computer vision. J Data Acquis Process
31(1):1–17

	28.	 Liu Y, Racah E, Correa J, Khosrowshahi A, Lavers D, Kunkel K,
Wehner M, Collins W (2016) Application of deep convolutional
neural networks for detecting extreme weather in climate data-
sets. arXiv preprint. arXiv:1605.01156

	29.	 Pal SK, Mitra S (1992) Multilayer perceptron, fuzzy sets, and clas-
sification. Trans Neur Netw 3(5):683–697

	30.	 Tang J, Deng C, Huang GB (2015) Extreme learning machine
for multilayer perceptron. IEEE Trans Neural Netw Learn Syst
27(4):809–821

	31.	 Antal P, Fannes G, Timmerman D, Moreau Y, De Moor B (2003)
Bayesian applications of belief networks and multilayer percep-
trons for ovarian tumor classification with rejection. Artif Intell
Med 29(1–2):39–60

	32.	 Hu YH, Tompkins WJ, Urrusti JL, Afonso VX (1993) Applications
of artificial neural networks for E.C.G. signal detection and clas-
sification. J Electrocardiol 26:66–73

	33.	 Emmerson MD, Damper RI (1993) Determining and improving
the fault tolerance of multilayer perceptrons in a pattern-recog-
nition application. IEEE Trans Neural Networks 4(5):788–793

	34.	 Verma, B. K. (1995, November). Handwritten Hindi character rec-
ognition using multilayer perceptron and radial basis function
neural networks. In Proceedings of ICNN’95-International Confer-
ence on Neural Networks (Vol. 4, pp. 2111–2115). IEEE.

	35.	 Gibson, G. J., Siu, S., & Cowan, C. F. (1990). Application of mul-
tilayer perceptrons as adaptive channel equalisers. In Adap-
tive Systems in Control and Signal Processing. Pergamon. (pp.
573–578)

	36.	 Meyer, M., & Pfeiffer, G. (1993). Multilayer perceptron based deci-
sion feedback equalisers for channels with intersymbol interfer-
ence. I.E.E. Proceedings I (Communications, Speech and Vision),
140(6), 420–424.

	37.	 Dubey SK, Rana A, Dash Y (2012) Maintainability prediction
of object-oriented software system by multilayer perceptron
model. ACM SIGSOFT Softw Eng Notes 37(5):1–4

	38.	 Gayathri M, Sudha A (2014) Software defect prediction system
using multilayer perceptron neural network with data mining.
Int J Recent Technol Eng 3(2):54–59

	39.	 Breiman L, Friedman JH, Olshen RA (2017) Classification and
regression trees. Chapman and Hall CRC, Routledge

	40.	 Loh WY (2011) Classification and regression trees. Wiley Inter-
discip Rev: Data Mining Knowled Discov 1(1):14–23

	41.	 Safavian SR, Landgrebe D (1991) A survey of decision tree clas-
sifier methodology. IEEE Trans Syst, Man, Cybern 21(3):660–674

	42.	 Lee TS, Chiu CC, Chou YC, Lu CJ (2006) Mining the customer
credit using classification and regression tree and multi-
variate adaptive regression splines. Comput Stat Data Anal
50(4):1113–1130

	43.	 Marshall RJ (2001) The use of classification and regression trees
in clinical epidemiology. J Clin Epidemiol 54(6):603–609

	44.	 Fonarow GC, Adams KF, Abraham WT, Yancy CW, Boscardin WJ,
ADHERE Scientific Advisory Committee (2005) Risk stratification
for in-hospital mortality in acutely decompensated heart failure:
classification and regression tree analysis. JAMA 293(5):572–580

	45.	 Hecker, A., & Kurner, T. (2007, April). Application of classifica-
tion and regression trees for paging traffic prediction in L.A.C.
planning. In Vehicular Technology Conference, 2007. VTC2007-
Spring. IEEE 65th (pp. 874–878). IEEE.

	46.	 Bittencourt, H. R., & Clarke, R. T. (2003, July). Use of classification
and regression trees (CART) to classify remotely-sensed digital
images. In Geoscience and Remote Sensing Symposium, 2003.
IGARSS’03. Proceedings. 2003 IEEE International (Vol. 6, pp.
3751–3753). IEEE.

https://doi.org/10.1002/ett.3927
https://doi.org/10.1002/ett.3927
https://doi.org/10.1002/ett.3843
https://doi.org/10.1002/ett.3843

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x

	47.	 Khoshgoftaar TM, Allen EB, Deng J (2002) Using regression
trees to classify fault-prone software modules. IEEE Trans Reliab
51(4):455–462

	48.	 Khoshgoftaar, T. M., Allen, E. B., Jones, W. D., & Hudepohl, J. I.
(1999). Classification tree models of software quality over multi-
ple releases. In Software Reliability Engineering, 1999. Proceed-
ings. 10th International Symposium on (pp. 116–125). IEEE.

	49.	 Nelder JA, Wedderburn RW (1972) Generalized linear models. J
Royal Stat Soc: Series A (General) 135(3):370–384

	50.	 Gotway CA, Stroup WW (1997) A generalized linear model
approach to spatial data analysis and prediction. J Agric Biol
Environ Statist 157–178

	51.	 Lan CJ, Miaou SP (1999) Real-time prediction of traffic flows
using dynamic generalized linear models. Transp Res Rec
1678(1):168–178

	52.	 Guisan A, Edwards TC Jr, Hastie T (2002) Generalized linear and
generalized additive models in studies of species distributions:
setting the scene. Ecol Model 157(2–3):89–100

	53.	 Chandler RE, Wheater HS (2002) Analysis of rainfall variability
using generalized linear models: a case study from the west of
Ireland. Water Resour Res 38(10):10–11

	54.	 Chipman HA, George EI, McCulloch RE (2010) B.A.R.T: bayesian
additive regression trees. Annals Appl Stat 4(1):266–298

	55.	 Blattenberger G, Fowles R (2014) Avalanche forecasting: using
bayesian additive regression trees (BART). In Demand for Com-
munications Services–Insights and Perspectives. Springer, Bos-
ton, MA, pp 211–227

	56.	 Zhou Q, Liu JS (2008) Extracting sequence features to predict
protein–D.N.A. interactions: a comparative study. Nucleic Acids
Res 36(12):4137–4148

	57.	 Wu, J., Huang, L., & Pan, X. (2010, May). A novel bayesian additive
regression trees ensemble model based on linear regression and
nonlinear regression for torrential rain forecasting. In 2010 Third
International Joint Conference on Computational Science and
Optimization (Vol. 2, pp. 466–470). IEEE.

	58.	 Shi JQ, Choi T (2011) Gaussian process regression analysis for
functional data. CRC Press, London

	59.	 Lataniotis, C., Marelli, S., & Sudret, B. (2017). UQLab user manual–
Kriging (Gaussian process modelling). Report UQLab-V0, 9–105.

	60.	 Kang F, Han S, Salgado R, Li J (2015) System probabilistic stability
analysis of soil slopes using Gaussian process regression with
Latin hypercube sampling. Comput Geotech 63:13–25

	61.	 Sun S, Xu X (2010) Variational inference for infinite mixtures of
Gaussian processes with applications to traffic flow prediction.
IEEE Trans Intell Transp Syst 12(2):466–475

	62.	 Ažman K, Kocijan J (2007) Application of Gaussian processes for
black-box modelling of biosystems. ISA Trans 46(4):443–457

	63.	 Liaw A, Wiener M (2002) Classification and regression by random
forest. R news 2(3):18–22

	64.	 Kaur, A., & Malhotra, R. (2008, December). Application of random
forest in predicting fault-prone classes. In 2008 International
Conference on Advanced Computer Theory and Engineering
(pp. 37–43). IEEE.

	65.	 Weyuker EJ, Ostrand TJ, Bell RM (2010) Comparing the effec-
tiveness of several modeling methods for fault prediction. Emp
Softw Eng 15(3):277–295

	66.	 Primartha, R., & Tama, B. A. (2017, November). Anomaly detec-
tion using random forest: A performance revisited. In 2017 Inter-
national conference on data and software engineering (ICoDSE)
(pp. 1–6). IEEE.

	67.	 Sun G, Li S, Cao Y, Lang F (2017) Cervical cancer diagnosis based
on random forest. Int J Performability Eng 13(4):446–457

	68.	 Hothorn, T., Hornik, K., & Zeileis, A. (2015). ctree: Conditional
inference trees. The Comprehensive R Archive Network, 1–34.

	69.	 Wang, S., Liu, Y., Di Cairano-Gilfedder, C., Titmus, S., Naim, M.
M., & Syntetos, A. A. (2018). Reliability analysis for automo-
bile engines: Conditional inference trees. Procedia C.I.R.P., 72,
1392–1397.

	70.	 Das A, Abdel-Aty M, Pande A (2009) Using conditional inference
forests to identify the factors affecting crash severity on arterial
corridors. J Safety Res 40(4):317–327

	71.	 Ian HW, Eibe F (2005) Data mining: practical machine learning
tools and techniques. Morgan Kaufmann Publishers

	72.	 Bird, C., Pattison, D., D’Souza, R., Filkov, V., & Devanbu, P. (2008,
November). Latent social structure in open source projects. In
Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering (pp. 24–35). A.C.M.

	73.	 Ray PP (2018) A survey on internet of things architectures. J King
Saud Univ-Comput Inf Sci 30(3):291–319

	74.	 Chen J, Hu K, Wang Q, Sun Y, Shi Z, He S (2017) Narrowband
internet of things: implementations and applications. IEEE Inter-
net Things J 4(6):2309–2314

	75.	 Chavhan S, Gupta D, Chandana BN, Khanna A, Rodrigues JJPC
(2019) IoT-based context-aware intelligent public transport
system in a metropolitan area. IEEE Internet Things J 7(7):6023–
6034. https​://doi.org/10.1109/JIOT.2019.29551​02

	76.	 Chavhan S, Venkataram P (2020) Prediction based traffic man-
agement in a metropolitan area. J Traffic Trans Eng (English edi-
tion) 7(4):447–466

	77.	 Pace P, Aloi G, Gravina R, Caliciuri G, Fortino G, Liotta A (2018)
An edge-based architecture to support efficient applications for
healthcare industry 4.0. IEEE Trans Indust Inform 15(1):481–489

	78.	 Johnsen, F. T., Zieliński, Z., Wrona, K., Suri, N., Fuchs, C., Pradhan,
M., ... & Marks, M. (2018, May). Application of IoT in military oper-
ations in a smart city. In 2018 International Conference on Mili-
tary Communications and Information Systems (I.C.M.C.I.S.) (pp.
1–8). IEEE.

	79.	 Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of
Things (IoT): a vision, architectural elements, and future direc-
tions. Future Generat Comput Syst 29(7):1645–1660

	80.	 Lee I, Lee K (2015) The Internet of Things (IoT): applica-
tions, investments, and challenges for enterprises. Bus Horiz
58(4):431–440

	81.	 Saravanan, K., & Saraniya, S. (2018). Cloud I.O.T. based novel live-
stock monitoring and identification system using UID. Sensor
Review.

	82.	 De Donno M, Tange K, Dragoni N (2019) Foundations and evolu-
tion of modern computing paradigms: cloud, IoT, edge, and fog.
IEEE Access 7:150936–150948

	83.	 Calheiros, R. N. (2020). Fog and Edge Computing: Challenges
and Emerging Trends (Invited Talk). In 2nd Workshop on Fog
Computing and the IoT (Fog-IoT 2020). Schloss Dagstuhl-Leib-
niz-Zentrum für Informatik.

	84.	 Goudarzi M, Wu H, Palaniswami MS, Buyya R (2020) An appli-
cation placement technique for concurrent IoT applications
in edge and fog computing environments. IEEE Trans Mobile
Comput. https​://doi.org/10.1109/TMC.2020.29670​41

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/JIOT.2019.2955102
https://doi.org/10.1109/TMC.2020.2967041

	IoT-based group size prediction and recommendation system using machine learning and deep learning techniques
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Social information foraging
	2.2 Convolutional neural network (CNN)
	2.3 Multilayer perceptron (M.L.P.)
	2.4 Classification and regression trees (CaRT)
	2.5 Generalized linear model
	2.6 Bayesian additive regression trees
	2.7 Gaussian process
	2.8 Random forest
	2.9 Conditional inference tree

	3 Research methodology
	3.1 Project selection and data extraction
	3.2 Prediction models
	3.2.1 Extended social information foraging model
	3.2.2 Parameters of machine learning and deep learning models

	3.3 Evaluation measures

	4 Analysis of results
	4.1 Results excluding issue label as a predictor
	4.2 Results including issue label as a predictor

	5 Threats to validity
	5.1 Threats to internal validity
	5.2 Threats to external validity

	6 Issue group recommendation system (I.G.R.S.)
	7 Conclusion and Future Work
	Acknowledgements
	References

