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Abstract
In an open source software development environment, it is hard to decide the number of group members required for 
resolving software issues. Developers generally reply to issues based totally on their domain knowledge and interest, 
and there are no predetermined groups. The developers openly collaborate on resolving the issues based on many fac-
tors, such as their interest, domain expertise, and availability. This study compares eight different algorithms employing 
machine learning and deep learning, namely—Convolutional Neural Network, Multilayer Perceptron, Classification and 
Regression Trees, Generalized Linear Model, Bayesian Additive Regression Trees, Gaussian Process, Random Forest and 
Conditional Inference Tree for predicting group size in five open source software projects developed and managed 
using an open source development framework GitHub. The social information foraging model has also been extended 
to predict group size in software issues, and its results compared to those obtained using machine learning and deep 
learning algorithms. The prediction results suggest that deep learning and machine learning models predict better than 
the extended social information foraging model, while the best-ranked model is a deep multilayer perceptron((R.M.S.E. 
sequelize—1.21, opencv—1.17, bitcoin—1.05, aseprite—1.01, electron—1.16). Also it was observed that issue labels 
helped improve the prediction performance of the machine learning and deep learning models. The prediction results 
of these models have been used to build an Issue Group Recommendation System as an Internet of Things application 
that recommends and alerts additional developers to help resolve an open issue.

Keywords  Internet of things · Machine learning · Deep learning · Software repositories · Open source software 
development · Edge computing

1  Introduction

Open source software development [1, 2] is different from 
proprietary software development. While proprietary 
software does not provide source code to the users, open 
source software, on the other hand, makes the source 
code available to the world, allowing them to redistribute 
original or modified versions. Open source software (O.S.S.) 
not only makes free software available to the world but 
also changed the way software development worked until 
then. It allowed a collaborative and distributed software 

development environment [3], which allowed software 
developers to collaborate with developers from across 
the globe.

The team size in a software organization is mostly 
determined by project managers through careful plan-
ning using various effort estimation methods. Effort 
estimation can be done using various methods such as 
analogies with past projects [4, 5] and machine learning 
[6–8], among others. Managers use effort estimates to 
determine the number of people on a team and assign 
people with the required skills to the relevant teams. In an 
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O.S.S. development environment, estimating group size 
for a task is not that simple. The developers of open source 
software work in a collaborative environment, and why 
they decide to contribute to a particular task is still not 
clear. A lot of research has been attempted to determine 
patterns in the participation of O.S.S. developers [9–11]. 
However, since the developers undertake the respon-
sibility of a particular task or issue at their own will and 
interests, hence in O.S.S. development group size cannot 
be fixed by a single person. Bhowmik et al. [12] used the 
social information foraging model [13] to predict optimal 
group size in software change tasks. The optimal group 
size was determined for software change tasks by associat-
ing productivity with group size. In this paper, the group 
size prediction has been made for software issues reported 
in an open source development environment. Issues are 
any task, feature enhancement requests, and bugs that are 
reported for the software. Unlike change tasks, issues may 
or may not involve changes to the software. Change tasks 
are mostly carried out to add features, bug resolution, and 
maintenance activities after thorough analysis. In contrast, 
issues are reported and resolved by the open source devel-
opment community and do not necessarily require any 
changes in the software. Some issues may be resolved just 
by providing required guidance to the initiator of the issue. 
It is essential to predict the group size for software issues 
so that they can be resolved quickly and efficiently. Predic-
tion of group size may help get the required number of 
people to work on the issue and thus minimize the issue’s 
resolution time. An estimation of the group size helps in 
planning for faster resolution of the software issue at hand. 
For instance, if the actual group size is less than the pre-
dicted group size and there are many pending tasks (i.e., 
tasks which have no developer assigned) for issue resolu-
tion, this estimation will suggest to the project members 
that more developers are required for resolution of the 
issue. Thus group size prediction is essential even in the 
O.S.S. development environment for better planning and 
resource utilization. We extend the social information 
foraging approach used to predict optimal group size in 
software change tasks given by Bhowmik et al. [12] and 
apply it for prediction of group size in software issues. We 
also apply eight algorithms employing machine learning 
and deep learning, namely, Convolutional Neural Network 
(CNN), Multilayer Perceptron (M.L.P.), Classification and 
Regression Trees (CaRT), Generalized Linear Model, Bayes-
ian Additive Regression Trees, Gaussian Process, Random 
Forest, and Conditional Inference Tree to predict group 
size based on past issues in the software project. Employ-
ing machine learning and deep learning methods not only 
helps in faster and automated decision making but also 
have the capability to continuously improve the results as 
more historical data becomes available for learning.

We further compare the extended social information 
foraging model results to those obtained using machine 
learning and deep learning algorithms. Predicting group 
size is only beneficial if we can use it to recommend and 
alert the developers that may help resolve the issue effi-
ciently. For this reason, we propose I.G.R.S., an IoT-based 
recommendation system that uses the prediction done 
by a machine learning or deep learning model to recom-
mend/not recommend additional developers on the issue. 
This IoT based application can use platforms like cloud and 
edge computing to perform the analysis. An IoT-based 
I.G.R.S. will not only recommend additional developers 
for quick resolution of software issues but also alert them 
on their IoT devices. This way, an unresolved issue can be 
brought to the attention of developers who have resolved 
similar issues in the past, who may then choose to join the 
issue resolution group. Thus an IoT-based I.G.R.S. would 
help speed up issue resolution by alerting potential resolv-
ers, rather than just waiting for a developer to notice the 
issue on its own and picking it up for resolution.

The background and related work for our research is 
described in Sect. 2. The research approach is presented 
in Sect. 3, and the analysis of results is done in Sect. 4. Sec-
tion 5 discusses the threats to the validity of the proposed 
model. Section 6 proposes the Issue Group Recommen-
dation System (I.G.R.S.), and finally, Sect. 7 concludes this 
study.

2 � Background and related work

Group size for handling software issues is generally prede-
termined and fixed for proprietary software. In the case of 
O.S.S., which is developed in a collaborative community-
based approach, this group size is not fixed and predeter-
mined by a manager, i.e., anyone can contribute on topics 
of their interest [14]. While group size prediction is made 
using various effort estimation models [15–17] in the case 
of proprietary software, for O.S.S., such an approach can-
not be used. In this study, we extend the social informa-
tion foraging model of predicting optimal group size for 
software change tasks given by Bhowmik et al. [12] for 
prediction of group size in software issues. Further, we 
also apply eight different techniques employing machine 
learning/deep learning algorithms namely, Convolutional 
Neural Network (CNN), Multilayer Perceptron (M.L.P.), Clas-
sification and Regression Trees (CaRT), Generalized Linear 
Model, Bayesian Additive Regression Trees, Gaussian Pro-
cess, Random Forest and Conditional Inference Tree for 
predicting group size in five open source software pro-
jects. In Sect. 2.1, an overview of social information for-
aging [13] model has been provided, while Sect. 2.2–2.9 
describe Convolutional Neural Network (CNN), Multilayer 
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Perceptron (M.L.P.), Classification and Regression Trees 
(CaRT), Generalized Linear Model, Bayesian Additive 
Regression Trees, Gaussian Process, Random Forest and 
Conditional Inference Tree techniques.

2.1 � Social information foraging

Information foraging theory was given by Pirolli [18], and 
it attempts to model the information-seeking pattern of 
users on the Web, analogous to optimal foraging theory in 
biology [19]. Optimal foraging in the context of informa-
tion seeking aims at maximizing the information gain per 
unit of foraging. If each valuable information site is taken 
as a patch, a web user is either collecting information from 
a relevant patch or searching for a valuable patch. Let the 
time that is spent collecting information from a valuable 
patch be called inside-patch search time (denoted by tIS), 
and the time that is spent searching for a valuable patch 
be called the outside-patch search time (denoted by tOS). 
The information foraging environment can be illustrated, 
as shown in Fig. 1. The Information Gain (denoted by I) can 
thus be depicted as in (1), where G denotes the expected 
net gain.

Pirolli [13] augmented the information foraging theory 
to a social environment such as an O.S.S. development 
environment with multiple users to formulate the social 
information foraging theory. The major hypothesis in 
social information foraging is that hints are shared regard-
ing the potential location of valuable data. Apart from the 
signs obvious in the environment, foragers also profit from 
the hints shared by the community. Information Gain for 
an individual in a group on n foragers can be depicted as 
follows: [12]. Let the time taken by an individual forager 
for processing a patch in a group consisting of n foragers 
be denoted by τ(n) = cnz, where 0 < z < 1 is the rate param-
eter, and c depicts the time spent foraging for a patch in a 
solo environment. The information gain for a single group 
member is then given by G/n. Similarly, let λ(n) represent 

(1)I =
G

tIS + tOS

the individual search rate. Thus the search rate for a group 
of n foragers becomes n · λ(n). Hence the expected time 
for n foragers required for finding a valuable information 
patch will be tV = 1/[n λ(n)]. If λ(H) depicts the rate of dis-
covering valuable patches of information with H distinct 
hints. Then the outside-patch search time and inside-
patch search time for n foragers is tOS = λ(H)/[n·λ(n)] and 
tIS = τ(n)/[n · λ(n)] respectively. Thus the information gain 
for an individual member of a group of n foragers can be 
given by (2).

In this paper, the social information foraging theory 
model has been extended for predicting group size for 
software issues from five different software projects on the 
GitHub repository. The extended social information forag-
ing model required for predicting group size of software 
issues in O.S.S. development environments is described 
in Sect. 3.2.1.

2.2 � Convolutional neural network (CNN)

A Convolutional Neural Network (CNN) [20] is a deep learn-
ing technique that consists of an input layer, an output 
layer, and multiple hidden layers. These hidden layers are 
generally composed of a sequence of convolutional layers. 
A convolutional layer simply applies a filter to an input, 
which results in activation. When there are multiple con-
volutional layers, repeatedly applying the same filter to an 
input returns a feature map. The feature map suggests the 
strength and location of a detected feature in an input. The 
novelty of CNN is its capability to automatically learn not 
one but multiple filters in parallel for a particular training 
dataset and prediction problem. CNN is a quite popular 
technique for image and video classification [21–25]. Apart 
from that, it has also been used for medical diagnosis [26], 
computer vision [27], and weather analysis [28], among 
other applications.

2.3 � Multilayer perceptron (M.L.P.)

A multilayer perceptron (M.L.P.) [29, 30] is an artificial neu-
ral network used for deep learning. An M.L.P. consists of an 
input layer to obtain the input, an output layer that returns 
the prediction result about the input, and several hidden 
layers acting as computational engines of the M.L.P. In fact, 
M.L.P.s are so powerful that an M.L.P. with only one hidden 
layer can approximate all continuous functions. M.L.P. is 
used for supervised learning problems, where the neural 
network trains on a training dataset. The training process 

(2)

I(n,H) =
G∕n

tV + tOS + tIS
=

G∕n

1

n.�(n)
+

�(H)

n.�(n)
+

�(n)

n.�(n)

=
�(n).G

1 + �(H) + �(n)

Fig. 1   Information foraging environment
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adjusts the parameters, including weights and biases, 
such that the resulting model minimizes the error prob-
ably using backpropagation. An M.L.P. generally works in 
two passes:

•	 Forward pass—In this, the input moves from the input 
layer through the hidden layers to finally the output 
layer, and the prediction made by the output layer is 
measured against the actual labels.

•	 Backward pass—This employs backpropagation. Back-
propagation calculates the gradient of the loss function 
with respect to the weights of the network for each 
sample. The backpropagation algorithm calculates 
the gradient of the loss function with respect to each 
weight, calculating the gradient one layer at a time, 
iterating backward from the last layer. The weights 
were updated to minimize loss until changing the 
weights has no impact.

M.L.P. is used extensively for classification [31, 32] and 
pattern recognition [33, 34] in various fields such as medi-
cal science [31, 32], communication systems and networks 
[35, 36], and software maintainability [37, 38].

2.4 � Classification and regression trees (CaRT)

CaRT is a machine‐learning model that constructs a predic-
tion tree using a dataset [39, 40]. The results of the model 
are determined by recursively dividing the dataset and 
then fitting a straightforward prediction model for each 
division of the dataset. These divisions can be represented 
as a decision tree [41]. Decision trees in machine learn-
ing have been used for both classification and regression. 
Classification trees are generally intended for predicting 
variables that can take a value belonging to a finite set of 
unordered values, and the error in prediction is measured 
as miss-classification cost. Regression trees are used for 
predicting variables that can take continuous or ordered 
values, with the error in prediction being commonly esti-
mated by measures like mean absolute error (M.A.E.) and 
root mean square error (R.M.S.E.). There have been many 
applications of CaRT in areas such as finance [42], health 
care [43, 44], computer networks [45], remote sensing [46], 
and software engineering [6, 47, 48].

2.5 � Generalized linear model

Generalized Linear Model (G.L.M.) [49] is a universal gen-
eralization of standard linear regression that considers 
predictors that have error distribution other than a nor-
mal distribution. The G.L.M. generalizes the linear model 
by permitting the linear model to be identified with the 
predictor variable through a link function and permitting 

every measure’s variance to be a function of its predicted 
value.

The generalized linear model unifies various other sta-
tistical models such as linear regression, logistic regres-
sion, and Poisson regression. Unlike linear regression, 
which works only in case of normal distribution, G.L.M. 
works for all types of distribution. Hence there are many 
applications of G.L.M. such as for prediction [50, 51], pat-
tern recognition [52], and trend analysis [53].

2.6 � Bayesian additive regression trees

Bayesian additive regression trees (B.A.R.T.) [54] is a flexible 
machine learning algorithm. It is considered flexible since 
it is able to handle nonlinear predictors and multi-way 
interactions. It relies on an underlying Bayesian probabil-
ity model. In fact, B.A.R.T. provides a Bayesian approach for 
nonparametric function estimation using regression trees. 
Regression trees carry out a recursive binary partitioning 
of predictor space for approximating the value of some 
unknown function, say f. The predictor space dimension is 
equal to the number of variables used for prediction, say p.

B.A.R.T. is a sum-of-trees model, whose estimation 
approach relies on a Bayesian probability model. The 
B.A.R.T. model can be expressed as given in (3).

where Y represents the n × 1 output vector of predicted 
values, X represents the n × p predictors matrix, and E rep-
resents the n × 1 noise vector. The value of f(X) is calculated 
using the sum of trees approach. There is a wide range 
of applications for the B.A.R.T. model, such as prediction 
of avalanches on mountain area roads [55], prediction of 
interaction of transcription factors with D.N.A. [56], and 
rain forecasting [57].

2.7 � Gaussian process

The Gaussian process is nothing but a stochastic process 
such that the finite collection of random variables has 
a multivariate normal distribution. A Gaussian process 
machine-learning algorithm [58] employs lazy learning 
and a measure that determines the similarity between 
points (known as kernel function) for predicting the value 
of unseen data.

The prediction not only gives an estimate for that data 
point but also provides uncertainty information. For sim-
ple kernel functions, matrix algebra is utilized to calculate 
the predicted values using the kriging technique [59]. For 
a more sophisticated kernel, optimization approaches are 
utilized for fitting a Gaussian process model. There are vari-
ous applications of Gaussian process machine learning, 

(3)Y = f (X ) + E
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including slope stability evaluation [60], traffic flow pre-
diction [61], and black-box modeling of bio-systems [62].

2.8 � Random forest

Random forests [63] are a popular machine learning model 
used for classification, regression, and other tasks. Random 
forests construct a large number of decision trees using a 
training dataset and while predicting it took the mode of 
the classifications or mean value (in case of regression). 
In this way, Random forests try to correct the overfitting 
to the training dataset done by individual decision trees.

The basic principle of Random forest is that the decision 
made by a group of unrelated models is going to be better 
than the decision of a single tree alone. The advantage of 
having multiple decision trees or, as we call it, a forest of 
decision trees is that while some of the trees may predict 
wrong and have large errors, but as a group, we get a pre-
diction in the correct direction and mostly better than that 
given by a single tree alone. As a result, there are many 
applications of random forest, such as fault prediction [64, 
65], anomaly detection [66], and cancer diagnosis [67].

2.9 � Conditional inference tree

Conditional Inference tree [68] is a nonparametric decision 
tree approach that employs unbiased recursive partition-
ing. It selects the predictor variables using permutation-
based significance tests instead of selecting a predictor 
that maximizes information measures like information 

gain. It thus eliminates the biasness that other decision 
trees have towards the variable that maximizes the infor-
mation measure. It uses multiple test procedures to decide 
when no significant correlation exists between any of the 
predictor variables and the predicted variable and then 
decides to stop the recursion and state the prediction. The 
conditional inference trees have been used in many appli-
cations like reliability analysis of automobile engines [69], 
crash severity analysis of asteroid corridors [70], among 
others.

3 � Research methodology

One of the primary objectives of this study is to propose a 
model for predicting group size for software issues in an 
O.S.S. development environment, which in turn feeds the 
I.G.R.S. that recommends and alerts the developers that 
may be helpful for quick and efficient resolution of the 
software issue. The research methodology is depicted in 
Fig. 2. The first step involves project selection and data 
extraction, which is described in Sect. 3.1. In the second 
step, the extended social information foraging model and 
the different machine learning/ deep learning algorithms 
are applied to predict the group size of software issues. 
These prediction approaches are summarized in Sect. 3.2. 
Finally, the results of the prediction approaches are 
compared based on the evaluation measures described 
in Sect. 3.3. The predictions of machine learning/ deep 

Fig. 2   Research methodology



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:160 | https://doi.org/10.1007/s42452-021-04162-x

learning algorithms are also fed to the IoT-based I.G.R.S., 
which is proposed in Sect. 6.

3.1 � Project selection and data extraction

The machine learning and deep learning models and 
extended social information foraging model are applied 
to software issues data of five different software projects: 
sequelize, opencv, bitcoin, aseprite, and electron. All 
these five software projects are developed and managed 
in an open source environment. More specifically, it uses 
GitHub, which is a Web based community of open source 
developers and helps developers collaborate around the 
globe. Table 1 provides a brief description of the five soft-
ware projects that we selected for our analysis.

Issues can be classified as either open issue or closed 
issue. A closed issue is an issue that has been resolved, 
while an open issue is an issue that has not yet been 
resolved and is currently under discussion. While collecting 
the data for our prediction models, only the closed issues 
were considered since the group size may be unstable for 
open issues. The data collected for each issue includes the 
following fields:

•	 Issue number—is used for uniquely identifying an 
issue.

•	 Open date—represents the date on which the issue 
was raised.

•	 Close date—represents the date on which the issue 
was marked as resolved.

•	 Group size—represents the total number of partici-
pants that contribute towards issue resolution.

•	 Number of Comments (N.O.C.)—is the total comments 
made by participants while discussing the issue.

•	 Issue Label—used for describing the issue type, cat-
egory, location, etc.

•	 Duration—is the number of days between issue close 
Date and issue open Date.

The data extraction process was performed using R pro-
gramming with the help of the rvest package to scrape 
the relevant data from GitHub. It included two significant 
steps. First, the URLs of closed issues were extracted and 
stored in a CSV file. Second, for each issue using the URL 
from the CSV file, the above data fields were extracted 
using appropriate CSS selectors and regular expressions.

3.2 � Prediction models

The extended social information foraging and the param-
eters for machine learning and deep learning models are 
described in the subsections below, and their results are 
analyzed in Sect. 4.

3.2.1 � Extended social information foraging model

The predictions of various machine learning and deep 
learning models are compared with the group size predic-
tion done by modifying the model given by Bhowmik et al. 
[12] for optimal group size prediction of software change 
tasks. Optimal group size prediction for software issues is 
made by setting up the parameters in (2) as:

(a)	 Every issue is viewed as a patch wherein social or solo 
information foraging can happen. An issue is taken to 
be a solo patch if just a single individual handles the 
issue; else, it is viewed as a social patch.

(b)	 Similar to Pirolli [13] let n (group size) = H, and the in-
patch information gain G be equivalent to the quan-
tity of hints (denoted by H). Subsequently n = G = H 
[12].

(c)	 The group rate of discovering significant information 
λ(H) = λ(n) = duration of the issue [12], which is calcu-
lated using issue open and close time.

(d)	 The time taken by an individual forager to process 
a patch in a group comprising of n foragers, i.e., 
τ(n) = cnz, is determined by setting aside c ( solo for-
aging effort) to be equivalent to the average dura-

Table 1   Selected software projects

Project Sequelize Opencv Bitcoin Aseprite Electron

Issues URL https​://githu​b.com/
seque​lize/seque​lize/
issue​s

https​://githu​b.com/
openc​v/openc​v/
issue​s

https​://githu​b.com/
bitco​in/bitco​in/
issue​s

https​://githu​b.com/
asepr​ite/asepr​ite/
issue​s

https​://githu​b.com/
elect​ron/elect​
ron/issue​s

Programming lan-
guage

JavaSript C++ C++ C++ C++

Number of contribu-
tors

683 1114 688 42 932

Analysis begin date 20-Aug-10 27-Jul-15 22-Jan-13 20-Aug-14 05-Jun-13
Analysis end date 11-May-18 16-Mar-20 16-Mar-20 16-Mar-20 16-Mar-20
Number of issues 6317 4625 4512 1320 11,420

https://github.com/sequelize/sequelize/issues
https://github.com/sequelize/sequelize/issues
https://github.com/sequelize/sequelize/issues
https://github.com/opencv/opencv/issues
https://github.com/opencv/opencv/issues
https://github.com/opencv/opencv/issues
https://github.com/bitcoin/bitcoin/issues
https://github.com/bitcoin/bitcoin/issues
https://github.com/bitcoin/bitcoin/issues
https://github.com/aseprite/aseprite/issues
https://github.com/aseprite/aseprite/issues
https://github.com/aseprite/aseprite/issues
https://github.com/electron/electron/issues
https://github.com/electron/electron/issues
https://github.com/electron/electron/issues
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tion of solo patches in the considered time window. 
Note that a time window of three months is taken to 
predict the ideal group size for issues in the window. 
The window depends on the close time of the issue 
and not on the open time. The rate parameter z is 
aligned to get the best lognormal curve for informa-
tion gain (I(n, H), as depicted in (2)) [13]. For our study, 
z is equivalent to 0.3.

(e)	 I(n, H) is then used to decide the ideal group size for 
the issues.

3.2.2 � Parameters of machine learning and deep learning 
models

Machine learning and deep learning models analyzed in 
this study have been described in Sect. 2 already. In this 
section, the parameters of the machine learning and deep 
learning models are described. Firstly, group size is taken 
to be the predicted variable (also known as the depend-
ent variable). N.O.C., issue label, and duration are set up 
as predictor variables (also known as independent vari-
ables). The models are also built excluding issue label as 
one of the predictor variables since the extended social 
information foraging model does not take issue label into 
account. The machine learning models are built using the 
caret library in R Studio, whereas the deep learning models 
are implemented with the help of the keras library. The 
configuration parameters of the machine learning and 
deep learning models are specified in Table 2.

3.3 � Evaluation measures

An assessment of the prediction models is fundamental for 
figuring out which model ought to be favored over others 
in real-time prediction. The data gathered is partitioned 

into training data (about 80%) and testing data (about 
20%). The predicted and actual values of group size for the 
test data are utilized to assess the models. A well-known 
error metric, i.e., Root Mean Square Error (R.M.S.E.) [71], is 
utilized for analyzing the prediction performance of the 
models. R.M.S.E. is determined utilizing the formula given 
in (4), where pi is the predicted value of group size, oi is the 
actual value of group size for the ith issue, and t is the total 
number of predictions done.

R.M.S.E. is chosen as error measure over Mean Absolute 
Error (M.A.E.) for assessment of models as it gives more 
weight to large errors. While predicting group size, we do 
not wish the model to make an incredibly colossal error. 
Thus a model with lower R.M.S.E. is chosen.

4 � Analysis of results

In this section, the results of the prediction models are 
compared. The eight machine learning/ deep learning 
models, i.e., Convolutional Neural Network (CNN), Mul-
tilayer Perceptron (M.L.P.), Classification and Regression 
Trees (CaRT), Generalized Linear Model, Bayesian Additive 
Regression Trees, Gaussian Process, Random Forest and 
Conditional Inference Tree, are trained on software issues 
data from five software projects, i.e., sequelize, opencv, 
bitcoin, aseprite and electron. The models are trained in 
two ways, once excluding issue label as one of the predic-
tors and once including it as one of the predictors. Since 
the extended social information foraging model does not 
take issue label into account for predicting optimal group 

(4)R.M.S.E . =

�

∑n

i=1
(pi − oi)

2

t

Table 2   Configuration 
parameters for prediction 
models

Prediction Model Configuration parameters

CNN No. of hidden layers = 3
Hidden layer 1—nodes = 10, activation function = ”relu”
Hidden layer 2—nodes = 5, activation function = ”relu”
Hidden layer 3—nodes = 1

Multilayer perceptron No. of hidden layers = 3
Hidden layer 1—nodes = 5, activation function = ”relu”
Hidden layer 2—nodes = 2, activation function = ”relu”
Hidden layer 3—nodes = 1, activation function = ”linear”

CART​ Method = rpart, cp = 0.01
GLM Method = glm
BART​ Method = bartMachine, num_trees = 50, k = 2, 

alpha = 0.95, beta = 2, nu = 3
Gaussian process Method = gaussprLinear
Random forest Method = rf, mtry = 2
Conditional inference tree Method = ctree, mincriterion = 0.95
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size, its prediction results are compared with models built 
excluding issue label as a predictor.

4.1 � Results excluding issue label as a predictor

Firstly, let us consider the performance of machine learn-
ing and deep learning models, excluding issue label as 
one of the predictors, and compare the results with those 
of the extended social information foraging model. The 
R.M.S.E. values are depicted in Table 3. Figure 3, 4, 5, 6, 7 
display these results graphically.

Figure 3 depicts the results for sequelize project. It 
can be clearly seen that machine learning and deep 
learning models perform better than the Extended 
social information foraging model (R.M.S.E. = 3.13). 
Also amongst the machine learning and deep learning 
models the minimum prediction error was obtained 
for CNN (RMSE = 1.18), followed by M.L.P. (RMSE = 1.21), 
Random Forest (RMSE = 1.38), B.A.R.T. (RMSE = 1.65), 

Gaussian process (RMSE = 1.65), CART (RMSE = 1.69), 
G.L.M. (RMSE = 1.71) and Conditional Inference Tree 
(RMSE = 1.89).

Figure 4 depicts the performance of the models on 
opencv project. It is noticed that all the machine learn-
ing and deep learning model perform better than the 
extended social information foraging model (RMSE = 2.94). 
Also MLP (RMSE = 1.17) model gives the best results, fol-
lowed by CNN (RMSE = 1.19), Random Forest (RMSE = 1.23), 
BART (RMSE = 1.37), CART (RMSE = 1.54), Gaussian Process 
(RMSE = 1.62), GLM (RMSE = 1.65) and Conditional Infer-
ence Tree (RMSE = 1.73).

Figure  5 displays the results for bitcoin project. 
It can be clearly seen that all the machine learn-
ing and deep learning models have a lower predic-
tion error than the social information foraging model 
(RMSE = 2.67). The minimum error is obtained using CNN 
(RMSE = 1.02) model, followed by MLP (RMSE = 1.05), 
BART (RMSE = 1.12), Random Forest (RMSE = 1.21), 

Table 3   Model results 
excluding issue label as a 
predictor

Project Sequelize Opencv Bitcoin Aseprite Electron
Model RMSE

CNN 1.18 1.19 1.02 1.02 1.22
Multilayer perceptron 1.21 1.17 1.05 1.01 1.16
CART​ 1.69 1.54 1.56 1.49 1.78
GLM 1.71 1.65 1.72 1.63 1.89
BART​ 1.65 1.37 1.12 1.28 1.59
Gaussian process 1.65 1.62 1.58 1.34 1.67
Random forest 1.38 1.23 1.21 1.08 1.35
Conditional inference tree 1.89 1.73 1.67 1.59 1.45
Extended social information foraging 3.13 2.94 2.67 2.12 3.65

Fig. 3   Results for sequelize 
project (excluding issue label)
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Fig. 4   Results for opencv pro-
ject (excluding issue label)

Fig. 5   Results for bitcoin pro-
ject (excluding issue label)

Fig. 6   Results for aseprite pro-
ject (excluding issue label)
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CART (RMSE = 1.56), Gaussian Process (RMSE = 1.58), 
Conditional Inference Tree (RMSE = 1.67) and GLM 
(RMSE = 1.72).

Figure 6 depicts the performance of models for the 
issues of aseprite project. It is seen that extended social 
information foraging model (RMSE = 2.12) gives the maxi-
mum prediction error. MLP (RMSE = 1.01) model gives the 
minimum error, followed by CNN (RMSE = 1.01), Random 
Forest (RMSE = 1.08), BART (RMSE = 1.28), Gaussian Process 
(RMSE = 1.34), CART (RMSE = 1.49), Conditional Inference 
Tree (RMSE = 1.59) and GLM (RMSE = 1.63).

Figure 7 depicts the results for electron project. It is 
clearly seen that all the machine learning and deep learn-
ing models outperform the extended social information 
foraging model (RMSE = 3.65). The lowest prediction error 
is noticed for MLP (RMSE = 1.16) model, followed by CNN 
(RMSE = 1.22), Random Forest (RMSE = 1.35), Conditional 
Inference Tree (RMSE = 1.45), BART (RMSE = 1.59), Gauss-
ian Process (RMSE = 1.67), CART (RMSE = 1.78) and GLM 
(RMSE = 1.89).

The above results clearly show that the Extended social 
information foraging model gives the maximum error 
for all five software projects. However, there is no single 
model that gives the best result in all cases. Therefore in 
order to compare the performance of the algorithms, the 
Friedman Test is applied to the results. There was a statisti-
cally significant difference in the prediction error depend-
ing on the algorithm used for prediction, χ2(8) = 37.035, 
p = 0.000. According to the Friedman test, we get the 
average ranks for all models, as given in Table 4. It was 
observed that Multilayer Perceptron (M.L.P.) gets Rank 1 
and can thus be considered the best performing model 
amongst all nine models. It was further noticed that both 
deep learning algorithms have a better rank than machine 
learning models.

Post hoc analysis using Wilcoxon signed-rank tests 
was also conducted with a Bonferroni correction applied, 
resulting in a significance level set at p < 0.0014. There 
were no significant differences between any of the two 
algorithms taken at a time, and for all cases, it was noticed 
that p > 0.0014.

4.2 � Results including issue label as a predictor

Secondly, in this section, we analyze the results of the 
eight machine learning/ deep learning models, i.e., Con-
volutional Neural Network (CNN), Multilayer Perceptron 
(M.L.P.), Classification and Regression Trees (CaRT), Gener-
alized Linear Model, Bayesian Additive Regression Trees, 
Gaussian Process, Random Forest and Conditional Infer-
ence Tree including issue label as one of the predictor 
variables. Since the extended social information forag-
ing model does not consider issue label for prediction, 
its result will be the same as those depicted in Sect. 4.1. 

Fig. 7   Results for electron pro-
ject (excluding issue label)

Table 4   Friedman test average ranks

Model Average rank 
(obtained using Fried-
man Test)

Assigned 
rank

CNN 1.60 2
Multilayer perceptron 1.40 1
CART​ 5.80 6
GLM 7.60 8
BART​ 4.10 4
Gaussian process 5.50 5
Random forest 3.20 3
Conditional inference tree 6.80 7
Extended social information 

foraging
9.00 9
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Table 5 displays the R.M.S.E. values obtained by machine 
learning and deep learning models when the issue label 
is included as one of the predictors.

Figure 8 depicts the RMSE obtained by each of the eight 
machine learning and deep learning models for sequelize 
project. The minimum error is obtained using CNN 
(RMSE = 1.11), followed by MLP (RMSE = 1.15), Random For-
est (RMSE = 1.21), BART (RMSE = 1.59), CART (RMSE = 1.61), 
Gaussian Process (RMSE = 1.65), GLM (RMSE = 1.67) and 
Conditional Inference Tree (RMSE = 1.77).

Figure  9 displays the results for opencv project for 
machine learning and deep learning models, includ-
ing issue label as one of the predictors. It is observed 
that minimum prediction error is reported by MLP 
(RMSE = 1.06), followed by CNN (RMSE = 1.09), Random For-
est (RMSE = 1.15), BART (RMSE = 1.31), CART (RMSE = 1.38), 
GLM (RMSE = 1.56), Gaussian Process (RMSE = 1.62) and 
Conditional Inference Tree (RMSE = 1.68).

Figure 10 depicts the results of machine learning and 
deep learning models, including the issue label as one 
of the predictors for bitcoin software project. The model 
that gives minimum prediction error is CNN (RMSE = 1.01), 

followed by MLP (RMSE = 1.03), BART (RMSE = 1.12), Ran-
dom Forest (RMSE = 1.16), CART (RMSE = 1.48), Gauss-
ian Process (RMSE = 1.48), Conditional Inference Tree 
(RMSE = 1.54) and GLM (RMSE = 1.68).

The results of machine learning and deep learning 
models, including issue label as one of the predictors for 
aseprite project, are depicted in Fig. 11. The best results 
are obtained using MLP (RMSE = 0.94) model, followed 
by CNN (RMSE = 0.98), Random Forest (RMSE = 1.01), 
BART (RMSE = 1.17), Gaussian Process (RMSE = 1.26), CART 
(RMSE = 1.34), Conditional Inference Tree (RMSE = 1.52) and 
GLM (RMSE = 1.54).

The R.M.S.E. values for electron project for the eight 
machine learning and deep learning models using issue 
label as one of the predictors are depicted in Fig.  12. 
MLP (RMSE = 1.12) model gives the minimum prediction 
error, followed by CNN (RMSE = 1.18), Random Forest 
(RMSE = 1.35), Conditional Inference Tree (RMSE = 1.43), 
BART (RMSE = 1.48), Gaussian Process (RMSE = 1.62), CART 
(RMSE = 1.67) and GLM (RMSE = 1.82).

In order to compare the prediction performance of 
the models, the Friedman test is applied. There was 

Table 5   Model results 
including issue label as a 
predictor

Project Sequelize Opencv Bitcoin Aseprite Electron
Model RMSE

CNN 1.11 1.09 1.01 0.98 1.18
Multilayer perceptron 1.15 1.06 1.03 0.94 1.12
CART​ 1.61 1.38 1.48 1.34 1.67
GLM 1.67 1.56 1.68 1.54 1.82
BART​ 1.59 1.31 1.12 1.17 1.48
Gaussian process 1.65 1.62 1.48 1.26 1.62
Random forest 1.21 1.15 1.16 1.01 1.35
Conditional inference tree 1.77 1.68 1.54 1.52 1.43

Fig. 8   Results for sequelize 
project (including issue label)
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Fig. 9   Results for opencv pro-
ject (including issue label)

Fig. 10   Results for bitcoin pro-
ject (including issue label)

Fig. 11   Results for aseprite 
project (including issue label)
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a statistically significant difference in the prediction 
error depending on the algorithm used for prediction, 
χ2(7) = 30.957, p = 0.000. According to the Friedman test, 
we get the average ranks for all models, as given in Table 6. 
It is observed that Multilayer Perceptron (M.L.P.) is ranked 
first among all models, while G.L.M. is ranked last. Also, 
both the deep learning models, i.e., M.L.P. and CNN, are 
better ranked than machine learning models.

Post hoc analysis using Wilcoxon signed-rank tests 
was also conducted with a Bonferroni correction applied, 
resulting in a significance level set at p < 0.0018. There 
were no significant differences between any of the two 
algorithms taken at a time, as for all cases, it was observed 
that p > 0.0018.

Finally, we compare the results of the machine learn-
ing and deep learning models obtained using the issue 
label as one of the predictors to those obtained without 
using the issue label as a predictor. The comparison is 
depicted in Fig. 13. It was observed that all the machine 
learning and deep learning models, including issue 
label as one of the predictors, performed better than or 

equivalent to models that did not use the issue label as 
one of the predictors. Issue labels help improve the pre-
diction performance of the models as they provide vital 
information about the type of issue. It is generally based 
on the labels and issue description that O.S.S. develop-
ers decide whether or not they can contribute towards 
issue resolution.

A quick summarization of the observed results high-
lights the following:

•	 All the machine learning and deep learning prediction 
models performed better than the extended social 
information foraging model.

•	 M.L.P. (R.M.S.E. sequelize—1.21, opencv—1.17, bit-
coin—1.05, aseprite—1.01, electron—1.16) was the 
best performing model amongst all nine models for 
prediction of group size when issue label was excluded 
as one of the predictors.

•	 M.L.P. (R.M.S.E. sequelize—1.15, opencv—1.06, bit-
coin—1.03, aseprite—0.94, electron—1.12) was the 
best performing model among all eight models for 
prediction of group size when issue label was included 
as one of the predictors.

•	 The deep learning models, i.e., M.L.P. and CNN, ranked 
better than machine learning models in the Friedman 
Test.

•	 The best ranked deep learning model provided an 
improvement of 61.34%, 60.2%, 61.8%, 52.36% and 
68.22% over the extended social information foraging 
model, for sequelize, opencv, bitcoin, aseprite and elec-
tron datasets respectively.

•	 The machine learning and deep learning models, 
including issue label as one of the predictors, per-
formed better than or equivalent to models that did 
not use issue label as one of the predictors.

Fig. 12   Results for electron 
project (including issue label)

Table 6   Friedman test average ranks (including issue label)

Model Average rank (obtained 
using Friedman Test)

Assigned 
rank

CNN 1.60 2
Multilayer perceptron 1.40 1
CART​ 5.70 5
GLM 7.40 8
BART​ 4.00 4
Gaussian process 5.90 6
Random forest 3.20 3
Conditional inference tree 6.80 7
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•	 The best ranked model when included issue label as 
one of the predictors provided an improvement of 
8.26%, 9.4%, 0.98%, 6.93% and 3.45% for sequelize, 
opencv, bitcoin, aseprite and electron datasets respec-
tively, over the prediction of best ranked model exclud-
ing issue label as one of the predictors.

5 � Threats to validity

Threats to the validity of a study are generally classified 
into internal and external. Threats to internal validity arise 
when the true facts and foundations on which the experi-
mental results are based are misinterpreted. Threats to 
external validity are threats that revolve around the vali-
dation of results in different settings or the generalizability 
of the results.

5.1 � Threats to internal validity

One of the significant threats to the internal validity of any 
study is the misinterpretation of underlying data and facts. 
This threat is eliminated by extracting data directly from 
GitHub, where all the O.S.S. development data is main-
tained and updated in real-time. So the data collected for 
building the prediction models is collected from a reliable 
source.

Another limitation that may impact the study is that in 
the social information foraging model, we take into account 
a time window of three months. The reason for selecting 

three months time window is that it has been shown to pro-
vide meaningful and reliable results in previous studies [12, 
72]. Also, the issues are classified in a three month window 
based on the close date alone. The reason for not using both 
the close date and open date to classify an issue in a three 
month time window is that certain issues might open in one 
time window and close in another time window. Thereby 
making them not wholly fall within one time window and 
leaving them out of consideration. To avoid this, issues are 
classified in a time window based on the close date alone.

5.2 � Threats to external validity

The external validity of a study relates to the generaliz-
ability of the results of the study. Since the analysis is per-
formed on data from GitHub, which has one of the big-
gest open source community of developers working on 
software projects, the results of our study should hold for 
other O.S.S. systems. Also, the five projects selected for the 
study are established projects and have been under active 
development; hence the community participation on 
issues is also similar to other active open source projects.

6 � Issue group recommendation system 
(I.G.R.S.)

We also propose an IoT-based I.G.R.S. that will input from 
one of the machine learning/ deep learning models to 
predict the group size of a software issue and, based on 

Fig. 13   Comparison of model results including and excluding issue label
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the prediction, will either recommend addition of other 
developers working on the project to the software issue or 
recommend no addition of software developer. Figure 14 
depicts the flow diagram for the proposed I.G.R.S. This sys-
tem uses data from the closed issues of a project to build 
the prediction model for predicting the group size of an 
open issue.

The predicted group size is then compared with the cur-
rent group size of the open issue. If the predicted group 
size is greater than the current group size, then the I.G.R.S. 
recommends additional developers for the issue. I.G.R.S. 
will use the past participation data of the developers work-
ing on the project. It associates the issue labels of closed 
issues that a developer has previously worked on with 
the developer. Then it matches the issue label of the open 
issue with the issue labels associated with the developers. 
If the issue label of the open issue matches any of the issue 
labels associated with a developer, then that developer is 
alerted about the issue, and his expertise is solicited on 
the issue at hand. In case an open issue has a new label 
not previously used for other issues, then the developers 
associated with issues having no label (represented as 
Blank) are alerted. If the predicted group size is less than 
or equal to the current group size, the system recommends 
no additional developers for the issue, and no alert needs 
to be sent to them.

It should be noted that not all developers who are 
alerted may participate in the issue; therefore, it is neces-
sary to alert all developers with matching issue labels and 
not just the number of developers required to make the 
group size equal to the predicted group size. Also, no addi-
tional developers are recommended for the issue when 
the group size already exceeds the predicted group size; 
this does not mean that additional developers cannot join 
the issue. It only means that I.G.R.S. will not send alerts to 
additional developers, but developers may join the issue 
depending on their interests and other factors. The pur-
pose of the system is to reach out to the O.S.S. developers 
with relevant experience and expertise who may help to 
resolve the issue efficiently and timely; for this reason, the 
system alerts only the developers having matching issue 
labels and not all the developers who have been working 
on the project.

Internet of Things (IoT) has been changing how data 
sharing and communication used to take place. IoT ena-
bles things, i.e., objects of interest, to process, commu-
nicate, and transmit information on their own [73, 74]. 
There are many IoT applications in areas such as transport 
systems [75], traffic management [76], healthcare [77], 
and military [78], among others. This system can be built 
in such a way that with just internet connectivity on the 
server and an IoT device, the recommended developers 

Fig. 14   Issue group recommendation system
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can be alerted on the fly. Thus, making it a useful IoT appli-
cation [79, 80], which at periodic intervals (which can be 
set by an administrator) can be used to alert the develop-
ers regarding the software issue automatically they may 
help resolve. This way, the developers need not browse 
manually through issues; they will be alerted if an open 
issue exists similar to an issue they resolved in the past. 
Each developer is assigned a unique identifier (UID) [81] 
and can be recommended on open issues using the rec-
ommendation system. I.G.R.S. can be implemented with all 
the analyses being done using a cloud or edge computing 
infrastructure [82–84].

7 � Conclusion and Future Work

After careful analysis of the results, the use of deep learn-
ing and machine learning models, most preferably the 
best-ranked model, i.e., Multilayer Perceptron, is pre-
scribed for group size prediction of software issues in O.S.S. 
development. The R.M.S.E. values using M.L.P. when issue 
label was excluded as a predictor were 1.21, 1.17, 1.05, 
1.01, 1.16 for sequelize, opencv, bitcoin, aseprite, and elec-
tron datasets, respectively. It helps us determine a group 
size in a development environment that allows developers 
across the world to collaborate. In comparison to the social 
information foraging model, all the eight deep learning 
and machine learning models provided better prediction 
results. The best ranked deep learning model provided an 
improvement of 61.34%, 60.2%, 61.8%, 52.36% and 68.22% 
over the extended social information foraging model, for 
sequelize, opencv, bitcoin, aseprite and electron datasets 
respectively. It is additionally seen that issue labels gives 
significant information about the issue and improves the 
prediction performance. The best results were obtained 
using M.L.P. (R.M.S.E. sequelize—1.15, opencv—1.06, 
bitcoin—1.03, aseprite—0.94, electron—1.12) when the 
issue label was included as one of the predictors. In fact 
using issue label as one of the predictors provided an 
improvement of 8.26%, 9.4%, 0.98%, 6.93% and 3.45% for 
sequelize, opencv, bitcoin, aseprite and electron datasets 
respectively, compared to when issue label was excluded 
as one of the predictors. Hence, it is recommended to use 
issue label for prediction of group size using machine 
learning and deep learning models. This paper also pro-
posed an IoT-based I.G.R.S. to recommend and alert addi-
tional developers that may help resolve the software issue 
timely and efficiently. I.G.R.S. uses the prediction results 
of a machine learning/deep learning model (suggested 
M.L.P.) to determine whether or not additional developers 
should be recommended for the issue. It also recommends 
preferable developers for resolving the issue and alerts 
them. I.G.R.S. is proposed to be used as an IoT application 

that alerts developers on the fly about software issues they 
may help resolve and can be implemented using cloud 
and edge computing framework. Our future work incorpo-
rates studying and predicting the behavior of developers 
in an O.S.S. development environment, implementing and 
testing the efficiency of I.G.R.S. in an open source develop-
ment environment.
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