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Abstract
Polypropylene (PP)/ethylene–vinyl acetate (EVA) (60/40) blends-based glassy carbon (GC) composites with different 
contents of GC (0.1 to 5 wt%) were melting processed in a twin-screw extruder and the thermal, mechanical, electrical 
and morphological properties were evaluated to verify the effectiveness of the addition of GC as filler. Moreover, the 
effect of the addition of maleic anhydride grafted polypropylene (PP-g-MA) as a compatibilizer agent was also verified. 
The composites presented dispersed phase morphology with preferential localization of GC on interfacial regions and 
into the EVA phase. The mechanical properties were improved with the addition of PP-g-MA as a compatibilizer agent for 
the blend and the addition of GC had little influence on these properties. The results obtained from thermal properties 
revealed that the GC contributes to the increase in the degree of crystallinity and thermal stability of the composites. 
The addition of 0.1 wt% of GC increased the elastic modulus and the ultimate tensile strength without loss in the impact 
strength when compared to the compatibilized blend. The addition of GC increases a decade of magnitude in the electri-
cal conductivity of the PP/EVA blends.

Keywords  Glassy carbon · Filler · Polypropylene · Ethylene–vinyl acetate · Polymer blend · Composites

1  Introduction

Glassy carbon (GC) is a non-graphitizable carbonaceous 
material constituted microscopically by the stacking of sp2-
hybridized carbon hexagonal structures [1]. These arrange-
ments form layers that are twisted and tangled resulting in 
the so-called turbostratic structure, which is responsible 
for giving the material good chemical, mechanical and 
electrical properties such as corrosion resistance, hard-
ness, and high electrical conductivity [1, 2]. Nowadays, 
GC is a promising material in the development of several 
applications: hydrocephalic and heart valves, surface mir-
rors in optical systems, camera lenses, high-temperature 

furnace elements, laboratory crucibles, and solid-state bat-
teries (electrode material) [3–5].

The production of GC is based on the carbonization of 
cellulose or different thermosetting resins, such as phe-
nolic and poly(furfuryl alcohol) resins, at temperatures up 
to 1000 °C [6, 7]. Micro- and mesoporous GC, known as 
monolithic GC, can be produced even in complex shapes. 
However, a rigid control of the processing parameters is 
required, since the generation of resin decomposition 
products and high heating rates lead, respectively, to the 
formation of macropores and the appearance of tensions 
and discontinuities within the material [7].

Carbonaceous materials such as carbon black [8–10], 
carbon nanotubes [11] and graphene [12] are being 
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extensively studied as a conductive filler to improve poly-
mers performance in composites [13], increasing electrical 
conductivity and the mechanical properties for packaging 
applications, mainly antistatic packaging [14]. In this way, 
GC can also be applied as a conductive filler; however, its 
application in polymer matrices is relatively recent and has 
few studies regarding this application in the literature [15, 
16]. Szeluga et al. [15] obtained composites employing dif-
ferent GC contents (2.5 and 5.0 wt%) in a thermosetting 
matrix of epoxy resin and observed an improvement in 
elastic modulus and electrical conductivity in the com-
posites. The materials were obtained using an ultrasonic 
treatment, three roll mills, and high shear homogenizer.

Santos et al. [16] used the GC as conductive and anti-
static filler to reduce the electrical resistivity of low-density 
polyethylene (LDPE). The LDPE/GC composites were pre-
pared with different GC contents (0, 0.5, 1, 5,10, 15, and 
20 wt%) in a high-speed mixer. It was verified that the GC 
particles were homogeneously dispersed and distributed 
in the polymer matrix, therefore allowing the achievement 
of a relatively low percolation threshold (0.5 wt% of GC) 
and electrical resistivity of 2 orders of magnitude lower 
than the neat LDPE, which qualifies the material to be used 
as an antistatic package.

Polymer blending is another strategy to modify and 
improve polymers, which is cost-effective and largely 
applicable in the industry [17, 18]. Polymer blends allow 
joining the best properties of two or more different poly-
mers (or copolymers) in a new material, bypassing some 
disadvantages of applying the neat material, for example, 
low impact strength, thermal properties or low capacity in 
loading some fillers. Polypropylene (PP) and polypropyl-
ene based-blends are the main polymers used for pack-
aging [19–21], textile industry and household appliances 
[22]. The advantage of PP is correlated to ease of process-
ing, low cost, reasonable mechanical properties as well as 
good recyclability. However, one of the reasons that still 
suppresses the use of polypropylene as an engineering 
thermoplastic is the low impact strength, especially under 
conditions of low temperature and high deformation rates. 
One way to increase the use as an engineering polymer 
is the addition of elastomers [23, 24]. A common and the 
most useful strategy to overcome this limitation is to blend 
PP with an olefinic polymer, been largely applied in the 
industry [22]. The olefinic polymers applied to blend with 
PP to modify its impact strength are copolymers based on 
ethylene, like ethylene–vinyl acetate (EVA), which is also a 
low-cost polyolefin [22, 25, 26]. The contribution of EVA to 
improve the impact strength of PP has been proved [20, 
25–27] such as the immiscibility between both polymers, 
due to their completely different chemical structures [25, 
26, 28]. To overcome this problem, the addition of a com-
patibilizer agent may improve the interfacial adhesion 

between the PP and EVA phases, modifying its morphol-
ogy, hence increasing the mechanical properties of the 
PP/EVA blend [26, 29]. The main compatibilizer agent used 
in PP/EVA blends is the maleic anhydride grafted PP (PP-
g-MA) [26, 29–31]. The advantage of PP-g-MA addition is 
the compatibilization efficiency of the blend, conferring 
greater and better adhesion between the phases (PP and 
EVA) and better distribution and dispersion of the EVA 
phase in the PP matrix [26, 29–31].

PP/EVA blends-based carbonaceous materials are an 
important method to improve the electrical conductiv-
ity of insulating materials [13]. Some studies about PP/
EVA blends-based graphene [30] and carbon nanotubes 
[32–34] showed significant improvements in electri-
cal conductivity. Liu et al. [33] prepared PP/EVA blends-
based carbon nanotubes nanocomposites in a twin-screw 
extruder, and observed the formation of cocontinuous 
morphology and the filler was distributed preferably on 
the EVA phase.

In this work, a new PP/EVA blend-based carbonaceous 
material was developed using the glassy carbon (GC) as 
filler. The effect of the addition of maleic anhydride grafted 
PP (PP-g-MA) as compatibilizer agent and the addition of 
different contents of GC as filler to PP/EVA (60/40) blend 
in the thermal, mechanical, electrical and morphologi-
cal properties were also investigated. The 60/40 blend 
ratio was adopted to obtain a cocontinuous morphology, 
according to Liu et al. [33]. This morphology was chosen 
for the reason that, if the GC particle lodges in the inter-
facial region, the percolation threshold tends to decrease, 
leading to the use of a smaller content of filler, decreas-
ing the cost of production and decreasing the maleficent 
effects that fillers can cause in some properties of compos-
ites. Another goal is to expand the use of glassy carbon, 
a carbonaceous material that is easily obtainable and has 
excellent electrical properties.

2 � Experimental

2.1 � Materials

Polypropylene (PP) with specification H 301 with density 
of 0.905 g/cm3 and melt flow index (MFI) 10 g/10 min 
(2.16 kg, 230 °C).

Ethylene–vinyl acetate (EVA) with specification TN 2020 
with 8.5 wt% of vinyl acetate (VA), the density of 0.931 g/
cm3 and MFI 2.0 g/10 min (2.16 kg, 190 °C). The PP and EVA 
were supplied by Braskem (Brazil).

Maleic anhydride grafted polypropylene (PP-g-MA) with 
a trade name Polybond® 3200 (Crompton Corporation) 
with 1 wt% of maleic anhydride and MFI 10.1 g/10 min 
(2.16 kg, 230 °C).
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The monolithic glassy carbon (GC) used was prepared 
on a laboratory scale.

2.2 � Obtaining the glassy carbon (GC)

The monolithic glassy carbon (GC) was obtained by polym-
erizing furfuryl alcohol in the presence of an aqueous solu-
tion of a p-toluenesulfonic acid catalyst (APTS) (3% w/w) at 
a ratio of 60% w/v. The mixture was mechanically homog-
enized, centrifuged for 40 min at 3000 rpm, and poured 
into flat molds where it was kept at room temperature 
for 24 h. Subsequently, the mold was transferred to a kiln 
to continue the curing process maintaining the resin at 
60 °C for 24 h, then at 80 °C for 2 h, at 110 °C for 2 h and at 
180 °C for 6 h. The cured resin was then cut into specimens, 
and then heat-treated based on previous work [16], was 
executed in a tubular oven at a heating rate of 10 °C h−1 
under nitrogen flow (1.0 L h−1), from room temperature 
to a maximum temperature of 1000 °C, which was held 
for 30 min. Subsequently, the oven was cooled naturally. 
After that, the resulting material was milled (IKA mini mill, 
model A11) at room temperature for use as a filler.

2.3 � Characterization of the glassy carbon

The GC powder after the mill process was sieved in a 200 
mesh metal sieve to obtain GC powder with particle size 
smaller than 45 µm. The particle size distribution curves 
were obtained using a CILAS particle analyzer (model 
1190 L). The structural analysis of this carbonaceous mate-
rial was verified by X-ray diffractometry (XRD) on a Rigaku 
Ultima IV diffractometer (PANalytical, X’pert Powder 
model), operating at 40 kV and 30 mA with Cu Kα radia-
tion (λ = 1.54056 Å). The scanning speed used was 5° min−1 
over a 2θ range of 5° to 70°.

The interlayer spacing (i.e., the distance between the 
graphitic planes) (d002) of the GC was calculated by Bragg’s 
Law (Eq. 1):

where θ represents the peak diffraction angle of the plane 
(002) and λ is the wavelength of the X-ray.

The verification of the GC stacking height (Lc) was per-
formed using the Scherer equation (Eq. 2):

where θ is the Bragg angle related to (002) plane, λ is 
the wavelength of the X-rays and using the values of β 
obtained from the equation β2 = β2

obs − βp
2. The βobs and βp 

are the full widths at half maximum of the peak of diffrac-
tion of the sample and of a standard (usually the mica), 

(1)d002 =
�∕2 sin �

(2)Lc =
0.9�∕� cos �

both obtained in the same operating conditions of the 
equipment.

The calculation of the GC stacking width (La) was per-
formed using Eq. 3:

where θ is the Bragg angle related to (10) plane, λ is 
the wavelength of the X-rays and using the values of β 
obtained from the equation β2 = β2

obs − βp
2. The βobs and 

βp are the full width at half maximum of the peak of dif-
fraction of the sample and of a standard (usually mica), 
both obtained in the same operating conditions of the 
equipment.)

2.4 � Preparation of PP/EVA blends‑based GC 
composites

The composites and blends were prepared in a molten 
state by the extrusion process following a similar method-
ology of previous works [16, 35]. Before the extrusion pro-
cess, all materials were dried for 24 h in an oven at 80 °C. 
The neat materials (PP and EVA), PP/EVA blend (60/40) 
and PP/EVA/PP-g-MA (57/40/3) blend with the addition of 
3 wt% of PP-g-MA were manually mixed and processed 
in a co-rotational twin-screw extruder, fabricated by AX 
Plásticos, model AX16:40DR, with L/D = 40 and D = 16 mm. 
The temperature profile applied was 170, 190, 190, 190 
and195 °C, and the screw speed set at 120 rpm.

The same conditions were used to prepare PP/EVA/PP-
g-MA blends-based GC composites with the addition of 
0.1, 0.5, 1, 3 and 5 wt% of GC. Table 1 shows the nomencla-
ture used in this work. All the extrudates were pelletized 
at the die exit, dried, and then molded into test specimens 
using the hot compression process.

For all subsequent characterizations, test specimens for 
tensile tests and Izod impact strength were molded with 
3.2 mm thick using a hydropneumatic press (MH Equipa-
mentos, model PR8HP) at 200 °C for 3 min with a pressure 
of 2 bar. The test specimens molded were also used for 
thermal, electrical and morphological tests.

2.5 � Characterization of PP/EVA blends‑based GC 
composites

2.5.1 � Thermal properties

Differential scanning calorimetry (DSC) and thermogravi-
metric analysis (TGA) were used to evaluate the thermal 
properties of the neat polymers, blend and composites.

Melting temperature (Tm) and crystallization tempera-
ture (Tc) were obtained by DSC using a NETZSCH, model 
204 F1 Phoenix® equipment, using N2 as the carrier gas. 

(3)La =
1.84�∕� cos �
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DSC tests were performed with two heating cycles from 
0 to 250 °C using a heat rate of 10 °C/min. The degree 
of crystallinity (Xc) of the compositions was determined 
according to Eq. 4

where Xc (%) is the degree of crystallinity, ΔHm is the melt-
ing enthalpy obtained by DSC, ΔH°m is the theoretical 
melting heat value for 100% crystalline polymer (207 J/g 
for PP and PP-g-MA and 100 J/g for EVA [36] and Φblend 
is the mass fraction of the component in the blend. The 
ΔH°m value for the composites was calculated for each 
composition considering the mass fraction of the blend 
in the composite.

Thermogravimetric analysis (TGA) was performed 
using a NETZSCH Model TG 209 F1 Iris® equipment, under 
N2 atmosphere, according to the following protocol: the 
samples were heated from room temperature to 800 °C 
at 20 °C/min. The degradation temperatures were ana-
lyzed for each composition tested.

2.5.2 � Mechanical properties

Tensile tests were conducted on specimens using a 
MTS machine model Criterion 45 at a crosshead rate of 
50 mm/min and load cell of 50 kN according to the ASTM 
D638-14. Five specimens were tested for each composi-
tion and the average value was calculated in each case.

The Izod impact strength tests were performed in a 
CEAST/Instron Impact Test Machine (model 9050) follow-
ing the ASTM D256-06. The notches in the specimens 
were manually made in a notched machine (CEAST), and 
the impact load set was a hammer of 2.75 J. Seven speci-
mens were tested for each composition and the average 
value was calculated in each case.

(4)Xc =
(

ΔHm

/

ΔHo

m

)

×�blend × 100

2.6 � Fracture surface morphology

The fracture surface morphology was evaluated by scanning 
electron microscopy (SEM) using the impact test specimens. 
A scanning electron microscope (FEI Inspect S50) was oper-
ated at 15 kV to observe the fracture surfaces, which were 
supported by aluminum stubs and covered with a gold layer 
by sputtering.

2.7 � Electrical characterization

The electrical characterization of the samples was performed 
by impedance spectroscopy and electrical resistivity AC 
(alternating current). The values of electrical conductivity 
(σ) were calculated from the inverse of the electrical resis-
tivity (ρ) (Eq. 5), values that were obtained from the relation 
between the impedance values (Z) and the electrical con-
tact area dimensions of the samples (A, area and l thickness), 
Eq. 6. A thin layer of gold/palladium alloy was deposited by 
a metallizer (MED020 Bal-tec) on both sides of the samples, 
to form the electrical contact, producing a metal–nanocom-
posite–metal structure.

An impedance analyzer (Solartron SI 1260, Impedance/
Gain-phase Analyzer), coupled to a computer interface, per-
formed the impedance measurements at room temperature 
at a frequency of 1 Hz and a voltage amplitude of 0.5 V [16].

(5)� = 1∕�

(6)� = (Z × A)∕l

Table 1   Nomenclature of the 
compositions studied

Nomenclature Composition PP (wt%) EVA (wt%) PP-g-MA 
(wt%)

Glassy 
carbon 
(wt%)

PP PP 100 0 0 0
EVA EVA 0 100 0 0
B PP/EVA 60 40 0 0
CB PP/EVA/PP-g-MA 57 40 3 0
GC 0.1% PP/EVA/PP-g-MA/glassy carbon 56.94 39.96 3 0.1
GC 0.5% PP/EVA/PP-g-MA/glassy carbon 56.7 39.8 3 0.5
GC 1% PP/EVA/PP-g-MA/Glassy Carbon 56.4 39.6 3 1
GC 3% PP/EVA/PP-g-MA/glassy carbon 55.2 38.8 3 3
GC 5% PP/EVA/PP-g-MA/glassy carbon 54 38 3 5
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3 � Results and discussion

3.1 � Characterization of GC obtained

Figure 1a shows the particle size distribution results of the 
GC particles after the mill process. The average Fraunhofer 
diameter of particulate material is 22.50 μm with a large 
particle size distribution. The values obtained are within 
the expected diameter range and it proves the efficiency 
of the milling method that was used.

The XRD diffractogram obtained for the GC are shown 
in Fig. 1b. It was possible to observe the presence of 2 
characteristic peaks of a turbostratic structure. The peak 
located at 43.6° may be attributed to the plane (10) and 
is associated with in-plane structure. The peak at 23.6°, in 
turn, is attributed to the plane (002) and is related to the 
graphitic stacking structure [37, 38]. The d002 was calcu-
lated by Bragg’s law (Eq. 1), resulting in d002 = 0.377 nm. 
This interplanar distance is greater than the interplanar 

distance in ideal graphite crystallites (d002 = 0.335 nm) 
and indicates a larger amount of carbon plane stacking 
defects. Using the Scherer’s equation (Eqs. 2 and 3), it 
was found that the values of crystallite stacking width 
(La) and stacking height (Lc) were 5.57 nm and 1.00 nm, 
which are compatible with those presented in the litera-
ture [37]. Due to their disordered microstructure, the GC 
crystallites do not develop even under heat treatments 
at temperatures above 3000 °C having larger interlayer 
spacing and smaller size (Lc and La) than the character-
istic values for graphite [39, 40].

Figure 1c shows the SEM image for GC. It is possible 
to observe that the size of the GC particles (< 45 μm) is 
according to the results obtained by the particle size 
distribution analysis. The morphology of the particu-
lates shows a smooth surface and defined edges, which 
reveals the fragile characteristic of GC, with nonho-
mogeneous shapes and particle sizes similar to those 
observed by Santos et al. [16].

Fig. 1   The a X-ray diffractogram of GC, b particle size distribution and cumulative volume of the GC and c SEM image of GC’s particles
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3.2 � Thermal analysis

Figure 2 shows the DSC curves and Table 2 shows the 
DSC results for all compositions. Both endothermic peaks 
observed in the blend (B), compatibilized blend (CB) and 
all the composites curves are associated to the melt-
ing temperature (Tm) of neat components, indicating an 
immiscibility between these polymers [41]. No changes 
in the Tm of EVA phase were observed for the blends and 
composites. On the other hand, a slight decrease on Tm 
of the PP phase was observed in PP/EVA blend and for 
all composites, probably associated to PP-g-MA addition 
as compatibilizer agent, which may facilitate the mobility 
of the polymeric chains during the fusion of the material. 
Crystallization temperature (Tc) values of EVA and PP had 
no significant change, indicating that PP and EVA did not 
influence on each other crystallization behavior [41, 42].

Regarding the crystallinity degree of PP and EVA phases 
in the blends and composites, PP and EVA phases in 

composition B showed smaller crystallinity degrees than 
those presented in neat materials, which can be attrib-
uted to the presence of interfaces between phases that 
act as barrier for the mobility of polymer chains, result-
ing in more amorphous zones [43]. A new reduction in 
crystallinity degree of PP and EVA phases was observed in 
CB, with the addition PP-g-MA compatibilizer, which hin-
ders the approximation of polymer chains and difficult the 
formation of organized structure. The addition of GC as 
filler results in an increase in the crystallinity degree for 
both polymers, which can be associated to the heteroge-
neous nucleation agent action of the GC, as other carbon 
materials such as carbon nanotubes act for thermoplastic 
polymers as PP [33].

The degradation behavior of neat materials (PP and 
EVA) and blends is presented in Table 3 and Fig. 3a and b. 
Firstly, by evaluating only the degradation temperatures 
for neat PP, a single degradation process is observed, 
in which the onset degradation temperature (Tonset) is 
approximately 421  °C. For neat EVA, two degradation 
stages are observed, one with a lower intensity that starts 
at a lower temperature around 354 °C, related to the vinyl 
groups present in the EVA chain, which for the material 
used was around 8.5% of the total weight as per manufac-
turer specification. The second degradation step may be 
associated to the polyethylene (PE) phase present in the 

Fig. 2   DSC curves of the second heating scans of neat polymers (PP 
and EVA), blend (B), compatibilized blend (CB) and composites with 
different contents of GC

Table 2   Values of Tc obtained 
during cooling scan, Tm, 
ΔHm, and Xc obtained during 
second heating scans for neat 
polymers (PP and EVA), blend 
(B), compatibilized bend (CB) 
and composites with different 
contents of GC

Sample Cooling Second heat

Tc PP (°C) Tc EVA (°C) Tm PP (°C) ΔHm PP (J/g) ic PP (%) Tm EVA (°C) ΔHm EVA (J/g) Xc EVA (%)

PP 115 – 165 86 41 – – –
EVA – 82 – – – 99 44 44
B 114 82 166 41 33 100 14 35
CB 116 82 161 36 29 99 13 33
GC 0.1% 116 82 161 44 36 98 15 38
GC 0.5% 116 82 161 45 36 98 13 33
GC 1% 117 82 162 43 35 98 12 31
GC 3% 117 83 161 44 36 98 17 44
GC 5% 117 83 160 47 40 98 14 37

Table 3   TGA results for neat 
polymers (PP and EVA), blend 
(B), compatibilized bend (CB) 
and composites with different 
contents of GC

Composition Tonset (°C)

PP 421
EVA 354/471
B 452
CB 449
GC 0.1% 444
GC 0.5% 454
GC 1% 462
GC 3% 437
GC 5% 454
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EVA structure that occurred around 471 °C [41, 44, 45]. For 
the blends, the degradation curves appear as a single deg-
radation step, where the initial degradation of EVA phase is 
attenuated and cannot be observed, since both phases (PP 
and EVA) begin their degradation at close temperatures. 
The composites showed an increase in Tonset values from 
0.5% GC when compared to the compatibilized blend, 
with a maximum of 462 °C for the composition with the 
addition of 1% GC. This behavior is probably due to the 
higher thermal stability of the GC in comparison with the 
components of the blend, besides its good impermeabil-
ity, which may generate a diffusion barrier to the gases 
arisen from the degradation of the material, increasing the 
thermal stability [37, 46, 47].

3.3 � Morphological characterization

Figure 4a and b shows SEM micrographs of the non-com-
patibilized PP/EVA blend (B) and the compatibilized PP/
EVA/PP-g-MA blend (CB) obtained after the Izod impact 
strength test. Analyzing the B micrograph (Fig. 4a), it is 
possible to observe the immiscibility of the components, 
where the EVA can be seen as a dispersed phase lodged 
throughout the PP phase. Due to the incompatibility of 
this system and the lack of a compatibilizer agent, the 
low interfacial adhesion between the phases resulted in 
a predominant fracture in the PP phase (indicated by the 
smooth regions) with low deformation of the EVA phase. 
In contrast, analyzing the CB morphology (Fig. 4b), it is 
possible to observe a higher interfacial adhesion, since 
the EVA phase deformed during the fracture, as shown by 
the circled region. However, it is still possible to observe 
smooth and voids due to EVA phase extractions, indicat-
ing a not very strong interface in certain regions of the CB 
provoked by a not sufficient mixture of the PP-g-MA in the 
blend. Goodarzi et al. [27] prepared PP/EVA blends with 

the addition of 5 wt% of PP-g-MA. The authors verified for 
PP/EVA (75/25) blend a morphology of EVA droplets in PP 
matrix and for the 50/50 blend a completely cocontinuous 
morphology. For the blend 75/25, the use of 5 wt% of PP-
g-MA increased the interfacial adhesion and decreased the 
size of the second phase and, for the 50/50 blend, resulted 
in a coarse co-continuous morphology. Therefore, for the 
PP/EVA (60/40) blend, a better interfacial adhesion can be 
expected for contents higher than 3 wt% of PP-g-MA.

Figure 4c and d shows SEM micrographs of the com-
posites with addition of 0.5 and 1 wt% of GC. In the micro-
graph of the composite with the addition of 0.5 wt% of 
GC (Fig. 4c) it is possible to observe that the GC is pref-
erentially lodged at the EVA phase, indicating that there 
is a low affinity for the PP. As the GC content increases to 
1 wt% in the composite (Fig. 4d), it is possible to observe 
the formation of clusters, which is expected as the low 
affinity with the polymeric phases causes the smaller par-
ticles to migrate to the interface and agglomerate. As a 
result, there is a weakening of the interface, and conse-
quently the composite toughness is reduced, which will 
be confirmed by the Izod impact strength test.

3.4 � Mechanical properties

Table 4 shows the values of ultimate tensile strength (UTS), 
deformation at break (εr) and Young’s modulus (E) for the 
compositions. PP presented the highest results when com-
pared to the UTS among all the compositions, whereas EVA 
presented the lowest result. As expected for the immisci-
ble blend system, the blends had intermediate properties 
between both polymers depending on their composi-
tions, and better properties with an addictive behavior 
were observed to CB in comparison with B [32, 35]. The 
incorporation of GC to the CB did not significantly change 
the material’s UTS.

Fig. 3   TGA curves for a neat PP, neat EVA, blend (B) and compatibilized blend (CB) and b for the composites
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The addition of a high tenacity material (EVA) signifi-
cantly increased the deformation at break value of neat 
PP (10.2 ± 0.2%), as can be seen in B (19.4 ± 3%). The use of 
the compatibilizer agent improved the adhesion between 
the EVA and PP phases in the blends, since CB presented 
greater deformation at break (28.2 ± 3.8%) than B. It can 
also be seen from Table 4 that the addition of different GC 
contents to the compatible blend reduced the deforma-
tion at break of this material, which can be explained by 

the restriction of the relative displacement between the 
polymer chains caused by the friction with GC particles, as 
it was also observed by Silva et al. [9] with the addition of 
high contents of carbon black in PA6/LLDPE blends.

The addition of a rigid filler to a polymer matrix 
increases its elastic modulus [9]. As observed in Table 4, 
this behavior was proven in GC 0.1% and GC 5% compos-
ites. For GC 0.5% and GC 3%, however, there was no sig-
nificant change. The addition of 1 wt% GC in the blend, 

Fig. 4   SEM micrographs of 
a B composition (PP/EVA), 
b CB composition (PP/EVA/
PP-g-MA), c composites with 
0.5 wt% GC and d with 1 wt% 
GC

Table 4   Values of ultimate tensile strength (UTS), elongation at break (εr), Young’s modulus (E) and Impact strength for neat polymers (PP 
and EVA), blend (B), compatibilized bend (CB) and composites with different contents of GC

a Material data sheet information

Compositions Ultimate tensile 
strength (MPa)

Elongation at break (%) Young’s modulus (MPa) Impact strength (J/m)

PP 29.2 ± 0.7 10.2 ± 0.2 1004.6 ± 75.4 25a

EVA 9.4 ± 0.1 Did not break 69.2 ± 5.6 Did not break
B 16.3 ± 0.4 19.4 ± 3.0 530.7 ± 5.9 33.8 ± 5.9
CB 17.6 ± 0.5 28.2 ± 3.8 624.7 ± 11.4 39.4 ± 3.0
GC 0.1% 18.5 ± 0.4 18.0 ± 3.5 668.5 ± 8.6 39.8 ± 2.3
GC 0.5% 17.7 ± 0.6 14.4 ± 2.7 607.3 ± 9.6 39.7 ± 3.4
GC 1% 17.1 ± 0.2 17.5 ± 3.1 581.3 ± 4.8 40.7 ± 4.3
GC 3% 17.1 ± 0.8 12.5 ± 1.3 592.7 ± 22.0 34.8 ± 1.4
GC 5% 18.2 ± 0.5 9.6 ± 1.0 682.0 ± 12.3 32.2 ± 1.4
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in turn, decreased this property, which can be explained 
by a possible agglomeration of particulate material in the 
polymer matrix, impairing the formation of the interface. 
The ultimate tensile strength increases for the composites 
with the addition of 0.1 and 5 wt% GC, which might be 
associated with the increase in the crystallinity degree of 
PP and EVA phase for these compositions [9].

Table 4 also presents the Izod impact strength results. 
The EVA specimens did not break during the impact test, 
confirming its good impact strength. PP and EVA are 
immiscible phases and may present a weak interface, 
which causes a decrease in mechanical properties of the 
blends and composites when compared to the neat EVA 
[31, 34]. It is also verified that the addition of EVA provided 
a toughening to the PP matrix, since the blends and com-
posites presented higher impact strength values than the 
neat PP. The addition of PP-g-MA improved the impact 
strength of CB compared to B, indicating an improvement 
in the interface between the existing PP and EVA phases. 
The incorporation of 0.1 to 1 wt% of GC to CB had pre-
served the impact strength in the composites, but higher 
contents of GC (3 and 5 wt%) resulted in a decrease in the 
impact strength as expected with a stiff filler as observed 
for the higher content of carbon black in PA6/LLDPE 
blends [9].

3.5 � Electrical characterization of composites

The results of the electrical impedance spectroscopy of 
the neat polymers, blends and composites are shown 
in Table 5. Figure 5 shows the electrical conductivity of 
the compatibilized blend and the composites. It is pos-
sible to verify that the addition of different contents of 
GC to the compatibilized blend resulted in just a slight 
decrease in the electrical resistivity. It was observed that 
CB presented an electrical resistivity of 2.88 × 10+13 Ω m 

and an electrical conductivity of 3.47 × 10−14  S/m, 
whereas the composite with the highest GC content 
(5  wt%) presented an electrical conductivity of one 
order of magnitude greater, 6.23 × 10−13 S/m. The expla-
nation for this fact can be given from the analysis of 
the micrographs, as can be seen from Fig. 4c and d. The 
morphology of the blend obtained presents a disperse 
phase of EVA throughout the PP matrix, with the GC par-
ticles lodged preferably in the EVA phase. In this way, GC 
particles formed clusters that do not establish physical 
contact with each other, and the low distribution and 
dispersion of the GC negatively affected the formation 
of an electron conduction path through the polymeric 
blend, impairing the electrical percolation. A similar 
behavior was observed by Han et al. [48] using multi-
wall carbon nanotubes (MWCNT) in another immiscible 
blend as matrix.

GC can be used as conductive filler and contributes to 
increase the electrical conductivity of composites [16]. 
However, there must be connection points between 
GC particles to form a percolative path. In this case, as 
the GC is preferably in one phase (EVA), there is a lower 
probability of contacts between the GC particles, which 
promoted a slight modification in the electrical conduc-
tivity. Figure 6 presents a schematic of the morphology 
presented for the composites. It is possible to observe 
that the GC can be found either in the EVA phase or 
in the interface between the phases. For a significant 
increase in electrical conductivity to occur, a surface 
modification of the GC must be made so that it is dis-
tributed throughout the matrix, increasing the contact 
between the GC particles.

Table 5   Values of electrical conductivity and electrical resistivity 
for neat polymers (PP and EVA), blend (B), compatibilized bend (CB) 
and composites with different contents of GC

Compositions Electrical conductivity 
(S/m)

Electrical 
resistivity 
(Ω m)

PP 7.28 × 10−14 1.37 × 10+13

EVA 1.71 × 10−14 5.84 × 10+13

B 5.29 × 10−14 1.89 × 10+13

CB 3.47 × 10−14 2.88 × 10+13

GC 0.1% 2.44 × 10−13 4.10 × 10+12

GC 0.5% 5.09 × 10−13 1.97 × 10+12

GC 1% 3.18 × 10−13 3.14 × 10+12

GC 3% 2.99 × 10−13 3.35 × 10+12

GC 5% 6.23 × 10−13 1.61 × 10+12 Fig. 5   Electrical conductivity for the compatibilized blends (CB) 
and for the composites as a function of GC content
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4 � Conclusions

PP/EVA blends-based GC composites were processed 
and characterized by thermal, mechanical, morphologi-
cal and electrical analyses. The DSC results show that the 
blends and composites are immiscible and a heterogene-
ous nucleation effect of GC to EVA on the blends increas-
ing the crystallinity degree. The GC addition between 
0.5 and 1 wt% improves the thermal stability of the PP/
EVA blend. A disperse morphology was observed for PP/
EVA blend, which also has a higher interfacial adhesion 
for a compatibilized blend. The morphologies of the 
composites indicate a preferential location of the GC on 
interfacial regions and EVA phase. Mechanical properties 
were improved with the addition of PP-g-MA as a com-
patibilizer agent, and the addition of GC in 0.1 wt% pro-
motes an increase in the elastic modulus and UTS with 
no significant loss in the impact strength comparing to 
the compatibilized PP/EVA blend. However, increases in 
the GC content in the PP/EVA blend had no significant 
influence on the mechanical properties. From electrical 
analysis, the addition of GC showed a slight increase in 
electrical conductivity.
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