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Abstract
Among the causes of death in the world, breast cancer is considered the most common cause of mortality among 
women to the extent that one in five deaths among women is attributed to the incidence of this cancer. In this paper, 
we introduce a computer-aided detection approach to multiple classifications of breast masses. We tried to separate and 
intelligently recognize different masses in the breast cancer by means of mammograms so that in the first step, with the 
pre-processing, pectoral region is segmented from other parts and different areas are primarily clustered by K-means 
method. In the next step, using aggregation of efficient features such as texture features, Pseudo–Zernike moments, and 
wavelet features will be extracted from the input image and simulated annealing algorithm will reduce the size of feature 
vector. The final step will be the classification of possible masses in mammogram and the assessment of its severity based 
on memetic meta-heuristic adaptive neuro-based fuzzy inference system in which the optimizer is shuffled frog-leaping 
algorithm. The proposed method is evaluated using 322 mammogram images taken from Mini-MIAS database, which 
contain a variety of possible masses in mammograms. We compare our model with similar algorithms and several state-
of-the-art methods through a comprehensive set of experiments. In this approach, the focus is on providing a hybrid 
algorithm for accurate detection and extraction of masses in mammography, with the approach that the physician can 
predict both the potential disease stage and type of tumor.

Keywords Breast cancer · Mammograms · Feature extraction · Simulated annealing · Optimal ANFIS

1 Introduction

Although cancer in some cases includes benign tumors, 
there is also the possibility of malignant tumors and hence 
great increase in the rate of mortality [1, 2]. One of the 
cancers in women which causes high rate of mortality as a 
result of the malignant masses is breast cancer [3]. In some 
European, Africa and Asia countries, the rate of mortality 
caused by this disease is increasing [4] and according to 
2011 statistics, 110 women die every day from breast can-
cer globally [5]. Studies have shown that the prevention 
of this disease as a result of unknown factors seems very 

complicated, but in the early stages of formation, diag-
nostic process can be applied [6]. So, early detection and 
diagnosis is one of the most important factors in the treat-
ment of this disease. Breast cancer is the leading cause of 
mortality among women population and is responsible 
for one-fifth of all deaths [7]. For instance, the number of 
patients with breast cancer has been on the increase in 
Asian countries and the age of disease onset is 10 years 
less than Western countries [8]. What is obvious is that this 
cancer, especially among women, is very common and 
dangerous and urged researchers and physicians to look 
for ways to identify and harness this wave of cancer. On the 
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other hand, for an early diagnosis of this disease, the exist-
ence of an intelligent system with high accuracy for detec-
tion of cancerous masses is highly important. This cancer is 
usually diagnosed via surgical biopsy which has the higher 
accuracy among the existing method, but the difference 
is that this method is an invasive, time-consuming and 
expensive procedure [9]. Mammography is currently the 
most common and popular method for early diagnosis of 
this disease which has decreased the mortality rate to 25% 
due to early detection [10]; nevertheless, the interpreta-
tion of images resulting from mammography is very diffi-
cult and according to official figures of the National Cancer 
Institute in the US, 10–30% of glands in patient’s breast 
in mammography images are indistinguishable by radi-
ologists [11]. Also in the mammography method, 30% of 
breast cancers due to the lack of precise detection of mass 
locations are not recognized properly [12, 13]. Therefore, 
employing computer-aided diagnosis (CAD), in the field 
of mammography can be useful for more accurate inter-
pretations by specialist. CAD can be specifically helpful in 
intelligent detection of diseases from medical images. As 
seen in previously proposed systems and other studies, 
identification employing powerful extraction CADs and 
selection of features as well as classification in diagnosis 
of cancer masses included better results [14–16]. Using 
methods based on image processing can greatly increase 
the chance of detection in mammography [17]. Overall, 
the utilization of the proposed CAD system will lead to 
80–90% detection accuracy [18].

The problem appears to be that most previous meth-
ods in this field only identify the presence or absence of 
tumor and as a result, only few researches has been car-
ried out on an automated approach for recognizing the 
masses in mammography images [19]. The segmentation 
procedure in mammography images is one of important 
problem that is vital step for gathering information from 
the masses [20, 21].

Some researchers have also worked exclusively on 
two types of benign and malignant or micro-calcification 
masses. But in most cases, these methods have taken the 
advantages of intelligent systems model in inference and 
recognition of appropriate patterns with the possibility 
of learning [22]. A substantial number of former methods 
have benefited from tissue analysis or shape-based attrib-
utes [23–33].

Efficient tools that have been employed in various fields 
of image analysis have also extracted various features in 
the field of mammographic image processing including 
local binary pattern [34], gabor features [35, 36], histogram 
[37], principle component analysis [38] and geometric 
and statistical characteristics [31]. In a number of meth-
ods, Zernike moment method has been employed for the 
description and extraction of features [22, 39–41].

Using more features extracted from other tools like 
texture and shape characteristics can greatly increase 
the accurate identification of tumor type. Various studies 
[23–25, 28] have utilized texture features alongside non-
texture features. Kabbadj et al. [31] employed geometric 
and statistical features, while Beura et al. [42] employed 
the wavelet transform along with gray-level co-occurrence 
matrix (GLCM) in the diagnosis of masses.

A number of other studies also tried to optimize sam-
ple classification like Singh et al. [22] that made employed 
adaptive differential evolution wavelet neural network 
(Ada-DEWNN) model, which was an optimized model. Also, 
Dheeba et al. [5, 35] and Raghavendra et al. [43] applied 
neural network optimized model and chose Gabor filters 
as the features extraction tool for mammography image. 
Recently, the conventional neural network is used as the 
core of an integrated belief concept for dealing with the 
assortment problem or feature extraction of the breast 
lesion detection and classification [44–47]. Also, Xie et al. 
[48] used extreme learning machine (ELM) as powerful 
classifier for breast mass classification in digital mammog-
raphy. When the comparison is based on the use of clas-
sification type, k-NN [26, 27, 49], support vector machine 
[25, 29–31, 34, 36, 38, 40], artificial neural network [22, 32, 
35, 39, 41–43], fuzzy inference system [23] and other effi-
cient classifiers like ANFIS [50] are among those that have 
been frequently used. Despite the desired accuracy in their 
study and the small dimensions of extracted texture fea-
tures, the selection method, the number of masses and 
their type in recognition is ambiguous. In addition to the 
data obtained by researchers, there are some databases 
such as MIAS, DDSM, DBT and IRMA in this field which are 
used by researchers for data analysis. The number of dis-
ease classes in images has been mentioned in some of 
these databases.

Other researchers have exclusively explored other 
masses like micro-calcification [29, 31, 51, 52] and some 
other researchers alongside images without symptoms; 
have been trying to recognize benign and malignant 
tumors [42]. The number of classes in a mammography 
image may exceed 10 types of masses; for instance, in 
the DDSM database, there are about 12 different classes 
of benign and malignant and similar masses, while in the 
Mini-MIAS database, the maximum number of masses 
does not exceed 7 [42]. In addition, there are some tools 
for assessment of the research such as the calculation of 
accuracy, sensitivity and specificity that can be considered 
appropriate benchmarks.

In this paper, we address a framework to detect the 
multi-mass breast cancer based on hybrid descriptors 
and memetic meta-heuristic learning. The novelty of 
our study is the analysis of mammography images using 
hybrid descriptors such as Pseudo–Zernike moment and 
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wavelet transform. Furthermore, we optimize ANFIS clas-
sifier based on Memtic shuffled frog-leaping algorithm 
(SFLA). The remaining part of this paper is organized as 
follows. The framework of proposed algorithm will be pre-
sented in Sect. 2. In Sect. 4, the experimental results of the 
simulation will be presented and in the same section, the 
results are compared with other similar methods. Finally, 
overall conclusion of the system performance will be pre-
sented in Sect. 5.

2  Overview of the proposed system

Implementation steps include applying some basic steps 
in pre-processing of mammography input image, extrac-
tion and selection of the best features from the set of 
aggregated features and finally, the classification based on 
the ANFIS model. The suggested steps are shown in Fig. 1.

2.1  Pre‑processing step

Pre-processing steps comprise three basic steps as follows: 
(a) removing redundant information from mammography 
image, (b) deletion of pectoral from breast, and (c) separa-
tion of masses using K-means clustering.

2.1.1  Pectoral muscle

In the pre-processing section, simulation and mapping 
masks in pervious methods [53–55] were utilized for its 
higher accuracy in the separation of images especially 
from MIAS database at the beginning, probability density 
function used for the allocation of any part belonging to 
the image and area, were divided into three sections of 
background, breast and pectoral muscle.

where A represents the probability density function for 
each pixel position x and degree of belonging to the area 
of R. On the other hand, n (x ∈ R) is the number of x posi-
tions in the area of R. Furthermore, N is assumed as the 
total number of analyzed images. In order to define the 
probability density function, light intensity information is 
used to create processed masks [55].

where IR refers to the probability of any light intensity in 
the area of R and H is the intensity histogram. Finally, the 
label is assigned to each pixel by correspondence between 
LBP codes and histogram and also computed as the tex-
ture descriptor of that region. Therefore, it is possible to 
assign probabilities to each LBP code associated with the 
three regions of the tissue [55].

T refers to tissue information and here, LBP histogram is 
related to the code listed and thus the final data in order 
to build a probabilistic model for separation is mentioned 
[55]:

Eventually, pectoral segmentation was realized based 
on the logical operator method with initial masks that 
had been defined manually by radiologists. According to 
logical operators of image processing, the AND operator 
is applied with the corresponding original mammogram 
and the pectoral area becomes segmented.

(1)AR(x) =
n(x ∈ R)

N

(2)IR(i) =
HR(i)∑3

j=1
Hj(i)

(3)TR(t) =
LBRR(i)∑3

j=1
LBPj(i)

(4)PR(p(x, i, t)) = AR(x)IR(i)TR(t)

Fig. 1  Block diagram of the proposed scheme for multi-classification of mammograms
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2.1.2  Region clustering

After eliminating redundant information, the obtained 
image is clustered using K-means method. By selecting the 
appropriate cluster or clusters, the masses in mammogra-
phy image can be separated. If input patterns include a 
set of N vectors { } and the Euclidian distance is used as a 
measure of similarity, then we can formulate K-means clus-
tering as that of finding K cluster centers, that minimize the 
total square-error E [56]:

where mki = 1 if ��⃗xi  belongs to cluster k, and mki = 0 other-
wise. The notation ∥∥ denotes norm of term. When the 
training patterns are generated from probability density 
p
(
��⃗xi
)
 defined on an input space S, the cost function of the 

K-means algorithm is transformed into:

where m(x⃗) = 1 if ��⃗xi  belongs to cluster k, and m(x⃗) = 0 other-
wise. For expectation maximization and standard k-means 
algorithms, the Forgy method of initialization is preferable. 
Based on this clustering, pixels can be divided into a maxi-
mum of 255 clusters. Here, based on the results achieved 
from Salvador, the number of proposed clusters has been 
4–7 [57].

2.2  Feature aggregation

The features are created from the aggregation of extracted 
features by several tissues and statistical descriptors that 
have a desired effect on the accuracy of diagnosis. These 
features are composed of three parts.

2.2.1  Texture features

The GLCM is a square matrix whose elements correspond 
to the relative frequency of occurrence of a pair of gray 
values at a certain distance and a determined direction. 
The elements of a co-occurrence matrix with dimensions 
of G × G and distance vector d (dx = dy) are defined as (7):

where I (…) represents image with dimensions N × N and 
the gray level G. GLCM is in fact the description of Pij fre-
quencies that have two neighboring pixel with distance 
d, one with the gray intensity i and the other with gray 
intensity j, that occur within a given neighborhood in the 
Image. Therefore, GLCM will be formed by a square matrix 

(5)E(c⃗1, c⃗2,… , c⃗K ) =

K∑
k=1

{(1∕N)

N∑
i=1

mki
‖‖x⃗i − c⃗k

‖‖2}

(6)E(c⃗1, c⃗2,… , c⃗K ) =

K∑
k=1

∫S

m(x⃗)‖‖x⃗i − c⃗k
‖‖2p(x⃗)dx⃗

(7)Pd(i, j) = {((r, s), (t, v)) ∶ I(r, s) = i, I(t, v) = j}

whose size depends on the maximum intensity of the gray 
pixels in the image. Each Pij element represents the num-
ber of events of the above structure: pixel with size i in a 
determined distance d from the pixel j. If d = 1, four pos-
sible orientations are the possible angles between two pix-
els can be defined by 0, 45, 90 and 135°, according to Fig. 2.

2.2.2  Pseudo–Zernike moments (PZMs)

PZMs are employed to extract features that do not change 
with dataflow, that are non-repetitive and are resistant to the 
noise and visual form of investigated image. However, the 
most striking feature is the multistage display ability of this 
technique [58]. The Zernike polynomials are a set of orthogo-
nal polynomials that arise within a unit circle  (x2 + y2 = 1) and 
is displayed with Vnm (x, y) and its structure is defined in (8):

In this equation, j = 
√
−1 , � = tan−1

(
y

x

)
 , |ρ| ≤ 1, n ≥ 0, m ≤ n 

and n-|m| = even. It is also worthy of note that ρ is assumed 
to be the length of the vector origin to point (x, y) while θ 
is the angle between vector ρ, and the x-axis in an anti-
clockwise direction. As previously mentioned in the above 
relation, n is the non-negative integer that shows the order 
of polynomial. The order of horizontal arc and its absolute 
value is less than or equal to n (≤ n), and the difference of 
m from n is always even. On the other hand, Rnm is a radial 
polynomial that is calculated according to (9) and (10) [40, 
41]:

Zernike moments (ZMs) are images mapped into a set of 
Zernike mixed polynomials. One of the important features 
of Zernike moment is their orthogonal property, therefore 

(8)Vnm(x, y) = V (�, �) = Rnm(�)e
jm�

(9)Rnm(x, y) =

[
n−|m|∑
s=0

Sn,|m|,s(x2 + y2)

] n−s

2

(10)Sn,|m|,s = (−1)s
(2n + 1 − s)!

s!(n + |m| − s)!(n − |m| − s + 1)!

Fig. 2  Feature extraction by using different angles in GLCM
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image features without any redundancy of information or 
overlap between the moments can be presented. Mixed 
Pseudo–Zernike moments with order n and repetition m 
are calculated using (11):

where f (x, y) represents the brightness intensity function 
of the digital mammography image at x and y locations 
and symbols * also refer to the complex conjugate. Fur-
thermore, it should be noted that the pixels of any image 
that fall outside the unit circle after mapping will not be 
utilized in calculating Zernike. The Pseudo Zernike polyno-
mials in a unit circle are shown in Fig. 3.

Furthermore, the Pseudo–Zernike moments for a digital 
image with dimension N × N when 0 ≥ ρπ ≥ 1 is displayed 
according to (12):

2.2.3  Wavelet transform

The process of decomposing multiple signals (x[n]) after 
mapping is carried out with two filters. Each step of the 
process includes two digital and sampling filters by a fac-
tor of 2. In the first filter, g [.] is the discrete wavelet and 
inherently high-pass while h [.] is the mirror versions of 

(11)PZMnm =
n + 1

�

∑
x

∑
y

f (x, y)V∗
nm
(x, y)

(12)

PZMnm =
n + 1

�

N−1∑
i=0

N−1∑
j=0

f (r, c) V∗
n,m

(r, c)

=
n + 1

�

N−1∑
i=0

N−1∑
j=0

f (r, c) Rn,m(�rc)e
−jm�rc

the wavelet which are inherently low-pass. The first time 
sampled output signal for high-pass and low pass filters 
includes partial coefficients D1 factors and approximation 
coefficients A1, respectively. A1 is the first approximation 
coefficients that decompose more than any other factors. 
All wavelet transforms can be determined in the form of a 
low-pass filter in the (13):

where H (z) is the function z of filter h, and complementary 
high-pass filter could then be stated on the (15):

A series of filters with increasing length (with index i) 
can be obtained according to (16):

where H0(z) = 1 is assumed to be the original condition, 
and two-scale relationship in the time domain can be 
expressed on the basis of relations (17):

where [.]↑2i represents upward sampling with a factor 
m and k is assumed as the discrete sampling time. Basic 
functions and normalized wavelet i, ψi,l(k) and φi,l(k) can 
be defined in the following form:

where  2i/2 results from normalized inner product; i and l are 
parameters of scale and translation, respectively. The decom-
position of discrete wavelet transform is expressed in (19):

where a(i)(l) and d(i)(l) represent the approximate coeffi-
cients and partial coefficients in attention i [59]. Due to 
this calculation, we are able to practically decompose and 
subsequently reconstruct the signal. After applying the 
conversion on the audio signal input from heart, statisti-
cal characteristics will be available for the distribution of 
time–frequency domain.

2.3  Feature subset selection

The basic premise of using feature subset selection algo-
rithms is that the set of extracted data contains both 

(13)H(z)H(z−1) + H(−z)H(−z−1) = 1

(14)G(z) = zH(−z−1)

(15)
Hi+1(z) = H(z2

i

)Hi(z)

Gi+1(z) = G(z2
i

)Hi(z)
i = 0,… , I − 1

(16)
hi+1(k) = [h]↑2i ∗ hi(k)

gi+1(k) = [g]↑2i ∗ hi(k)

(17)
�i,l(k) = 2i∕ 2hi(k − 2i l)

�i,l(k) = 2i∕ 2gi(k − 2i l)

(18)
a(i)(l) = x(k) ∗ �i,l(k)

d(i)(l) = x(k) ∗ �i,l(k)

Fig. 3  The first 21 Zernike polynomials, ordered vertically by radial 
degree and horizontally by azimuthal degree
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redundant information and irrelevant features and thus, 
this process is implemented without incurring much loss of 
information. Heuristic algorithms belong to the set of pow-
erful techniques to both redundant information elimination 
and irrelevant features that could be used in optimized fea-
ture subset selection in accordance with the resulted error 
of applying cost function based on unsupervised classifiers. 
Simulated annealing (SA) is one of large space searching 
algorithm that is defined as a probabilistic technique for 
approximating the global optimum of a given function.

In the process of refrigeration, the metals are heated to 
a high temperature and thereafter, a gradual cooling and 
reducing of temperature is carried out on them. In this pro-
cess, an increase in temperature of the metal leads to an 
increase in speed in the movement of atoms and then a 
gradual decrease in temperature caused the formation of 
certain patterns in the position of the atoms. We applied this 
property to find optimum solutions or the best aggregated 
features. The best features are found based on the cost in 

cost function and finding minimum error of neural network 
classification. Generally, the process will be as follows:

1. Choosing a random feature subset for search and fit-
ting by neural network

2. Setting the temperature to start
3. 3 Producing a new point to achieve efficient feature 

subset
4. Evaluating the new Point to accept or reject it as an 

optimal feature
5. If produced feature subset was better than the first 

feature subset, they are accepted; otherwise they are 
accepted with a probability that depends on the tem-
perature and energy in two modes.

6. Temperature drops and steps 3–6 continued to reach 
the minimum temperature.

The steps for choosing the best properties among 
the aggregated characters in the algorithm are shown in 
Algorithm 1.
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2.4  Classification step

One of the efficient tools in identifying the association 
between variables is the ANFIS approach that has a simi-
lar structure to neural networks and fuzzy systems and 
it is similar to the neural networks in terms of structure 
and configuration. ANFIS training is carried out using two 
algorithms of back-propagation algorithm or combina-
torial algorithm including two least squares estimation 
of the error and back-propagation error which estimate 
fuzzy membership function parameters. Assuming that 
the fuzzy system has two inputs x and y and output is z, 
then the rules are written as shown in (19):

And if the mean center of defuzzification is to be used for 
defuzzification, then the output is as follows:

2.5  Shuffled frog‑leaping algorithm (SFLA)

In the SFLA optimization algorithm, rousing the idea of 
the frog movement, a strategy is proposed to scan for 
the parameters improvement, whose adequacy in find-
ing a solution is considerable, compared with different 
responses. In fact, using this optimization procedure, 
an ANFIS structure is found to have the least amount of 
mean square error (MSE) in finding the network output 
compounds. In other hand, a configuration with neural 
network weights can be found that could lead to a best 
classification with a negligible error.

Deciding these parameters will incredibly influence the 
specified exactness. To discover the leading structure of 
ANFIS, we propose that the SFLA algorithm perform the 
optimization. The steps of SFLA to discover best param-
eters of ANFIS classifier are as follows [60]:

Step 1: Initialization H frogs are randomly generated 
to construct the initial population. The position of 
the hth frog is encoded as Xh = [xh1, xh2, …, xhd, …, xhD], 
h = 1, …, H, whose, D is the dimension of the optimi-
zation space. Each Xh shows a possible response. And 
each possible response corresponds to a function f(Xh) 
related to the optimization cost function.

(19)

If x is A1 and y is B1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Rule 1

⟶ Then f1 = P1x + Q1y

If x is A2 and y is B2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Rule 2

⟶ Then f2 = P2x + Q2y

(20)
f =

w1f1 + w2f2

w1 + w2

= w̄1f1 + w̄2f2

w̄1 =
w1

w1 + w2

, w̄2 =
w2

w1 + w2

Step 2: Ranking and grouping H frogs are arranged 
in descending rank based on performance of cost 
function. Position Px = [Px1, Px2, …, P − xd, …, PxD], of the 
best frog based on cost function output in the popu-
lation is separated. The population is divided into α 
memeplexes, and there are c frogs in each memeplex 
is defined as:

Step 3: Local search Inside each memeplex, the nearby 
optimization handle is repeated for the desired number 
of iterations.

Step 3-1 Positions of the frogs in the memeplex 
model, the best and the worst, are specified as 
Pb = [Pb1, Pb2, …, Pbd, …, PbD] and Pw = [PW1, PW2, …, 
PWd, …, PWD], respectively. In this definition, Pw is 
updated based on:

where r is the random value in [0,1] interval, Dsd is 
the neighbor of the dth decision variable, and Dd

max is 
the maximum neighbor of the dth decision variable. 
Also, P′

wd
 is the updated position of the dth decision 

variable.
Step 3-2  I f  the  per for mance value of 
P�
wd

= [P�
w1
,… , P�

wd
,… , P�

wD
] is better than Pw, then 

Pw = P�
w

 ; otherwise, Pb is defined as Eq. (22) and is 
replaced with Px, and the position updating is per-
formed repeatedly.
Step 3-3 If the cost function value of  Pw is still better 
than P′

wd
 , then Pw is substituted by a random frog 

position.

Step 4: Shuffling and Global Search After a local 
search step, all memeplexes values are mixed to form an 
updated population. Frogs are arranged and the opti-
mal frog Px is specified. After this level, the next group-
ing and local search results are performed until the 
determined number of global iterations is completed.

(21)
Mo1

=
{
Xo1+�(o2−1) ∈ Papulation|1 ≤ o2 ≤ c

}

(1 ≤ o1 ≤ �)

(22)

D
sd
=

{
min[INT (r × (P

bd
− P

wd
)),Dmax

d
] P

bd
− P

wd
≥ 0

min[INT (r × (P
bd

− P
wd
)),−Dmax

d
] P

bd
− P

wd
< 0

d = 1, 2,… ,D

(23)P�
wd

= Pwd + Dsd

(24)P�
wd

=

⎧⎪⎨⎪⎩

Zmax
d

P�
wd

> Zmax
d

P�
wd

Zmin
d

≤ P�
wd

≤ Zmax
d

Zmin
d

P�
wd

< Zmin
d
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3  Experimental results

Using mammography images from the Mini-MIAS data-
base [61], evaluation criteria were analyzed. The images 
downloaded from this database were scanned with LJPEG 
format in form of three-channel image with a size of 50 
microns. The image resolution is 200 µm. Also, the down-
loaded images from Mini-MIAS database have a depth of 
8 bits, and are in 1024 × 1024 dimensions. The Mini-MIAS 
mammograms have three channels. Therefore, due to the 
nature of the mammography imaging device, the images 
have been recorded in the gray-level form. Because the 
images are high-dimensional, we have resized them into 
256 × 256 dimensions to reduce the computational com-
plexity. The first column of data shows the reference for 
each image while the second column shows the back-
ground texture of the image. In the third column of the 
data, there are seven different classes of classified data as 
follows:

1. CALC Calcification
2. CIRC Well-defined/circumscribed masses
3. SPIC Spiculated masses
4. MISC Other, ill-defined masses
5. ARCH Architectural distortion
6. ASYM Asymmetry
7. NORM Normal.

The other column of data includes the severity of 
abnormal mass that comprised the letters B and M which 
are the abbreviation of benign and malignant, respec-
tively. To evaluate the masses, ANFIS classifier output 
classes is employed based on 7 listed classes. By combin-
ing and integrating the solutions presented in Matlab 

programming environment, the proposed algorithm is 
constructed in three experimental steps.

3.1  Setting

In the features extraction step, 59 features were extracted 
from the image containing the location and condition 
of the mass. In Harlic matrix  (Cm×n), the most important 
features included contrast, energy, entropy, variance or 
the sum of squares, correlation, etc. In Table 1, some of 
these features along with their describing relationships 
are shown.

In the first step of describing features for each scale, the 
combination matrix of that scale was formed by placing all 
sub-bands together. Thereafter, the Co-occurrence matrix 
of that scale was constructed with the parameters d = 1 
(pixel resolution distance) and angles 0, 45, 90 and 135°.

In the second step, the simulation feature extrac-
tion of mammographic image was carried out using 

Table 1  Some features 
extracted by the GLCM 
algorithm

Index Physical meaning of features Mathematical expression

1 Energy ∑n

i=1

∑m

j=1
C2

ij

2 Entropy −
∑n

i=1

∑m

j=1
Cij logCij

3 Contrast ∑n

i=1

∑m

j=1
�i − j�Cij

4 Inverse difference moment (IDM) ∑n

i=1

∑m

j=1
(Cij∕�i − j�k), i ≠ j, k = 1, 2

5 Homogeneity ∑n

i=1

∑m

j=1
(Cij∕1 + �i − j�)

6 Sum-mean 1∕2 ×
∑n

i=1

∑m

j=1

�
iCij + jCij

�
7 Variance 1∕2 ×

∑n

i=1

∑m

j=1

�
(i − �)2Cij + (j − �)2Cij

�
8 Correlation ∑

ij (i − �)(j − �)Cij)∕
√
var(i)var(j)

9 Maximum probability (MP) MP = maxi,jCi,j

10 Cluster tendency ∑n

i=1

∑m

j=1
(i + j − 2�)kCij , k = 2, 3

11 Texture probability of run length of 2 ∑n

i=1

∑m

j=1
((Ci − Cij)

2Cjj∕C
2

i
)

12 Inertia ∑n

i=1

∑m

j=1
(i − �)2Cij

13 Intensity ∑n

i=1

∑m

j=1
ijCij

Table 2  Level 8 Pseudo–Zernike moments

Index m n Dimen-
sional-
ity

Order Zernike moments

1 0 0 1 0 PZM0,0

2 1 1 2 1 PZM1,1

3 2 0, 2 4 2 PZM2,2,  PZM2,0

4 3 1, 3 6 3 PZM3,3,  PZM3,1

5 4 0, 2, 2 9 4 PZM4,4,  PZM4,2,  PZM4,0

6 5 1, 3, 5 12 5 PZM5,5,  PZM5,3,  PZM5,1

7 6 0, 2, 4, 6 16 6 PZM6,6,  PZM6,4,  PZM6,2,  PZM6,0

8 7 1, 3, 5, 7 20 7 PZM7,7,  PZM7,5,  PZM7,3,  PZM7,1
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Pseudo–Zernike moments and the blocks were divided 
so that:

1. Block feature sets are inscribed on the picture
2. Block feature sets are inscribed on one fourth of the 

picture (image is divided into four equal portions)
3. 3 Block feature sets are inscribed blocks on one third 

transverse image (the image is divided horizontally 
into three equal parts)

4. Block feature sets are inscribed on one third longitu-
dinal image (the image in vertical direction is equally 
divided into three parts).

Similarly in Table  2, the level 8 Pseudo–Zernike 
moments can be observed. In discrete wavelet trans-
form, each mammogram can be scaled up to 3, 4 or 5 
levels. The number of sub-bands in each of the levels is 
different. For level three, the number of sub-bands is 18 
i.e. 1 + 16 + 1 and for level 4; the number of sub-bands 
is 50 i.e. 1 + 16 + 32 + 1, which are related to levels1, 2, 3 
and 4, respectively. The coefficients produce by wavelet 
transform to each 180 degrees are repetitive. As a result, 
half-sufficient sub-band was assumed for levels 2 and 3. 
Therefore at this stage of the four-level simulation, 26 
sub-bands (i.e. 1 + 8+16 + 1) of the wavelet coefficients 
are generated and each sub-band is a set of coefficients. 
For feature extraction from 26 available sub-bands, the 
average information within each sub-band and standard 
deviation was measured. Each of the measured parameters 
produces a small amount.

Data in relation to Hold-out methods for fitness func-
tion of SA methods were selected. Back Propagation 

Neural networks with a number of 6 neurons in the input 
layer, 8 neurons in the hidden layer and 4 neurons in out-
put layer were tried to select efficient feature subset. The 
best number of selected members of aggregated features 
was from 18 to 25 which revealed the lowest classifica-
tion error. Hence the numbers of features were saved in 
6 groups of 4 and selected features became the input 
configurations of ANFIS. In order to simulate ANFIS, the 
configuration of network shown in Fig. 4. Process of the 
improved ANFIS by Shuffled Frog Leaping Algorithm has 
been shown in Fig. 5 schematic.

3.2  Assessments

The results of the implementation of preprocessing sec-
tion for four samples of mammography images are shown 
in Fig. 6. In a series of sample images, neighborhood radius 
was assumed to be eight and redundant parts were elimi-
nated from image-sets. In the first row of the images, 
examples of removing unwanted elements can be seen. 
Selection of the eight-neighborhood occurred due to the 
entire image analysis and applies to all images. Accord-
ing to masks obtained from the research by Oliver et al. 
[55] and benchmark assessments presented in (25) and 
(26), the pixels belonging to three sections: Background, 
Breast and Pectoral can be mutually compared. Since the 
goal is the separation of breast area from the rest regions, 
therefore we have:

(25)OLBr−Pe =
2|Br ∩ Pe|
|Br| + |Pe|

Fig. 4  The proposed structure 
of ANFIS classifier
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Both equations represent the percentage of pixels over-
lapping for breast to pectoral area (|Br ∩ Pe|) and breast 
to background (|Br ∩ BG|). Table 3 shows the statistical 
results of segmentation in the pre-processing step for 322 
image samples. In next level, with a choice of 4–6 spikes for 
mammography, mass location and its appearance can be 
segmented. Skilled radiologists were asked to identify the 

(26)OLBr−BG =
2|Br ∩ BG|
|Br| + |BG|

location of the mass in the mammograms with different 
shapes and precisely map the locations of possible masses. 
They were blind to the database information, and even 
predicted the type of mass in images. There was a signifi-
cant relationship between the stated prediction and the 
results of clustering at the end of the pre-processing step.

The data in the evaluation stage and proportional to 
K-fold method were divided into training and test data, 
and K-fold validation with K = 5 were used. The train and 
test results are shown in Tables 4 and 5. Also, the train-
ing and test results in each table were provided and the 

Fig. 5  Process of the improved 
ANFIS classifier by SFLA
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output was presented. In these tables, the accuracy has 
been computed based on confusion matrix for 7 classes of 
breast cancer. Also in Fig. 7, Receiver Operating Character-
istic (ROC) curves were shown and calculation of the AUC 
shown in the images suggests the optimal performance of 

the system in recognition of the different masses in mam-
mography images.  

For accurate comparison in the first curve, we use nor-
mal and abnormal images. We randomly split the data set 
into two parts (50% and 50%), with the 50% used to train 
the proposed algorithm and the 50% used as Hold-out 
cross validation to display ROC curve. As in several multi-
class problems, the idea is to generally carry out pairwise 
comparison such as one class versus all other classes, and 
one class versus another class. On the other hand, we com-
pared and plotted ROC curve for class 2 against classes 3, 
4, etc. Thus in next step, we will compare and plot class 3 
against classes 2, 4, etc.

Fig. 6  This figure shows that the algorithm was implemented on 
4 images. The first row: a section of an original mammography 
image. The second row: first step of the preprocessing of images 

by removing unwanted objects. The third row: shows the result of 
pectoral segmentation while the fourth row: shows the results of 
region clustering by K-means algorithm

Table 3  Shows the statistical results of segmentation in the pre-
processing step

Step 1 and 2 OLBr-Pe OLBr-BG Mean

Before removing unwanted objects < 23% < 14% < 18.5%
After removing unwanted objects < 11% < 6% < 8.5%
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4  Discussion

We have tested numerous clusters and calculated the 
results in the experiments separately. When the number 

of clusters selected using the K-means was between 3 and 
5, better outputs were obtained. This is shown in Fig. 8 by 
changing the number of clusters from 2–6 and calculating 

Table 4  The accuracy results 
of applying the proposed 
algorithm by K-fold evaluation 
in train steps

CALC CIRC SPIC MISC ARCH ASYM NORM Accuracy (%)

K = 1
 CALC 20 0 0 1 0 0 1 90.90
 CIRC 0 18 1 0 0 0 1 90
 SPIC 1 0 11 0 1 0 1 84.61
 MISC 0 1 0 10 0 0 1 83.33
 ARCH 1 0 0 0 11 1 1 78.57
 ASYM 0 1 0 0 0 10 1 83.33
 NORM 2 3 2 3 4 2 147 89.63
 Mean accuracy 85.77

K = 2
 CALC 19 1 0 1 0 0 1 86.36
 CIRC 1 16 0 1 0 1 0 80
 SPIC 0 0 12 0 0 1 1 85.71
 MISC 0 0 0 10 1 0 1 83.33
 ARCH 1 0 0 1 12 0 0 85.71
 ASYM 0 1 1 0 1 9 0 75
 NORM 1 2 1 3 2 4 151 92.07
 Mean accuracy 84.02

K = 3
 CALC 19 1 0 0 1 0 1 86.36
 CIRC 0 18 1 0 0 0 1 90
 SPIC 1 0 12 0 0 1 0 85.71
 MISC 0 0 0 11 0 0 1 91.66
 ARCH 0 0 0 0 12 1 1 85.71
 ASYM 0 1 0 0 0 11 0 91.66
 NORM 1 2 1 2 2 1 155 94.51
 Mean accuracy 89.37

K = 4
 CALC 18 1 0 1 1 0 1 81.81
 CIRC 0 19 0 1 0 0 0 95
 SPIC 1 0 12 0 0 1 0 85.71
 MISC 0 0 0 11 0 0 1 91.66
 ARCH 0 0 0 0 12 1 1 85.71
 ASYM 0 1 0 0 0 11 0 91.66
 NORM 1 0 1 2 2 1 157 95.73
 Mean accuracy 89.61

K = 5
 CALC 20 0 1 0 0 0 1 86.36
 CIRC 1 18 0 1 0 0 0 85.71
 SPIC 1 0 13 0 0 0 0 92.85
 MISC 0 0 0 10 1 0 1 83.33
 ARCH 1 0 0 0 12 0 1 85.71
 ASYM 0 1 0 0 0 11 0 91.66
 NORM 1 2 1 2 1 1 158 95.12
 Mean accuracy 88.67

87.52
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the final classification accuracy and AUC  to analyze the 
desired number of clusters.

By aggregating the features obtained from different 
describers a comparison has been made among their 
performance. All feature extraction procedures are shown 

Table 5  The accuracy results 
of applying the proposed 
algorithm by K-fold evaluation 
in test steps

CALC CIRC SPIC MISC ARCH ASYM NORM Accuracy 
(%)

K = 1
 CALC 5 0 0 0 0 0 1 83.33
 CIRC 1 4 0 0 0 0 0 80
 SPIC 0 0 4 0 0 0 0 100
 MISC 0 0 0 3 0 0 0 100
 ARCH 0 0 0 0 3 0 1 75
 ASYM 0 0 0 0 0 3 1 75
 NORM 1 1 0 0 1 1 37 90.24
 Mean accuracy 86.22

K = 2
 CALC 5 0 0 0 0 0 1 83.33
 CIRC 0 4 0 0 0 0 1 80
 SPIC 0 0 3 0 0 0 1 75
 MISC 0 0 0 3 0 0 0 100
 ARCH 1 0 0 0 4 0 0 80
 ASYM 0 1 0 0 0 3 0 75
 NORM 2 1 0 1 0 1 36 87.80
 Mean accuracy 83.01

K = 3
 CALC 5 0 0 0 1 0 0 83.33
 CIRC 0 4 0 0 0 0 1 80
 SPIC 0 0 3 0 0 0 1 75
 MISC 0 0 0 2 0 0 1 66.66
 ARCH 0 0 0 0 4 0 0 100
 ASYM 0 0 0 0 1 3 0 75
 NORM 1 2 0 1 1 1 35 85.36
 Mean accuracy 80.76

K = 4
 CALC 5 0 0 0 0 0 1 83.33
 CIRC 1 4 0 0 0 0 0 80
 SPIC 0 0 3 0 0 0 1 75
 MISC 0 0 0 2 0 0 1 66.6
 ARCH 0 0 0 0 3 0 1 75
 ASYM 0 0 1 0 0 3 0 75
 NORM 1 2 2 0 1 2 33 84.83
 Mean accuracy 77.10

K = 5
 CALC 4 0 0 0 1 0 1 66.66
 CIRC 0 5 0 0 0 0 0 100
 SPIC 0 0 3 0 0 1 0 75
 MISC 0 0 0 3 0 0 0 100
 ARCH 0 0 0 0 3 0 1 75
 ASYM 0 0 0 0 0 4 0 100
 NORM 1 2 1 1 0 1 35 85.36
 Mean accuracy 85.71

82.56
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Fig. 7  ROC curves in the first plot showed one class versus other masses; while in this plots, random six ROC curves displayed one-against-
all for various masses. The first column: ROC curves for random train groups. The second column: ROC curves for random test groups
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in an in Fig. 9. Although the GLCM, PZMs, and Wavelet 
descriptors have allocated more suitable features, among 
the tissue features, to themselves, the feature aggregation 
has led to better results.

Due to using all data of the error matrix, the Kappa fac-
tor is used as the classification accuracy and fitness func-
tion assessments. This factor is defined as (26):

Fig. 8  Shows that the best value for the parameter K of K-means clustering

Fig. 9  Comparison between feature extraction schemes for mammograms images across multiple experiments

Fig. 10  Comparison between classifier optimization approaches for mammograms images across multiple experiments
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where N is the number of all data, r is the number of 
classes, xii denotes the elements on the main diagonal 
of the error matrix, xi+ is the marginal sum of rows, and 
x+i shows the marginal sum of columns. Compared to dif-
ferent classification models based on Fig. 10, to optimize 
the ANFIS classifier with other methods such as GA, PSO, 
and ACO, the Kappa factor obtained from the SFLA is more 
acceptable. The performance of this algorithm in finding 

(27)Kappa =
N
∑r

i=1
xii −

∑r

i=1
(xi+ × x+i)

N2 −
∑r

i=1
(xi+ × x+i)

global optimum is satisfactory and it can be used as an 
ANFIS optimizer algorithm in the classification of various 
masses of breast cancer.

The database had the specified label, but the images 
in the data were labeled as healthy or unhealthy and two 
radiologists were also asked to review the masses. Com-
pared with the previous methods, total precision is at an 
appropriate level (Table 6). By calculating the AUC and sen-
sitivity, the numbers equal to 94.14% for total masses and 
96.89% for benign and malignant states were obtained, 
respectively. Because when the model is not optimized, 
the accuracy of applying the training data is higher than 

Table 6  Comparison among proposed method and other breast cancer classification techniques

Methods Descriptor Classifier Database Results

Oliver et al. [34], two masses Local binary pattern (LBP) SVM DDSM 80% area under curve
Jasmine et al. [51], micro-calcifi-

cation
2-D wavelet transform – MIAS 87% accuracy

Rabottino et al. [23], two masses Shape and texture descriptors Fuzzy DDSM 88% sensitivity
Mencattini et al. [24], two masses Shape descriptor – DDSM 82% sensitivity
Rizzi et al. [25], micro-calcification Adopting a wavelet decomposi-

tion
– MIAS 98% sensitivity

Alofe et al. [26], two masses 2-D wavelet transform and texture 
descriptors

KNN DDSM 71.93% sensitivity

Mazurowski et al. [37], two 
masses

Histogram features – DDSM and DBT 80% sensitivity

Zhang et al. [27], two masses Shape descriptor KNN DDSM and MIAS 90% accuracy
Xu et al. [28], two masses Shape and texture descriptors – DDSM 90% sensitivity
Olivier et al. [29], micro-calcifi-

cation
Texture descriptor SVM DDSM 90% area under curve

Deserno et al. [38], two masses Principle component analysis 
(PCA)

SVM IRMA 80% Accuracy

Tamil et al. [35], two masses Gabor descriptor RBFNN MIAS 85% sensitivity
Subashini et al. [30], two masses Statistical descriptor SVM MIAS 94% accuracy
Kabbadj et al. [31], micro-calcifi-

cation
Statistical and morphological 

descriptors
SVM MIAS 99.60% sensitivity

Shanthi et al. [32], two masses Statistical descriptor SOM MIAS 90.50% accuracy
Cabrera [33], two masses Texture descriptor – DDSM 93% accuracy
Tahmasbi et al. [39], two masses Zernike moments MLP MIAS 97.6% area under curve
Sharma et al. [40], two masses Zernike moments SVM DDSM and IRMA 97.5% accuracy
Laroussi et al. [41], two masses Zernike moments MLP DDSM 96% area under curve
Beura et al. [42], three masses GLCM and 2-D wavelet transform 

descriptors
BPNN MIAS and DDSM 94–98% accuracy

Singh et al. [22], two masses Zernike moments DE-WNN MIAS 89% accuracy and 93.5% area 
under curve

Torrents et al. [36], two masses Gabor descriptor SVM MIAS 88.4% accuracy
Fernandes et al. [50], two masses Texture descriptor ANFIS MIAS 99% accuracy
Proposed Computer-Aided 

Algorithm
Feature extraction based on 

GLCM descriptor, Zernike 
moments and 2-D wavelet 
transform—Feature subset 
selection based on simulated 
annealing

MM-ANFIS 
(SFLA-
ANFIS)

MIAS Two masses; 97.5% accuracy and 
95% area under curve

Three masses; 93% accuracy and 
91% area under curve

Six masses; 82% accuracy (test) and 
85% area under curve
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that of the test data. The main reason for this event is 
the over-fitting problem and to prevent this challenge 
the model is tuned based on the SFLA algorithm, which 
helped optimize the accuracy of the test step. Thus, the 
results of the train and test steps for Mini-MIAS data are 
represented separately to show that the over-fitting chal-
lenge for a large number of classes has been considered.

It can be seen that the performance of the algorithm for 
identifying benign and malignant masses as well as their 
separation compared to methods such as [22, 30–34, 36, 
39–42] is effective. Although the total precision compared 
to methods such as [30, 31, 50] is less, it should be noted 
that if the algorithm to be implemented in two stages on 
two categories of data is in line with the mentioned pro-
cedures, then the binary classification accuracy and AUC 
(i.e. healthy or unhealthy), will be higher than 98.6%. Thus, 
by diagnosing healthy individuals from patients, this algo-
rithm offers a better performance from priory algorithms 
[30, 31, 33, 39–42, 50]. By distinguishing patients from 
healthy people, the statistical population is limited to 121 
images; among them, circumscribed masses comprised 
25 images, Spiculated masses with 19 images, ill-defined 
masses with 15 images, Architectural distortion with 19 
images, Asymmetry with 15 images and Calcification with 
28 images.

We applied the algorithm again to the class of diseases 
and good precision (above 92%) was obtained for the six 
different classes. Although such methods [22, 32, 33, 36, 
39–42, 50] have a favorable level of accuracy and sensitiv-
ity, the lack of integrity in discrimination and segmenta-
tion of all masses was criticized. Therefore, the first differ-
ence and a key advantage of the presented solution are in 
recognition of the different kind of masses.

In identifying micro-calcification, methods [29, 31, 51], 
respectively have functions equal to 87, 90 and 99.60%, 
but in their study, the  F1 score does not result from sen-
sitivity and specificity and the time taken for the proce-
dure [31] is unclear, because this method made use of two 
categories of features. Unlike the former methods [22, 32, 
33, 36, 39–42, 50], which did not assess data conclusive-
ness and the correlation of algorithm performance by the 
radiologist opinion, in this study, the p value in the pro-
posed algorithm showed a significant correlation between 
the output of the proposed algorithm and the Radiolo-
gist opinion (p < 0.05). The comparison of the results with 
radiologists and other similar methods is a proper reason 
to reject the Null hypothesis (H0). Since the test result was 
not placed in the acceptable area H0, H0 is not accepted 
(α = 0.05 and thus − Zα−1 = − 1.65). This means that Con-
fidence Interval is more than 95%, and despite the large 
number of mammography images and the evaluation of 
K-fold, outputs are closer to reality.

In addition, the strengths of the algorithm can be seen 
as a recognition tool. In some studies, tumor location 
based segmentation is in line with the recognition, while 
with the correct segmentation techniques; isolation of the 
breast and pectoral as well as ROI in the pre-processing 
step was performed. In few researches, heuristic algorithm 
is used to reduce the dimensions and choose the best sub-
set of features. Also, the accuracy of the algorithm showed 
its ability to histological features and statistical analysis of 
mammography images. In some other studies, the aggre-
gate descriptors were used for the recognition of the best 
features; for instance, GLCM and wavelet feature was used 
by Beura et al. [42], while the number of statistical descrip-
tors and texture in the current context is three extraction 
features. Furthermore, ANFIS classifier, adaptive model of 
fuzzy inference system and neural network are special abil-
ities for the classification of multiple classes [39, 48, 62, 63].

5  Conclusion

The recognition and early detection of breast cancer in 
women can be a strategy for fighting this disease. Thus, 
the need for an efficient system with the ability to auto-
matically separate different classes of mass labels is nec-
essary. In this paper, a combination method including 
feature extraction of mammography image based on 
aggregating various characteristics of three texture and 
statistical descriptors and also selection of efficient fea-
tures by the algorithm SA was offered in the first place. 
By separating the target region in mammography image, 
the memetic meta-heuristic adaptive neuro-based fuzzy 
inference system (MM-ANFIS) classifier for classification 
was employed to verify the attained classification of above 
90%. Although the different algorithms for estimating the 
presence or absence of this disease were proposed, the 
form and shape of the suspected masses can be effective 
in combating and preventing this disease in early stage. In 
future, the authors plan to optimize the feature extraction 
pattern, feature selection and modification of classifiers 
adaptive features to reduced feature dimensions and at 
the same time, reducing data processing time increases 
the precision.
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