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Abstract
Hydrological extreme events such as floods and drought are common in Ethiopia which eventually causes environmen-
tal hazards. Kulfo River is one of Southern Ethiopian Rift Valley Basin that has experienced flooding for years. Therefore, 
this study aimed characteristics of hydrological extremes (1985–2014) in the Kulfo River, which is important for effective 
drought and flood monitoring and early warning systems. The hydrological drought was assessed using the streamflow 
drought index (SDI). Flood frequency distribution (FFD) software package was deployed to determine the flood frequency 
curve of the Kulfo River. The goodness-of-fit test results showed that the Generalized Extreme Values (GEV) distribution 
was found the best-fit probability distribution model in the Kulfo River, while the results of SDI values showed that 
extreme drought events were observed in 1991, 1992, and 2014 with magnitudes ranging from − 2.04 to − 2.7, − 2.0 to 
− 2.3, and − 2.10 to − 2.24, respectively, which cause reduction of lake level, lowing of groundwater level, and decreased 
the amount of river flow. SDI value indicated 6-year drought duration has occurred with the relative frequency of 20% in 
the 3- and 6-month timescales. The flood frequency results show the lowest probability of having flood magnitude has 
affected the river morphology. The study provides valuable information for policy and decision makers to implement 
different adaptation and mitigation measures for extreme hydrological events in the Kulfo River.
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1  Introduction

Flooding in the Southern part of Ethiopia is mostly associ-
ated with the geography of the catchment and the natural 
drainage systems formed by the principal river basins [1, 
2]. The extreme rainfall event results in an extreme run-
off [3, 4] and usually causes a significant damage to the 
natural system and human–environment [5]. The extreme 
event frequency analysis and determination of its mag-
nitude at different return periods are important for sus-
tainable water resources management [6–8]. Streamflow 
drought defines a shortage of water resources, which 
includes groundwater, reservoir, or streamflow levels. 
According to A. K. Mishra and V. P. Singh [9], investigation 
of the past hydrological drought characteristics provides 

better information for effective monitoring of upcoming 
drought events.

The best-fit probability distribution model (PDM) for the 
extreme event study is determined based on goodness-
of-fit measures. PDM is most widely used in hydrological 
extreme events estimation and prediction [1]. Understand-
ing of the characteristics of hydrological extreme events 
using the best-fit PDM is very important to enhance effec-
tive management and utilization of water resources in the 
catchment [10, 11].

Ethiopia is considered as the water tower of the east-
ern Africa region has frequently experienced hydrologi-
cal drought at an increasing intensity throughout the 
past many decades. For instance, the study conducted 
by Edossa et al. [12] shows an increasing occurrence of 
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drought events, with the frequency of drought, occurred 
within 5 years. The study conducted by Gebrehiwot et al. 
[13] showed that the frequency of recurrent drought in 
Ethiopia has been showing an increasing trend for over the 
past decades. Moreover, flooding in the lower part of Kulfo 
River catchment becomes an unbeatable disaster and a 
challenge for the rural community living around the lower 
catchment. Farmers in the catchment extensively use Kulfo 
River for their irrigation, but their crops are affected by 
flooding each year.

Many previous studies have investigated long-term 
hydrological extreme even related to climate change [14, 
15]. Changes in Earth’s climate system affect the balance 
of hydrological cycle and eventually lead to increased 
occurrence of extreme events such as flood and droughts 
[16–18]. Recent investigations also show that global cli-
mate change will create and intensify more severe fre-
quent floods and droughts in the region [19, 20].

Extreme hydrological event analysis is easy to apply, but 
it includes large uncertainties in the choice of the best-
fit probability distribution model, especially when study 
flood frequency analysis. Moreover, it cannot produce 
the accurate flood frequency curve for hydraulic struc-
ture and it is dependent on the PDMs. Some of the most 
frequently used PDMs in hydrology are the Gumbel, Gen-
eralized Extreme Values Distribution (GEV), Gamma (3P), 
Log-Normal (2P), Log-Normal (3P) and Log-Pearson (3P) 
PDMs [21]. However, the choice of an appropriate PDM is 
still one of the main problems for hydrologist.

To the knowledge of the experts, there was no attempt/
study carried out related to hydrological extreme event 
analysis using the best-fit PDM in Kulfo River. This research 
was, therefore, initiated to characterize the hydrological 
extremes using the best-fit PDM of Kulfo River. The objec-
tives of this study were to conduct (i) the best-fit PDM 
for determining flood frequency curve (ii) the temporal 
variation of hydrological drought using at different time-
scales (3, 6, and 12 months) and characterize the hydro-
logical droughts, duration, severity, intensity and relative 
frequency, and finally, analyze the flood frequency curve 
over return periods of 2, 5, 10, 20, 50, and 100 years.

2 � Materials and methods

2.1 � Study area

This study was conducted in Kulfo River Southern Ethiopian 
Rift Valley Basin, near Arba Minch town with a geographi-
cal location between 5o 55′ and 6o 15′ N latitude and 37o 
18′ and 37o 36′ E longitude, the elevation of between 1253 
and 3550 m above sea level, and has a total area of 492 km2 
(Fig. 1). The mean annual temperature rises to 14–23 °C, 

the catchment receives up to 620–1250 mm rainfall annu-
ally, and the mean annual discharge is estimated at around 
1.8–22.8 m3/s (for the observation period of 1985–2014). 
The Kulfo catchment can be classified by four main soil 
types, namely cambisols, ferralsols, regosols, and fluvisols 
[22]. It is characterized by severe land degradation resulting 
in soil erosion, flooding, sediment, and nutrient intrusion 
to Lake Chamo [23]. In the catchment, agriculture is the 
major land use activity and occupies the flat alluvial land 
of the catchment surrounding the river. Thick bushlands, 
open woodland, forest, grassland with cultivated land are 
found on the catchment [24]. Extreme flooding events, in 
and around the catchment, induce restriction on agricul-
tural productivity reduction through the cultivation of non-
farming activities. The Kulfo River also serves as a potential 
water source for the urban population and covers around 
70% safe water supply to the rural community [25].

2.2 � Data sources

Thirty-year daily discharge data series for the period of 
1985–2014 were collected from Kulfo River station near the 
town of Arba Minch which were obtained from the Min-
istry of Water, Irrigation and Energy of Ethiopia (MoWIE) 
(http://www.mowr.gov.et/). However, in this study, the 
monthly discharge data analyzed from the above thirty-
year daily discharge data have been used for hydrological 
drought assessment and annual daily peak-discharge data 
series were used for flood frequency analysis.

2.3 � Probability distribution models (PDMs)

The PDM is the integral of the probability density function. 
This function is very important because it measures the 
inconsistency among the empirical and theoretical distri-
butions. This is, therefore, for hydrological extreme event 
analysis the best-fit PDM has been identified as the best 
method [26].

2.3.1 � Log‑Normal (2P)

The probability density function and cumulative distribu-
tion function (cdf ) of the 2-parameter Log-Normal (2P) are 
given as:
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where the assortment of random variable x is greater 
than zero. The logarithm of the x variable, y = ln(x), is 
best explained by a Normal PDM. Method of momentum 
(MOM) estimator has been used, and the 2 parameters are 
expressed as follows:

where � is coefficient of skewness, and X  is annual daily 
peak discharge of observed data, which are the commonly 
used parameters of the Log-Normal (2P) PDM. Here, �� is 
the standard deviation of coefficient of skewness and �� 

(3)�� =
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1 +
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is the mean of coefficient of skewness for the Log-Normal 
(2P) PDM. The Log-Normal (2P) should be more fitted than 
the simple Normal PDM as it is appropriate for a “heavy 
tail” on one side, which can be best-fit annual daily peak 
discharge of observed data.

2.3.2 � Log‑Normal (3P)

The probability density function of the three-parameter 
Log-Normal distribution is:

where 0 ≤ xo < x,−∞ < 𝜋⟨∞, 𝜎⟩0.𝜋, 𝜎, andxo are the 
parameters of distribution.
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Fig. 1   Regional map of Ethiopia (a), Abay–Chamo Rift Valley Basins watershed map (b), drainage network, hydrological station, and altitude, 
based on a digital elevation model of Shuttle Radar Topographic Mission 30 m of study area Kulfo catchment (c)
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2.3.3 � Gumbel

Gumbel is extreme value (EV) distributions case, thus 
extreme value type I corresponds to Gumbel distribution, 
and the PDM is:

α-Scale and μ-shape are parameters of Gumbel distribu-
tion, estimated by L-moment.

2.3.4 � Generalized Extreme Values (GEV)

The GEV distribution is a family of continuous probability 
distributions that combines the Gumbel (EV1) and Weibull 
distributions. GEV distribution makes use of 3 parameters: 
location (�) , scale (�) , and shape (k) [27]. The parameters 
are estimated by weighted moments. The probability dis-
tribution function is:

where c = 2
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2.3.5 � Gamma (3P)

The other regularly used PDM in extreme event study is 
the Gamma (3P) PDM which is a 2-parameter Gamma dis-
tribution with a third parameter for the location. The pdf 
and cumulative distribution function of Gamma (3P) are:

The parameters are shape � , scale � , and location ξ 
which are estimated by MOM estimators that are,
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2.3.6 � Log‑Pearson (3P)

The Log-Pearson (3P), one more Gamma family of PDM, 
defines a random variable and logarithm following the 
Log-Pearson type III PDM. The pdf and cdf of Log-Pearson 
(3P) are as follows:
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2.4 � Goodness‑of‑fit tests

Goodness-of-fit test statistics are used to validate a specified 
or assumed PDM [28], while empirical distribution function 
tests offer a measure of the inconsistency among the empiri-
cal and theoretical distributions. The mostly used empirical 
distribution function tests are the Kolmogorov–Smirnov 
(K–S) [29], the Anderson–Darling (A–D) [30], and Chi-squared 
(C–S) test. The K–S, A–D, and C–S tests were applied in this 
study. The factor of best-fit can also be quantified by using a 
quantile–quantile (Q–Q) plot. The goodness-of-fit tests were 
carried out using Easy Fit, available at http://www.mathw​ave.
com/easyf​it-distr​ibuti​on-fitti​ng.html.

2.4.1 � Kolmogorov–Smirnov (K–S)

The Kolmogorov–Smirnov (K–S) test statistic, the highest 
class of empirical distribution function (EDF) statistics, is 
based on the highest alteration among the hypothetical 
and empirical distributions [26]. The main target of this 
test is to relate the empirical cumulative frequency (Sn(x)) 
with the cumulative distribution function of an assumed 
theoretical distribution (FX(x)) [31]. The highest variance 

http://www.mathwave.com/easyfit-distribution-fitting.html
http://www.mathwave.com/easyfit-distribution-fitting.html
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among Sn(x) and FX(x) is the K-S test statistic. For a model 
size n, the data are reordered in ascending order where 
x1 < x2 < ... < xn and the K-S statistic is evaluated for each 
value as given:

where D�
n
 is the critical value, � is the highest level, and k is 

the descending order of the data set.

2.4.2 � Anderson–Darling (A–D)

The Anderson–Darling (A–D) test was first developed by 
Anderson and Darling [30], and this test is accurate at the 
tails of the PDM [32]. In belongings with comparatively 
high extremes, it may be the A-D test to be more appro-
priate to select the best-fitted PDM to annual daily peak-
discharge data [26]. The A–D test statistic, the quadratic 
class of the EDF test statistic, is explained as A2 as follows:

where FX
(
xi
)
 is the cdf of the projected distribution at xi , 

for i = 1, 2,… , n . The annual daily peak-discharge data 
essentially ordered in ascending order, as x1 < x2 < ... < xn.

In the K-S test, both the hypothetical and experimental 
cumulative distribution functions are comparatively smooth 
at the tails of the PDMs, which means the A-D test gives 
more accurate to the tails [32]. This shows a more fitted test 
when the tails of the selected theoretical distribution are the 
emphasis of the analysis, as with hydrological events [26].

2.4.3 � Chi‑squared (C–S)

Chi-squared (C–S) test is a goodness-of-fit test that relates 
how the theoretical continuous probability distribution 
functions fit with the empirical continuous probability 
distribution functions. The C–S test is defined as:

where x2 is the test statistic, Qi is the observed frequency, 
and Ei is the expected frequency defined as:
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where F is the cumulative distribution function (CDF) of 
theoretical continuous probability distribution functions, 
and x1andx2 are the lower and upper limits.

2.4.4 � Quantile–Quantile (Q–Q) plot

Quantile–Quantile (Q–Q) plot is an effective method 
to analyze whether the fitted distributions are reliable 
with the given set of observations. It is a mean of com-
paring annual daily peak-discharge data to a theoretical 
distribution.

The observed data xi are ranked in ascending order and 
denoted from x1∶n to xn∶n , where n is the total number of 
observations. A plotting position of the probability Pi∶n is 
computed for each x1∶n using the plotting position formula 
defined as:

The Q–Q plot, each x1∶n , is paired with y1∶n , which is 
computed from the assumed cumulative distribution func-
tion, F(x) . The set of points 

(
x1∶n, y1∶n

)
 is plotted on normal 

graph with a 1 ∶ 1 straight line extended from the basis.

2.5 � Drought indices analysis

2.5.1 � Streamflow drought index (SDI)

According to Nalbantis and Tsakiris [33], if a time series of 
monthly discharge Qi,j is available, in which i signifies the 
water year and j the month within that water year (j = 1 for 
October and j = 12 for September), Vj,k can be found based 
on the equation:

in which Vi, j is the overall amount of monthly discharge 
for the i-th water year and the k-th reference period, k = 1 
for October–December, k = 2 for October–March, k = 3 for 
October-June, and k = 4 for October-September. Based on 
the overall amount of monthly discharge Vi,k , the stream-
flow drought index (SDI) is defined for each reference 
period k of the i-th water year as given:

where V̄k and sk are, respectively, the mean and the stand-
ard deviation (SD) of overall amount of monthly discharge 
of the reference period k as these are simulated over an 
extent of time. In this definition the lopping level is set to 

(24)Pi∶n =
(i − 0.4)

(n + 0.2)

(25)Vi, k =

3k∑

j=1

Qi, ji = 1, 2, j = 1, 2,… , 12k = 1, 2, 3, 4

(26)SDIi,k =
Vi,k − Vk

sk
i = 1, 2,… , k = 1, 2, 3, 4



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1305 | https://doi.org/10.1007/s42452-020-3097-1

Vk although other values based on normal criteria could 
also be used.

Usually, for small basins, streamflow may follow 
a skewed probability distribution which can well be 
approached by the family of the gamma distribution func-
tions, and the SDI index is defined as:

in which

are the natural logarithms of overall amount of flow 
with mean ȳk and standard deviation (SD) Sy,k as these 
statistics are estimated over an extent of time. Accord-
ing to Nalbantis and Tsakiris [33], classes of hydrological 
drought are explained for SDI in the same way to those 
used in the standardized precipitation index (SPI) as shown 
in (Table 1).

2.5.2 � Streamflow drought characteristics

A drought index is the main variable in order to evalu-
ate the consequence of drought and to decide various 
drought characteristics, such as length of drought (L), 
intensity (I), magnitude (M), and relative frequency (RF) [9].

2.5.2.1  Drought duration  In order to measure the length 
of drought (duration) and magnitude of drought (sever-
ity), a threshold value must be defined. The drought 
length (L) is the period length in which the SDI value is 
continuously negative, started from the SDI values is 
equal to minus one and ends when the SDI values turn 
out to be positive.

2.5.2.2  Drought severity  The drought severity (S) is the 
summation of SDI values within the drought duration, 
which is defined by Eq.  (29), and intensity of drought is 
the ratio of the severity of drought to its duration.

(27)SDIi,k =
yi,k − yk

sy,k
i = 1, 2,… , k = 1, 2, 3, 4

(28)yi,k = �n
(
Vi,k

)
, i = 1, 2,… , k = 1, 2, 3, 4

2.5.2.3  Relative frequency  The relative frequency (RF) 
of drought is the ratio of number of years with drought 
events (n) (negative SDI) to number of total years (N) [34], 
and the RF is defined as:

2.6 � Homogeneity, trend, independence, 
and stationarity test on annual daily peak 
discharge

There are several statistical tests to check the homogene-
ity, trend, independence, and stationarity of a data series. 
Some tests are known as parametric because they assume 
that the analyzed variable is normally distributed. Those 
that do not make this assumption are called nonparamet-
ric tests [35].

In this study, the standard normal homogeneity (SNHT) 
test for homogeneity [36], Mann–Kendall (M–K) test for 
trend detection, and Wald–Wolfowitz (W–W) test for inde-
pendence and stationarity of data [21, 37] have been used. 
The homogeneity, trend, independence, and stationarity 
test of annual daily peak-discharge data series were car-
ried out in r-programming using trend packages.

2.7 � Flood frequency analysis (FFA)

The FFA has been carried out for the observed (1985–2014) 
periods of the annual daily peak-discharge data series 
were used. It was computed using flood frequency distri-
bution (FFD) package (Run_Flood.m), run using MATLAB 
software. The Gumbel, Generalized Extreme Values (GEV), 
Gamma (3P), Log-Normal (2P), Log-Normal (3P), and 
Log-Pearson (3P) PDMs were used. The FFA has been per-
formed for T-return periods of 2, 5, 10, 50, and 100 years. In 
this study, probability distribution model parameters were 
determined using the L-moment and method of moments.

3 � Results and discussion

This study analyzed the characteristics of hydrological 
extremes in the Kulfo River of Southern Ethiopian Rift Val-
ley Basin. In the catchment, due to heavy rainfall flooding 
has been a frequent phenomenon where the lower part of 
the catchment is affected. In preparation for hydrological 
extreme events, it is important to understand the extreme 

(29)Si = −

D∑

i=1

SDIi

(30)RF =
n

N
× 100

Table 1   Definition of hydrological drought indices (SDI)

SN Description Criterion

1 Nondrought SDI ≥ 0.0
2 Mild drought − 1.0 ≤ SDI < 0.0
3 Moderate drought − 1.5 ≤ SDI < −  

1.0
4 Severe drought − 2.0 ≤ SDI < − 1.5
5 Extreme drought SDI < − 2.0
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hydrological events such as flood and drought. Hydro-
logical extreme event assessment contains consistent 
evidence as to the primary factor in the decision-making 
process [38].

3.1 � Goodness‑of‑fit tests

The best-fit distribution was taken as the critical value 
at alpha 0.05, for K–S, A–D, and C–S tests as shown in 
Table 2. This value chooses which distribution is accepted 
or rejected in this study. The result shows all the distri-
butions are statistically accepted. On the other hand, it 
showed the significance of the distribution. The ranking 
is given on the difference between statistical and critical 
value. Among all, the GEV probability distribution model is 
given the first rank in all three tests. Therefore, Generalized 
Extreme Values Distribution (GEV) is selected as the best-
fit probability distribution model among Gumbel, Gamma 
(3P), Log-Normal (2P), Log-Normal (3P), and Log-Pearson 
(3P) probability distribution models.

The quantile–quantile (Q–Q) plot was used to visually 
examine the level of best-fit probability distribution mod-
els. From the visual point of view, there is an insignificant 
difference to select among the various distributions in the 
study. The result of the quantile–quantile (Q–Q) plot for 
the study shows that all distributions are the best-fit with 
a significant correlation (R > 0.9)(Fig. 2). In quantile–quan-
tile (Q–Q) plot theoretically, all points should fall on the 1:1 
line if the probability distribution models are the best-fit 
[39]. In many cases, it is difficult to find out the best-fit one 
from the visual display of the Q–Q plot. Q–Q plot result 
shown in (Fig. 2) in all models all points falls in the 1:1 line 
and significantly correlated. Therefore, in addition to the 
Q–Q plot further statistical test needs to find out the best-
fit probability distribution model.

3.2 � Temporal variations of SDI

In our study, SDI for 3-, 6-, and 12-month scales are 
computed to examine the characteristics of hydrologi-
cal drought in short-, medium-, and long-term period, 

respectively. The alteration of SDI according to year is 
shown in Fig. 3. The SDI alteration shows that in the 6 
and 12 month timescales exceed the threshold level for 
extreme dry (SDI < − 2) and extreme wet (SDI > 2). The SDI 
for the medium and long period values shows that the 
worst hydrological drought occurred during the hydro-
logical year of 1991, 1992, and 2014 had the most severity 
indicating extreme drought events, but the 1992 drought 
event is not observed in the short-term period (3-month 
drought). However, extreme wet is observed in all time-
scales. Moreover, it showed that in 1985,1986, 1987, 
1990, 1991, 1992, 1993, 1994, 1995, 1999, 2008, 2009, and 
2014 hydrological drought events with varying severi-
ties occurred during these 30 years. Similarly, the study 
was conducted by Gebrehiwot et al. [13]; in the Northern 
Highlands of Ethiopia, severe drought events occurred in 
the year of 1985, 1987, 1991, and 2009. The Kulfo River 
has a leading role in the water balance of Lake Chamo as 
one of Rift Valley Lake in Southern Ethiopia. However, in a 
recent study, the amount of Lake Chamo water level slowly 
decreased [40]. This is maybe a result of the above continu-
ously occurred drought events that affect the level of Lake. 
Therefore, the drought events, combined with the increas-
ing water demand for irrigation and drinking and anthro-
pogenic activates on the catchment, have decreased sig-
nificantly the amount of water flow to the Lake Chamo.

3.3 � Hydrological drought characteristics

The hydrological characteristics of drought for (3, 6, and 
12 month) timescales are shown in Tables 3 and 4. Reca-
pitulation has shown the apparent difference in duration, 
severity, intensity, and relative frequency of each time-
scale, and it describes the characteristics of drought in a 
one timescale had a difference with others. The longest 
drought duration is observed in 3- and 6-month time-
scales as 6 year (1990–1995), with the relative frequency 
of 20%. The lowest drought duration is observed in 3-, -6, 
and 12-month timescales that are 1 year (1997, 1999, 2008, 
2009, and 2014), with the relative frequency of 3.3%. The 
percentage of drought occurrence is at three timescales 

Table 2   Goodness-of-fit 
test of the Kulfo River using 
Kolmogorov–Smirnov (K–S), 
Anderson–Darling (A–D), and 
Chi-squared (C–S) test

SN PDMs K–S test (critical value � 
at 0.05 = 0.2417)

A–D test (critical value � 
at 0.05 = 2.5018)

C–S test (critical value � 
at 0.05 = 9.4877)

Statistic Reject Rank Statistic Reject Rank Statistic Reject Rank

1 Log-Normal (2P) 0.149 No 6 0.418 No 6 0.591 No 3
2 Gumbel 0.108 No 4 0.349 No 5 1.884 No 6
3 GEV 0.094 No 1 0.230 No 1 0.470 No 1
4 Gamma (3P) 0.113 No 5 0.264 No 3 0.499 No 2
5 Log-Pearson (3P) 0.105 No 3 0.253 No 2 0.608 No 4
6 Log-Normal (3P) 0.104 No 2 0.278 No 4 1.799 No 5
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and the drought classes in the Kulfo River (Table 4). The 
result shows that for 3-, -6, and 12-month timescales, mild 
drought range (57.8–66.7%) occurs more frequently than 
expected in the Kulfo River. However, the incidence of 
drought events severity of mild and above for all time-
scales has approximately similar values, showing that 
drought occurs once every 1–3 years. This result confirmed 

by previous studies in the Awash River central Ethiopian 
Rift Valley Basin, for example, around 49% mild drought 
occurred most frequently and the basin hits by drought 
once every 2 years [12, 40].
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Fig. 2   Quantile-Quantile (Q-Q) plot of annual daily observed vs. estimated peak-discharge data series for Kulfo River (1985–2014), correla-
tion coefficient(R) as the computed p value is greater than the significance level alpha = 0.05, and the red straight line is 1:1 line
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Fig. 3   Temporal variation of 
SDI for all set of timescales (3, 6 
and 12 month) in Kulfo River of 
Southern Ethiopian Rift Valley 
Basin (1985–2014)

Table 3   Recapitulation of 
streamflow drought events

L—length, M—magnitude, I—intensity, RF—relative frequency

SDI Onset Cessation L M I RF (%)

3 month 1985 1987 3 2.29 0.76 10.0
1990 1995 6 5.53 0.92 20.0
1999 1999 1 0.60 0.60 3.3
2008 2008 1 0.06 0.06 3.3
2014 2014 1 1.76 1.76 3.3

6 month 1985 1987 3 2.33 0.78 10.0
1990 1995 6 6.05 1.01 20.0
1997 1997 1 0.03 0.03 3.3
2014 2014 1 1.44 1.44 3.3

12 month 1985 1988 4 2.51 0.63 13.3
1991 1995 5 6.66 1.33 16.7
1997 1997 1 0.06 0.06 3.3
1999 2000 2 0.66 0.33 6.7
2009 2009 1 0.07 0.07 3.3
2014 2014 1 0.83 0.83 3.3

Table 4   Drought occurrence 
in Kulfo River for observation 
period (1985–2014)

SN SDI range Drought classification Occurrence (%)

3 month 6 month 12 month

1 SDI < − 2.0 Extremely dry 4.2 8.2 8.2
2 − 2.0 ≤ SDI < − 1.5 Severely dry 14.9 7.6 6.1
3 − 1.5 ≤ SDI < − 1.0 Moderately dry 14.3 20.9 27.9
4 − 1.0 ≤ SDI < 0.0 Mild dry 66.7 63.9 57.8
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3.4 � Homogeneity, trend, independence, 
and stationarity test of annual daily peak 
discharge

For carrying out homogeneity, trend detection, inde-
pendence, and stationarity analysis, daily annual peak-
discharge data series are with the help of the standard 
normal homogeneity (SNHT) test, Mann–Kendall (M–K) 
test, and Wald–Wolfowitz (W–W) test, respectively. The test 
statistic of various tests and acceptance or rejection of the 
null hypothesis of annual daily peak-discharge data series 
is presented in Table 5. The annual daily peak-discharge 
data series (p = 0.39) show significant (p > 0.05) homog-
enous according to the SNHT test. According to the M–K 
test, the annual daily peak-discharge data series (p = 0.75) 
show significant (p > 0.05) no trend observed. However, 
the W–W test result shows the data series is independ-
ent and stationary as the computed p value is lower than 
the significance level alpha = 0.05, accept the alternative 
hypothesis Ha. The time series plot shows there are no sig-
nificant change point and trend detected (Fig. 4).

3.5 � Flood frequency

The best-fit probability distribution model of the flood 
magnitude to return period events is given in Fig. 5. The 
result of the best-fit probability distribution model and the 

flood magnitude for return periods of 2, 5, 10, 20, 50, and 
100 years were 42.2, 56.1, 68, 78.7, 91.9, and 101.2 m3/s, 
respectively. These flood magnitudes are important in the 
engineering design of hydraulic structures in the Kulfo 
River. The 50-year flood event was occurred in the river on 
an average of every 50 years and had a probability of 2%. 
The flood magnitude 68.0 and 78.7 m3/s would reoccur 
within the 10- to 20-year return period and had a prob-
ability of 5 and 10%, respectively. The highest flood mag-
nitude occurred in 100-year return period which had the 
lowest probability of occurrence.

The results (Fig. 5) which show the hydrograph of flood 
magnitude at different return periods are significant in 

Table 5   Homogeneity, trend detection, independence, and stationarity test of annual daily peak discharge at significance level alpha = 0.05

Variable (in m3/s) NSHT M–K W–W

T Change point p value Sen’s slope tau p value Z p value

Peak discharge 4.14 1995 0.39 0.28 0.09 0.75 3.09 0.00

Fig. 4   Change point and trend of annual daily peak discharge of Kulfo River (1985–2014)

Fig. 5   Flood magnitude and return period of Generalized Extreme 
Values (GEV) probability distribution model of Kulfo River
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their flood risk management and early warning system. 
Flood causes more loss of life and distraction than any 
other natural event. The study conducted by Council [41] 
concludes that distraction from floods in many countries 
is increasing over time. The frequency and intensity of 
extreme hydrological events are changing in ways that 
are difficult to understand and predict.

4 � Conclusion

Based on the Kolmogorov–Smirnov (K–S), Anderson–Dar-
ling (A–D), and Chi-square (C–S) test result among six 
probability distribution models (Log-Normal (2P), Gumbel, 
Generalized Extreme Values (GEV), Gamma (3P), Log-Pear-
son (3P), and Log-Normal (3P)), the Generalized Extreme 
Values (GEV) were found the best-fit probability distribu-
tion model in the Kulfo River.

The hydrological drought characteristics in the region 
showed an apparent change in all timescale; the extended 
drought duration is observed in 3- and 6-month time-
scales 6 years (1990–1995), with the relative frequency of 
20%. This, in turn, delivers an indication for proper policy 
enforcement to safeguard and control drought-associated 
risks in the study area.

The 50-year return period of flood indicates increment 
in flood events of 10- and 20-year return periods. This will 
have significant impacts on the community and the river’s 
morphology. Therefore, the government authorities in the 
basin need to inform the community hydrological risks to 
create consciousness and work on flood control projects. 
The information should include best management prac-
tices such as flood and drought protection and early warn-
ing systems.

The flood frequency studies can be used in the applica-
tion of hydraulic structures and the delineation of regula-
tory floodplains, and also, substantially the return period 
of these hydrological events can be used in understanding 
the risk level of damage by extreme flood events, while for 
the expansion of a long-term regional water plan and the 
readiness for drought in the region, the current informa-
tion of drought characteristics is important.

Hydrological drought analyses based on one indica-
tor may not be enough because drought singularities are 
related to multiple variables (e.g., rainfall, river discharge, 
and soil moisture).
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