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Abstract
It is well known that the interleaver plays a critical role in the performance of turbo codes and its design using random 
and deterministic permutations. In this paper, we present a new method to design a deterministic interleaver with ran-
dom-like behavior based on two-dimensional chaotic map, so called lozi map. The designed interleaver is called chaotic 
interleaver. The statistical properties and the performance of such interleaver have been investigated and compared 
with random interleaver and dithered golden interleaver. Chaotic interleaver results in lowering the latency and the 
complexity of implementation and enhance the reliability and the security of the communication system.
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1  Introduction

Turbo codes were introduced in 1993 by Berrou et al. [1]. 
These codes are currently involved in many international 
standards, such as long-term evolution (LTE) and Digital 
Video Broadcast (DVB), as well as satellite communications. 
The turbo code encoder is a parallel concatenation of two 
recursive systematic convolutional encoders separated by 
an interleaver. The decoding of received turbo encoded 
data is performed by an iterative procedure. Since the 
performance of turbo codes can be significantly affected 
by the interleaver, in particular for short frame lengths; 
several researchers have studied the effect of interleavers 
on the performance of turbo codes [2–7]. However, very 
few have considered the chaotic interleavers.

In the last two decades, there has been a great deal of 
interest in the application of chaotic signals in communi-
cation systems. The distinct random-like behavior of these 
signals in a completely deterministic setting has proven to 
be useful in several communication schemes. Due to their 
good correlation properties, chaotic systems are used to 
generate spectral spreading sequences in direct-sequence 
spread-spectrum communication systems [8, 9]. In [10], a 

secure communication system was implemented for the 
Lorenz system using the concept of chaos synchronization 
for transmitting speech signals. In [11], an analog circuit 
was developed for the Chua’s circuit to realize chaos syn-
chronization in transmission of speech and music signals. 
In [12], the author demonstrates a new way of building 
chaotic digital encoder and decoder from nonlinear digi-
tal filters. in [13], Chaotic Turbo Codes were presented as 
a result of a symbiosis between a chaotic digital encoder 
and a turbo code with the possibility of eliminate the inter-
leaver if the initial states of chaotic digital encoder are 
different. In [14], a simple technique to control transient 
chaos in turbo-decoding algorithm was developed. The 
performance of decoding algorithm with control outper-
forms the classical decoding algorithm by approximately 
0.2 dB. In [15], the authors proposed a secure turbo code 
design using chaotic signals, but with performance deg-
radation compared with the conventional turbo code. The 
aim of this work is to enhance the reliability and the secu-
rity of the communication system with low complexity of 
implementation using chaotic signals in the design of a 
turbo code interleaver.
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This paper is organized as follows. Section 2 is a survey 
of different types of interleavers. In sec. 3, chaotic signals 
generated from lozi map were analyzed and applied in the 
design of chaotic interleaver for turbo codes. Section 4 is 
devoted to report the results of our numerical computa-
tion. We end with a conclusion and outlook.

2 � Interleavers for turbo codes

The interleaver is a fundamental part of the turbo code 
design and plays a critical role in the performance of turbo 
coding. The basic role of the interleaver is to construct a 
random code and spread out burst errors. The interleaver 
provides "scrambled" information data to the second 
component encoder for constructing random codes, and 
decorrelates the inputs to the two component decoders 
hence, the convergence of the iterative decoding algo-
rithm improves [16]. Barbulescu in [17], identify the itera-
tive decoding process with a random iterated function 
system (IFS) and the role of the interleaver in this process 
with the role of the random generator in the “chaos game”.

Based on the structure, one can classify the interleavers 
into two broad categories: random interleavers and deter-
ministic interleavers. A random interleaver produces new 
positions indexes based on a random permutation. A main 
disadvantage for random interleaver is the use of lookup 
tables to implement the interleaving. So, a pseudo random 
interleaver can be algorithmically implemented, thereby 
avoiding lookup tables and reduce the hardware complex-
ity for a convenient implementation [3]. The interleaver is 
a vector � , where �(n) is the position in the information 
sequence that is interleaved to position n . Most of the 
proposed deterministic interleavers are linear interleav-
ers with a designed index function given by:

where k and n are fixed integers, k is relatively prime to N.
The two main properties that characterize any inter-

leaver are the spreading property which is the distance 
between indexes that were close before being permuted 
by the interleaver, and the dispersion (randomness) prop-
erty which is the length of the set of all possible spreading 
factors for that interleaver, normalized to the total num-
ber of possible positions for a bit pair. One can obtain a 
good randomness property using random interleavers 
and a good spreading property using deterministic inter-
leavers. In order to improve the randomness property of 
deterministic interleavers, dithered golden interleaver 
(DGI) and dithered relative prime interleaver (DRP) have 
been proposed by adding a random component (dither) 
to Eq. (1) [2].

(1)�(n) = kn + u mod N, 0 ≤ n ≤ N

2.1 � Golden section and Fibonacci sequence

The golden section has application in many mathematical 
problems. The Golden Section is the proportion that obtains 
between two quantities if the smaller is to the larger as the 
larger is to the sum of the two g

1
=

1−g

g
 , the solution of this 

quadratic equation for g gives the value of the golden sec-
tion. This value will be used in the building of two subse-
quent interleaver definitions. The secondary Fibonacci 
sequence is a sequence of numbers, such that every number 
is the sum of the two previous ones and the division of each 
number by its predecessor converges to the golden ratio. 
Starting from F(1) = F(2) = 1 , the terms of the sequence 
satisfy the recursion law:

2.1.1 � Golden interleaver

In the aim to distribute burst errors into a sequence of 
smaller bursts or isolated errors, Crozier et al. [2] pro-
posed a new interleaver design based on golden section. 
The Golden interleaver is different from the random inter-
leaver, which is generated using the sorted real valued 
numbers derived from the golden section. The elements 
of the golden vector v are calculated as follows:

 where b is a starting index and c = N(gm + j)∕r is a real 
increment value.

where g is the golden section value and m is any posi-
tive integer preferably set to 1 or 2. In order to maximally 
spread out of nearby elements, j is set to 0 and r is set to 1. 
The golden interleaver is performed as following:

Step 1: The integer sequence {n}N
n=1

∈ ℤ is mapped to 
a real number sequence {v(n)}N

n=1
∈ ℝ using (3).

Step 2: {v(n)}N
n=1

 is mapped to another integer sequence 
{s(n)}N

n=1
∈ ℤ by designing s(n) as the position of index of 

v(n) in the sort ascending of {v(n)}N
n=1

.
Step 3: The golden interleaver indexes are given 

by:�
(
{s(n)}N

n=1

)
= {n}N

n=1
.

2.1.2 � Dithered golden interleaver

In the aim to improve the randomness property of Golden 
interleaver, a random component was added to the latter. 
This random (dither) component d(n) is uniformly distrib-
uted between 0 and ND , where D is a normalized width. 
For the turbo codes, the experimental value of D is set to 
0.01 according to [2]. Thus, the indexing function becomes:

(2)F(n) = F(n − 1) + F(n − 2)

(3)v(n) = nc + b mod N

(4)v(n) = nc + b + d(n) mod N
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To build the dithered golden interleaver we use (4) 
instead of (3) in the procedure of golden interleaver.

3 � Chaotic systems

In the last decades, there has been a tremendous inter-
est in the study of chaos theory. chaotic systems exhibit 
aperiodic seemingly unpredictable behavior with sensi-
tive dependence on initial conditions and parameters 
commonly known as the butterfly effect. Because of these 
characteristics, chaotic phenomenon is now applied in 
almost all disciplines, ranging from physics, biology, mete-
orology, to engineering, economics and medicine.

In 1963 Edward Norton Lorenz worked as a meteorolo-
gist at the Massachusetts Institute of Technology, he acci-
dentally discovered the first system that exhibits chaotic 
behavior, produced by three first-order differential equa-
tions. He thus shows that a very complex dynamic can 
appear in a formally very simple system [18], and then, sev-
eral three-dimensional chaotic systems were constantly 
discovered such as Rossler system, chua’s system, and 
Genesio-Tesi system [9]. In 1976, a French mathematician 
and astronomer Michel Hénon was originally proposed 
the well-known Hénon map [19] as a simplified version of 
the Poincare map for a three-dimensional system. In 1978, 
René Lozi introduced in a short note [20] a two-dimen-
sional map, so called lozi map via a direct modification of 
the Hénon map. Since then, these maps have been studied 
in many works [21–26]. Hereafter the orbits of lozi map will 
be analyzed.

3.1 � Lozi map

The Lozi map (see Fig. 1) is a two-dimensional map intro-
duced by René Lozi in a short note [20], via a direct modi-
fication of the famous Hénon map [19]. Simply, a quad-
ratic term in the latter is replaced with a piecewise linear 
version in the former. The same procedure is done for the 
quadratic map to derive the Skew Tent map. The state or 
system equations xn = f

(
xn−1

)
 for the lozi map, expressed 

component-wise is the following:

where n is the iteration number and (x(0), y(0))T are the 
initial conditions. The system exhibits the chaotic behavior 
for the typical values a = 1.7 and b = 0.5 which are used 
in this work. The lozi map may be expressed by a one-
dimensional map given by (6), similarly to the Fibonacci 

(5)

{
x(n) = 1 − a|x(n − 1)| + y(n − 1)

y(n) = bx(n − 1)

sequence given by (2) and hence, it gives some sort of 
second-order non-linear auto-regressive process.

Taking note that when b = 0 , the Lozi map reduces to 
the skew tent map [24] given by:

3.1.1 � Probability density

The probability density of some chaotic maps are the fixed 
points of their Frobenius–Perron operators [27], while the 
probability density functions of most of chaotic systems 
are difficult to derive analytically, and only can they be cal-
culated numerically. Numerical computation leads to the 
density of orbits of the Lozi map for a = 1.7 and b = 0.5 , 
displayed in Fig. 2.

(6)x(n) = 1 − a|x(n − 1)| + bx(n − 2)

(7)T (x) = 1 − a|x|

Fig. 1   Lozi map for a = 1.7 and b = 0.5 : a and b Orbits {(
xn, yn

)T
, n = 0, 1 ⋅ ⋅ ⋅ ⋅⋅

}
 starting from the initial point (

x0, y0
)T
=(0, 0)

T , c chaotic attractor

Fig. 2   density of states of the Lozi map for 1,000,000 iterated values
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3.1.2 � Lyapunov Exponent

Lyapunov exponent is a powerful tool that measures the 
sensitivity to initial conditions (Fig. 3). A positive Lyapu-
nov exponent indicates a chaotic behavior which means 
that two initially close orbits in a system will separate very 
quickly (see Fig. 4). In the contrary, negative Lyapunov 
exponents represent a fixed point or stable periodic orbit 
and a zero Lyapunov exponent indicates the occurrence of 
bifurcation phenomenon. The Lyapunov exponent is given 
by the following expression [28]:

(8)h
(
x0, u0

)
= lim

n→∞

1

n

‖‖‖DL
n
(
x0
)
⋅ u0

‖‖‖

where u0 , is a small perturbation of the initial point x0 , 
Ln is the considered map composed with itself n times, ‖⋅‖ 
denotes the norm, and D denotes the differentiation.

Figure 3. (a) and (b) shows respectively the bifurcation 
diagram and the variation of the largest Lyapunov expo-
nent hL for the Lozi map as the parameter a is varied for 
b = 0.5 . For the periodic case: a = 1.2 and hL < 0 , for two 
band chaotic attractor:a = 1.53 and ( hL positive close to 
zero) and for the single band chaotic attractor:a = 1.7 and 
hL > 0.

3.1.3 � autocorrelation and power spectrum

The autocorrelation is an important tool to verify the cha-
otic behavior. The autocorrelation function has a periodical 
form for periodical signals and decay rapidly to zero for 
chaotic signals. Chaotic signals generated by a particular 
map can be considered as sample functions of an ergodic 
stochastic process [29], so the autocorrelation function of 
the x-series of N    observations at lag k is given by:

The power spectrum often called power spectral den-
sity, which is a Discrete Time Fourier Transform of the auto-
correlation function is another important tool for identi-
fying the chaotic behavior and investigating the spectral 
properties of orbits. For a periodic oscillation the power 
spectral density contains a finite peaks, and possess a 
continuous form in the case of chaotic signals. The power 
spectral density is given by:

3.1.4 � Numerical results

This section, is devoted to the investigation of spectral 
properties of the lozi map through numerical simulation 
based on the Matlab software. There we present only the 
x-series properties, the corresponding y-series proper-
ties are similar. The estimated power spectral density is 
obtained via Welch’s method with N = 5 × 105.

Our numerical results corresponding to different bifur-
cation parameters are summarized in Fig. 5. This figure 
contains, attractor, autocorrelation function and power 
spectral density. We can distinguish: the periodical cycle, 
the two-band chaotic attractor and finally the single-band 
chaotic attractor.

Figure  5a shows the periodic case (period 2): 
(a, b) = (1.2, 0.5) the autocorrelation function of the orbits 

(9)Rxx(k) = lim
N→∞

1

N

N−|k|∑

n=1

xnxn+|k|

(10)Sxx(�) =

k=+∞∑

k=−∞

Rxx(k)e
−j�k

Fig. 3   a: Bifurcation diagram and b: Largest Lyapunov exponent for 
the Lozi map with respect to a for b = 0.5

Fig. 4   Evolution of two trajectories generated from lozi map 
( a = 1.7 and b = 0.5 ), that diverge rapidly illustrating the sensitivity 
to initial conditions
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is periodic and the Peaks in the power spectral density cor-
respond to the frequency � = � and its harmonics.

For the case of two band chaotic attractor (see Fig. 5 
(b)):(a, b) = (1.53, 0.5) the points of an orbit alternate 
between two pieces attractor, the autocorrelation func-
tion has a very slowly oscillatory damping form, and the 
narrowband peaks stand out at the frequency � =

�

2
 and 

its harmonics in the power spectral density.
In the case of single band chaotic attractor (see Fig. 5 

(c)): (a, b) = (1.7, 0.5) , the two pieces have merged to form 
one-piece attractor and the autocorrelation function has 

a non-impulsive oscillatory damping form. The frequen-
cies peaks disappeared and the orbits have high-pass 
properties.

3.2 � Design of chaotic interleaver

chaotic signals display random-like behavior in deter-
ministic context that improve both the randomness and 
the spreading properties of the interleaver. Furthermore, 
the initial conditions and control parameters serve as a 
secret key, which enhance the security of the encoded 

Fig. 5   attractor, autocorrelation function and power spectral density of orbits of lozi map a:(a, b) = (1.2, 0.5) , b: (a, b) = (1.53, 0.5) and 
c:(a, b) = (1.7, 0.5)
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data [30]. The chaotic interleaver based on lozi map is 
performed as following:

Step 1: The integer sequence {n}N
n=1

∈ ℤ is mapped to 
a real number sequence {x(n)}N

n=1
∈ ℝ using (5).

Step 2: {x(n)}N
n=1

 is mapped to another integer 
sequence {s(n)}N

n=1
∈ ℤ by designing s(n) as the position 

of index of x(n) in the sort ascending of {x(n)}N
n=1

.
Step 3: The chaotic interleaver indexes are given by: 

�

(
{s(n)}N

n=1

)
= {n}N

n=1
.

3.2.1 � Randomness analysis

The constellation of chaotic and uniform random inter-
leavers with N = 4096-bits is shown in Fig. 6 (a) and Fig. 6 
(b). In these figures, the x-axis is the input bit positions 
of the interleaver and the y-axis is the interleaved (per-
muted) bit positions. Chaotic interleaver resemble the 
random interleaver such that we can observe irregularity 
in the density of points in the plane (Fig. 6).

3.2.2 � Correlation analysis

The interleaver enables the information exchange 
between the two component decoders in iterative soft 
output decoding algorithms. The more uncorrelated the 
information exchange is, the high the performance of the 
decoding process is. The correlation function between the 
Systematic data sequence dS

n
=
{
dS
1
, dS

2
, ............., dS

N

}
 and 

the Interleaved data sequence dI
n
=
{
dI
1
, dI

2
, ............., dI

N

}
 , 

is defined as:

where dS,I
n

∈ {0, 1}.
For k = 0 , the correlation function reduces to the aver-

age correlation coefficient of data sequences originally 
proposed by Wang et al. [31].

Figures 7 (a) and (b) show the correlation between the 
systematic and the interleaved data sequences for differ-
ent interleavers. It should be note that the longer the block 

(11)RSI(k) =
1

N

N−|k|∑

n=1

(
2dS

n
− 1

)(
2dS

n+|k| − 1

)

Fig. 6   a: constellation of Chaotic Interleaver for N = 4096. b: con-
stellation of random Interleaver for N = 4096

Fig. 7   a: Correlation properties of different Interleavers for N = 169 
b: Correlation properties of different Interleavers for N = 4096



Vol.:(0123456789)

SN Applied Sciences (2021) 3:106 | https://doi.org/10.1007/s42452-021-04147-w	 Research Article

length, the lower is the correlation between the input and 
the output data sequences, which improving the perfor-
mance of turbo decoding process. However, it is difficult 
to evaluate the performance of the interleaver from its sta-
tistical properties. Therefore, the effect of the interleaver 
design on the performance of turbo code should be inves-
tigated by simulation.

4 � Simulation results

The results are presented using graphs in which the bit 
error rate is plotted versus bit energy to noise power spec-
tral density Eb/N0 in decibels. The simulations were car-
ried out for turbo-codes formed by two identical recursive 
systematic coders (RSC), parallel with (7, 5)oct as generator 
polynomials and fixed code rate R = 1∕2 . The termination 
method is applied for the first RSC. The performance of 
turbo codes using Log-MAP decoding algorithm with 
5-iterations is studied for different interleaving schemes. 
frame lengths of 169-bits and 4096-bits were chosen for 
comparison. Throughout all simulations BPSK signaling is 
used and one hundred frame errors are counted for stop-
ping the simulation.

Figures 8 and 9 illustrate the performance of different 
interleavers over AWGN channel. From Fig. 8 (N = 169-bits), 
one can notice that, for the low values of Eb/N0, the per-
formance of all interleavers are nearly identical. However, 
for the higher values, the chaotic interleaver outperforms 
the random interleaver. For BER = 2.56 × 10–3, we have 
an Eb/N0 = 2 dB for random interleaver and Eb/N0 = 1.882 dB 
for chaotic interleaver which is a difference of 0.118 dB. 

From Fig. 9 (N = 4096-bits), one can observe that, for the 
low values of Eb/N0, the performances of all interleavers 
are nearly identical. However, for the higher values, the 
chaotic interleaver outperforms the DGI interleaver.

Figures 10 and 11 present the performance of differ-
ent interleavers over Rayleigh channel. Figure 10 (N = 169-
bits) exhibits that all the employed interleavers perform 
much similar to each other and no significant difference 
is observed.

Fig. 8   Performance of turbo code with the interleavers of length 
169 under AWGN channel

Fig. 9   Performance of turbo code with the interleavers of length 
4096 under AWGN channel

Fig. 10   Performance of turbo code with the interleavers of length 
169 under Rayleigh channel

Fig. 11   Performance of turbo code with the interleavers of length 
4096 under Rayleigh channel
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Figure  11 (N = 4096-bits) shows that the chaotic 
interleaver outperforms the DGI interleaver especially 
when Eb/N0 exceed 4.5  dB. For BER = 1.946 × 10–5 one 
finds Eb/N0 = 5 dB for DGI interleaver and Eb/N0 = 4.864 dB 
for chaotic interleaver which is a difference of 0.136 dB. As 
longer the interleaver length is, as better the BER perfor-
mance of the chaotic interleaver.

5 � Conclusion

In this paper, chaotic signals generated from lozi map 
were analyzed and applied in the design of a chaotic 
interleaver. While the chaotic interleaver belong to the 
deterministic category of interleavers, there is no need to 
transmit all interleaver look up table, which reduces the 
memory usage and the latency. compared with random 
interleaver and Dithered Golden Interleaver, chaotic inter-
leaver has low latency, low complexity of implementation 
and enhance the security of the encoded data. The chaotic 
interleaver for turbo codes may find its application in sat-
ellite communications. The effectiveness of chaotic inter-
leaver in the Interleave- Division Multiple-Access schemes 
will be a subject of a future work.
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