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Abstract

The Changjiang Estuary (CE), two transects along the Andong salt marsh (AD-A and AD-C) south-west of Hangzhou Bay,
and three salt marshes on Zhoushan Island (ZS-A, ZS-B and ZS-C) were coastal zones receiving different flow regimes
and human activities. In this study, sedimentary P species consisting of exchangeable P (Ex-P), iron P (Fe-P), authigenic
P, detrital P (De-P) and organic P (OP) were determined in these sediments. The objectives of this study were to evaluate
the degree of P pollution and the potential for these sediments to release P into the environment. Authigenic P was the
largest fraction in AD-A, AD-C, CE, ZS-A and ZS-B (42-62%), followed by Ex-P (28-33%), Fe-P (4-19%), OP (2-8%) and De-P
(1-2%); except in ZS-C where Ex-P was the most abundant (57.86%), followed by authigenic P (24.45%), Fe-P (12.34%),
OP (2.85%) and De-P (2.49%). High portions of authigenic P indicate presence of apatite minerals; low levels of OP and
De-P suggest low P pollution and low contribution from riverine input. The sedimentary total P (TP) in these locations
(ranged from 91.30 to 324.74 mg/kg) indicates the risk of P pollution was very low. However, the bioavailable P (Ex-P, Fe-P
and OP) constituted approximately 37-73% of TP. Thus, these locations are prone to release P from Ex-P fraction under
oxic conditions and from Fe-P fraction under anoxic conditions.
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1 Introduction

Coastal zones such as salt marshes are important carbon
and nutrient sink [1, 2], and regulator of nutrient and pol-
lutants [3-5]. These coastal zones are affected by extreme
weather conditions and climate change phenomenon
such as sea level rise which threaten to submerge marsh
plants [6-8]. They are affected by human activities such
as embankment [9], land conversion [10], pollution [11,
12] and the presence of reservoirs reducing sediment
input for marsh accretion [13]. Phosphorus (P) pollution
is common in coastal areas such as estuaries [14, 15] and
salt marshes [4, 16]. Nutrient pollution can have detrimen-
tal effect on plants and animals, and eventually human
health, due to environmental degradation and effect on

food source [17]. In some cases, problems related to P pol-
lution persist although P input from external sources has
been reduced. This is due to internal sedimentary P load-
ing, a phenomenon which has been well studied in lake
ecosystems [18, 19]. Internal P loading has also resulted
in release of bioavailable P to the water column and caus-
ing increased primary production in coastal environments
[20]. Only certain P species can be released to the water
and become bioavailable [21], hence, the importance of
determination of sedimentary P species.

Authigenic P fraction includes biogenic apatite such as
fish bones and teeth, P combined with CaCO; and authi-
genic carbonate fluorapatite. This P species precipitates in
pore water and contributes to P burial in sediments; thus,
this is the most stable P form and it is non-bioavailable.
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Authigenic P represents materials from erosion processes
and can serve as a tracer of organic matter sources.
Exchangeable-P (Ex-P) is loosely bound and represents the
most labile P fraction. Sources of Ex-P include dissolved P
from runoff and P adsorbed on eroded sediments. Ex-P
is formed when organic matter decomposition releases
phosphate ions which are then adsorbed onto clay miner-
als and the surfaces of Fe oxides and hydroxides, making
them the main carriers of Ex-P in the sediment. Ex-P can
be released to overlying water during resuspension of fine
particles or changes in pH, temperature, water dynamics,
redox condition and during organic matter decomposi-
tion. The iron-bound-P (Fe-P) fraction is pH and redox
sensitive, and a source of internal P loading during anoxic
conditions when P is released from sediments due to
reduction and dissolution of P from iron oxyhydroxides
to iron (ll) compounds. Detrital-P (De-P) is derived from
magma or igneous or metamorphic rocks, or from riverine
inputs of terrestrial materials. Organic P (OP) is related to
discharge from domestic sewage and agriculture effluents
and is released as phosphate during the aerobic decom-
position of organic matter [9, 22-24].

Sequential phosphorus (P) extraction methods have
been used to elucidate the different P forms in these sedi-
ments, such as loosely bound or exchangeable P (Ex-P),
Fe-P, authigenic P, De-P, OP and inorganic P (IP). Determi-
nation of sedimentary P species has been used to study
P released to water environments and P bioavailability in
lakes [22, 23, 25] and rivers [26, 27]. Many studies of dif-
ferent sedimentary P forms have also been carried out in
marine environments, such as surface and core sediments
in the Gulf of Gdansk [28], surface sediments in the Gulf
of Mexico [20], sediment cores from the Arabian Sea oxy-
gen minimum zone [29], surface sediments in the central
Pacific Ocean [30] and sediment cores from the sulphidic
black sea [31]. Along the coastal zones of China, studies of
sedimentary P species include investigation of sediment
cores from the Quanzhou Bay estuary [32], surface and
core sediments from the eastern coast of Hainan Island in
the South China Sea [24], surface [33] and core sediments
[34] from the East China Sea, and sediment cores from the
Yangtze River Estuary [35] and Jiazhou Bay [36]. Nearer
to our study areas, the sedimentary P species along the
Changjiang Estuary and East China Sea have been studied
[33-35], but the locations in these studies are farther to
the sea in comparison with the locations in the current
study. Besides, few studies have determined the sedi-
mentary P species in salt marshes, for example, the Min
River Estuary marsh [37]. Thus, this study provided a good
opportunity to determine the sedimentary P species in salt
marshes in this region.

In this study, surface sediments from the Andong salt
marsh at the south-west of Hangzhou Bay, three salt
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marshes along Zhoushan Island (two salt marshes at
the south and another at the north of the island) and a
transect across the Changjiang Estuary were subjected
to sequential P extraction to evaluate the levels of Ex-P,
Fe-P, authigenic P, De-P and OP. The objectives of this
study were to investigate the degree of P pollution in
these coastal environments, and to determine whether
the P in these systems could be released into the environ-
ment and become otherwise bioavailable. Our study areas
include various locations receiving different flow regimes
and human activities. Besides, estuaries are submerged by
water, whereas salt marshes are intermittently submerged.
Hopefully, comparison between these different coastal
systems will provide a good opportunity to improve
understanding on the P dynamics in these systems.

2 Materials and methods
2.1 Study areas

The major locations in this study were, namely the Changji-
ang Estuary, the salt marsh at the south-west of Hangzhou
Bay and the salt marsh along the north-east and south
of Zhoushan main island. Changjiang Estuary is a funnel-
shaped estuary which is discharged by the Changjiang
River, the largest river in China [38]. Hangzhou Bay is
located south of Changjiang Estuary and is discharged by
the Qiantang and Cao-E Rivers, but receives most of its
materials from the Changjiang River [39]. As materials from
the Changjiang River enters Hangzhou Bay through the
north side of the bay and leave through the south side of
the bay [38, 39], the input from the Changjiang River most
probably affect Hangzhou Bay as well as the salt marsh at
the south-west of the bay [40]. Zhoushan archipelago is
situated at the outlet of Hangzhou Bay. Zhoushan Island
has experienced about 50% expansion of urban areas
from 1995 to 2011 due to enhancement of socioeconomic
activities [35], and this expansion has affected the coastal
zone [41]. As a result of the relative decline of contribution
from the Changjiang River, the effect due to contributions
from the Qiantang River, as well as relict and rock materials
from Zhoushan Island, has increased, especially along the
southern coast of the main Zhoushan island [42]. Hence,
it will be interesting to compare the sedimentary P spe-
cies among these study areas which receive different flow
regimes and human activities.

2.2 Sampling
The Andong salt marsh is a micro-tidal salt marsh with an

area of 300 km? and located at the south-western edge of
Hangzhou Bay. The sampling locations in the Andong salt
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marsh were two transects of about 2 km spanning from
the landward to the coastal side of the marsh. There were
eight locations along Transect A and eight sampling loca-
tions along Transect C. Andong salt marsh samples were
obtained by scooping of the surface sediments into plastic
bags. There were six sampling locations spanning from the
Changjiang Estuary, numbered from the river mouth to
farther offshore as“20”"4"“6"” 11" 13" and “21". The sedi-
ments along the Changjiang Estuary were collected using
a grab sampler. The sediments from the salt marsh and
estuary were transported back to the laboratory in cooler.

Three different salt marshes from the main Zhoushan
island were sampled, two located at the south side of the
island and one smaller salt marsh surrounded by a small
bay at the north-east side. In comparison with the Andong
salt marsh, the Zhoushan salt marshes are smaller, with
lengths of about 2-3 km and widths of about 500 m. The
salt marsh situated in the north-east is the smallest of the
three. They were sampled parallel to the coast; surface
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Fig. 1 Maps showing a the sampling locations along the Changji-
ang Estuary, Andong salt marsh and Zhoushan, b locations along
the Andong salt marsh magnified, ¢ the main Zhoushan Island, d

sediments were scooped into plastic bags. These were
transported straight to the laboratory and without pres-
ervation in cooler due to the colder sampling time.

The Changjiang Estuary and Andong salt marsh sam-
ples were collected in 2014; the Zhoushan sediments were
collected in 2018. Sampling locations and timetable were
presented in Yuan et al. [40], “Appendix 1" and Fig. 1. The
sampling dates and locations details of the Zhoushan
salt marshes are presented in “Appendix 2" and in Fig. 1.
All sampled sediments were immediately transported to
the laboratory. In the laboratory, sediments were dried at
45 °C for a few days and homogenized using a mortar and
pestle.

2.3 Sequential P extraction
Sequential P extraction procedures were carried out using

the method described by Ruttenberg [43]. For the first P
fraction, 0.5 g of dry sediment was weighed into a 50-mL
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Fig.1 (continued)

centrifuge tube, 20 mL of MgCl, was added, and the solu-
tion was adjusted to pH 8 with Na,OH. P was extracted
by shaking for 2 h at room temperature (RT), after which
the content was centrifuged, and the supernatant was
decanted and set aside. Another 20 mL MgCl, was added
to the residue, and the process was repeated. The residue
was washed with 10 mL H,O for 2 h, centrifuged, and then,
the supernatant was removed and saved. The supernatants
from this step were saved to evaluate their Ex-P content.
For the second fraction, 20 mL of citrate—dithionite—bicar-
bonate (CDB) solution was added to the residue from the
first. Extraction was carried out by shaking for 8 h at RT.
This content was then centrifuged, and the supernatant
decanted and saved. Then, 20 mL MgCl, was added to the
residue and shaken for 2 h, followed again by centrifuga-
tion and extraction of the supernatant. Subsequently, the
residue was washed with 10 mL H,0 for 2 h, centrifuged,
and then, the supernatant was removed and saved. The
supernatant from this fraction was set aside to evaluate its
Fe-P content. Next, 20 mL of pH 4 acetate buffer was added
to the remaining residue and shaken for 6 h at RT, after
which the mixture was centrifuged, and the supernatant
was saved. The residue was then washed twice with MgCl,,
centrifuged again, and the supernatant was removed and
set aside. The residue was finally washed with 10 mL H,0,
centrifuged one more time, and the supernatant was again
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removed and saved. The supernatants from this step were
set aside to evaluate its authigenic P content. In the next
step, 1 M HCl was added to the residue and shaken for
16 h, after which the content was centrifuged, and the
supernatant was saved to be analysed for De-P. Finally,
the residue was moved to a crucible and dried in an oven
at 80 °C for one day, followed by combustion at 550 °C for
5 h.The residue was cooled, and 1 M HCl was added and
shaken for 16 h. The extraction procedures are also shown
in Fig. 2.

The supernatant from this step was set aside to evaluate
for OP. Inorganic P (IP) was the sum of Ex-P, Fe-P, authi-
genic P and De-P. Total P (TP) was the sum of IP and OP. All
P concentrations were determined colorimetrically with
molybdenum blue complex and absorbance measure-
ments at 885 nm wavelength using a UV-8000 UV-visible
spectrophotometer (METASH, Shanghai, China).

3 Results

Detailed results of sedimentary P forms from the Changji-
ang Estuary (CE), Andong salt marsh transects A and C
(AD-A and C) and Zhoushan salt marshes A, Band C (ZS-A,
B and C) are presented in “Appendix 3". The ranges, means
and percentages of each P form are presented in Table 1.
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Fig.2 Flow diagram of the
sequential extraction proce-
dures (following Ruttenberg,
1992)

3.1 Comparison of sedimentary P forms in CE, AD

and ZS

The order of contribution from each sedimentary P form
is shown in “Appendix 4" and Fig. 3. Authigenic P was
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the highest P fraction in all but one of the study areas.
Authigenic P composed of around 41-45% of TP for AD-A
and -C and CE, and more than 60% TP in ZS-A and -B salt
marshes. Ex-P was the second highest P species, represent-
ing around 28-33% TP in these areas. Only ZS-C has Ex-P
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as the largest P fraction, at an average of 57.86% of TP, fol-
lowed by authigenic P, at 24.45% of TP. Fe-P was between
12and 19% TP in AD-A and -C, CE and ZS-C, and only 4-6%
TP in ZS-A and -B (Fig. 2).

Bioavailable P was the sum of Ex-P, Fe-P and OP [21].
The bioavailable P percentages of TP for the study areas
were as follows: ZS-C (73.06%) > AD-C (56.44%) > AD-A
(55.09%) > CE (52.59%) > ZS-A (37.73%) > ZS-B (36.95%).
Bioavailable P was the highest in ZS-C, making up around
73.6% of TP, mainly due to the high concentration of Ex-P
therein. The Andong salt marsh and Changjiang Estuary
each had around 55% bioavailable P, and ZS-A and -B had
around 37% bioavailable P.

3.2 Spatial variations of sedimentary P species

The spatial distributions of sedimentary P species are
shown in Fig. 4. The sediments along two transects of
the Andong salt marsh showed a slight decrease of Ex-P
and noticeable decrease in OP from the land towards the
coastal zone. De-P decreased towards the coast in AD-A
but increased towards the coast in AD-C. Fe-P and authi-
genic P were both slightly higher at locations near the
coast. TP and IP decreased overall towards the coast for
transect AD-A but increased slightly towards the coast
along transect AD-C. Along the Changjiang Estuary, TP,
IP, authigenic P, Ex-P and Fe-P increased towards location
11 but decreased further offshore. Ex-P, authigenic P and
IP were the lowest at the furthest distance from shore,
whereas Fe-P and OP were the highest. Zhoushan A and
C salt marshes spanning from west to east were divided
into locations Al to A5 and C1 to C5, respectively. Ex-P, Fe-P,

De-P and OP decreased from A1 towards A5, and Ex-P, Fe-P
and OP increased from C1 towards C5. Both authigenic P
and IP showed the opposite trends of the other P forms,
increasing from A1 to A5, and decreasing from C1 to C5. All
locations of ZS-B were parallel to the landwards side of a
500-m-wide salt marsh and showed intermittent high and
low concentrations of the different P species.

4 Discussion
4.1 Sources of sedimentary P species

Our results showed that authigenic P made up the largest
portion of P species in the AD and CE salt marshes (con-
tributing around 40% of TP) and the ZS-A and -B (around
60% of TP). Authigenic P was positively correlated with IP
in AD and CE, and with TP in ZS-A and B (p < 0.05; “Appen-
dix 5”), indicating the importance of contribution of this
P fraction to IP and TP. Both Ex-P and OP were negatively
correlated to authigenic P. Ex-P could be released from the
sediments due to physical disturbances, and OP could be
released from the sediments from organic matter decom-
position. The P released from these fractions could then
be used in the formation of authigenic P. However, most
of the areas in this study have low OP, suggesting that the
authigenic P was mostly derived from the Ex-P fraction.
Higher Fe-P fractions in AD-A, AD-C, CE and ZS-C (at
between 12 and 19% of TP) suggest that these locations
were oxic and the sediments showed an affinity for Fe and
P adsorption. Higher Fe-P also means that these locations
can release much P under anoxic conditions. Conversely,
the lower Fe-P in ZS-A and ZS-B could indicate that these
locations were anoxic and have released a certain amount
of Fe-P into the environment. The OP fraction made up
about 6% of TP in the AD salt marsh, about 8% of TP in
the CE and about 2% of TP in Zhoushan salt marshes, sug-
gesting that these areas received relatively less P pollu-
tion from sewage and agricultural waste. De-P made up
around 1% of TP across all study areas, indicating very little
P derived from riverine terrestrial organic matter.
Bioavailable P was the highest portion of TP at ZS-C,
representing around 73.06% of TP, due to the highest
abundance of Ex-P and Fe-P here. The AD salt marsh and
CE each had about 55% bioavailable P, also from Ex-P
and Fe-P. ZS-A and B had about 37% bioavailable P, con-
tributing less P to their local environments than ZS-C.
Of all study areas, AD, CE and ZS-C are the most likely to
release P from their Ex-P fractions following organic mat-
ter decomposition and Fe-P fractions under anoxic condi-
tions. Hence, even though authigenic P was the largest
fraction in these study areas, these sediments are still

SN Applied Sciences

A SPRINGER NATURE journal



Research Article

SN Applied Sciences (2020) 2:1280 | https://doi.org/10.1007/s42452-020-3090-8

(a)
180
160 4
140 A ///A\\\\ - p
C o/ "\ T A\ N
2 120 - N Y ~
£ 100 N\
@ /
c 80 A
9]
[e%
7] 60 4
o
40 -
20 A
0 T T T T T T T T
A8 A7 AB A5 A4 A3 A2 A1
Locations | —e— Ex-P
........ O Fe-P
——-v-—— Authigenic P
——A—- P
—a— TP
(b)
220
200 -
2
180 - m VZANN
N / )
_ 160 - F_.’,r//\\\ / \\g
2 U A ‘N /
=< 140 - A . /
g P, {
~ 120 A
8
- 100 A
2
2 80 -
& g
40
20 A
0 T T T T T T T T
c10 C9 Cc8 c7 c6 C3 Cc2 C1
Locations | Ex-P
........ O Fe-P
——-v-—— Authigenic P
——a— P
—=— TP

14
12 A Q
. 0.
o o
~ 10 4
g O ........ 0
=)
E 87 2
= ‘
0
g ©
&
o 4] [o TIPS o
, | ./’\‘\'—4_*_"\'/.
0 T T T T T T T T
A8 A7 A6 A5 A4 A3 A2 A1
i
De-P Locations
0 OP
16
14
.
12 - :
—_ o)
)
< ;
> 10 -
TJ; . fe) el . o
o 1 0 LI
3 o o)
3 0
o
4 .
5 ) .W
0 T T T T T T T T
Cc10 Cc9 Cc8 C7 C6 C3 Cc2 C1
Locations
—&— De-P

0 OP
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(CE) and d Zhoushan salt marshes A and C (ZS-A and ZS-B)

prone to release P into the environments as they were
composed of about 50% or more bioavailable P.

4.2 Distribution of sedimentary P species

Along the AD salt marsh, OP and Fe-P levels decreased
from the locations nearest the land towards those near
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the coast. This could be due to smaller particle sizes near
land that increased farther towards the coast. Significant
correlations among particle size and Fe-P, Ex-P, and authi-
genic P have been observed in the Bay of Seine and the
Loire and Gironde Estuaries [44], and loosely bound-P was
found adsorbed onto fine particles in Lakes Volvi and Koro-
nia [45]. Another potential explanation for the decrease
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Fig.4 (continued)

in OP and Ex-P farther away from the coast could be con-
tinuous organic matter decomposition during transport of
materials farther offshore, resulting in continuous release
of P. This P might then have adsorbed onto Fe oxides and
hydroxides and carbonate fluorapatite, as indicated by
the slightly higher Fe-P and authigenic P proportions
observed farther offshore.

Meng et al. [46] found that fine-grained particles
predominated in the Changjiang large-river delta-front

estuary and along the Zhe-Min coastal areas, whereas the
Changjiang River mouth and outer shelf region off the
muddy area contained coarser, sandy materials. Lower
TOC and OP contents were found at the river mouth and
outer shelf region associated with more sandy materi-
als, and higher TOC contents were found in the muddy
areas. However, the De-P fraction showed the opposite
trend, likely due to the contribution of eroded soils from
the upper river basins. Besides, these are enriched with
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Table 2 Study areas and their

. Locations Surface sediment or core Total P (mg/kg) References
sedimentary TP
Zhoushan A, Band C Surface sediment 293.31,283.25, 153.99 This study
Andong Aand C Surface sediment 127.38,159.86 This study
Changjiang Estuary Surface sediment 151.13 This study
East China Sea (ECS) Sediment core 369.83-739.97 [35]
Changjiang Estuary and Surface sediment 465-663.4 [42]
adjacent East China Sea

East China Sea Sediment core 416.5-638.5 [43]
East of Hainan Island Surface sediment and core 246.76-692.54 [33]
Sishili Bay, China Sediment core 466.24-669.29 [44]
Central Pacific Ocean Surface sediment 409.2-3689 [31]
Caspian Sea Surface sediment 431-594 [45]

Table 3 Order of sedimentary P species in different locations

Locations Order of sedimentary P species References

AD-A,G; CE; ZS-A,B  Authigenic This study
P>Ex-P>Fe-P>OP >De-P

Z5-C Ex-P > Authigenic This study
P>Fe-P>OP>De-P

Gulf of Mexico Authigenic [29]
P>De-P>Fe-P>0P>Ex-P

Pacific Ocean Authigenic [31]
P>De-P>OP>Fe-P>Ex-P

East China Sea De-P>OP > Fe-P > Authigenic P [35,42]

East China Sea De-P > Authigenic P>OP >Fe-P [34]

Ca-P and De-P composed of minerals such as quartz and
feldspar, which a have a higher affinity for larger particles
[46]. Our results along the CE showed an overall increasing
trend of OP as the distance from the shore increased, prob-
ably due to increased adsorption by smaller particles. The
trends of Ex-P, Fe-P and authigenic P showed an increase,
followed by a decrease in the two last locations. The over-
all increasing trends of P species from the river mouth to
mid-location could be due to increased accumulation and
increased adsorption with smaller particles, followed by a
decrease in the contents of these P fractions farther off-
shore, possibly due to dilution with marine materials.
The sampling locations in the Zhoushan salt marsh A
and C regions spanned from west to east from A1 to A5
and C1 to C5. Ex-P, Fe-P, De-P and OP decreased from A1
to A5 and increased from C1 to C5. This trend seems to
be due to an overall materials flow from the west to east,
resulting in increased accumulation of these materials,
including P, at C5. However, trends for Ca-P diverged from
the other P forms, indicating that this P species might be
from localized source, perhaps at locations along ZS-A
where construction was being carried out on a walkway
and embankment along the landward side of the marsh.
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4.3 Comparisons with sedimentary P species
from other locations

The average concentration of TP in the surface sediments
in the areas evaluated in this study was as follows: ZS-A
(293.31 mg/kg) > ZS-B (283.25 mg/kg) > AD-C (159.86 mg/
kg) > ZS-C (153.99 mg/kg) > CE (151.13 mg/kg) > AD-A
(127.38 mg/kg). These values were lower than in other
locations, such as East China Sea sediment cores [47],
Changjiang Estuary and adjacent East China Sea surface
sediments [46], northern Gulf of Mexico sediment cores
[20], central Pacific Ocean surface sediments [30], Sishili
Bay, China [48], the eastern coast of Hainan Island surface
sediment [24], East China Sea core sediments [34] and Cas-
pian Sea surface sediments [49] (Table 2).

For most of the locations in this study, the predomi-
nant P species was authigenic P, followed by Ex-P, Fe-P, OP
and De-P. ZS-C was the only location that differed from
this pattern, and even so, only authigenic and Ex-P were
reversed (Fig. 2). In comparison with the locations in this
study, only the northern Gulf of Mexico sediment core
samples presented with authigenic P species as the largest
fraction, representing 67-92% of TP, with the second high-
est P fraction being detrital P (5-21% of TP), and Fe-P, OP
and Ex-P the three lowest [20]. Another location with the
highest authigenic P was the central Pacific Ocean surface
sediments, representing 43.4% TP, followed by detrital P
(45.7%), OP, Fe-P and Ex-P [30]. Other locations such as East
China Sea [33, 34, 46, 47], Sishili Bay [48] and the Caspian
Sea [49] have De-P as the largest P fraction. Some studies
have shown that the largest East China Sea P fraction is
De-P, followed by OP, Fe-P and authigenic P [34, 46]; other
studies have found that these sediments have more De-P,
followed by authigenic P, OP and Fe-P [33] (Table 3).

In opposition to previous results on the Changjiang
Estuary and East China Sea, our study areas showed that
De-P was the lowest P fraction, indicating that these salt
marshes and CE were receiving less riverine input. Our
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results signify the importance of localized events on P
cycling in salt marsh systems. The difference of P spe-
cies in the CE in this study compared to those of previous
studies could be attributable to different sampling times,
as the riverine contribution to P in the CE at the time of
our sampling may have been at its lowest. Moreover, the
higher Ex-P in our study areas indicates that these sedi-
ments would be more prone to release P to the water col-
umn, even though these locations have an overall lower
P contents.

5 Conclusion

The overall low TP and OP in the CE, AD and ZS salt
marshes indicate that these locations were not polluted
with P. Low De-P indicate that these locations did not
receive much contribution from the riverine input. In fact,
these locations were composed mostly of authigenic P,
indicating contribution of apatite mineral probably from
rock materials from their surrounding. The slightly higher
authigenic P fraction in Zhoushan salt marshes A and B
(60% of TP) compared to CE and Andong salt marsh (40%
TP) indicates that the Zhoushan salt marshes were receiv-
ing input from the surrounding apatite minerals. Overall,
these results indicate less P input from riverine discharge
and more input from rock materials.

The slightly higher Fe-P in CE and Andong salt marshes
compared to Zhoushan salt marshes could signify that CE
and Andong salt marshes were likely to be oxic compared
to the Zhoushan salt marshes. The overall high percent-
ages of bioavailable P, which constituted of about 37-73%
of the TP in these study areas, indicates that these loca-
tions may pose a threat by their potential contribution
to eutrophication to their adjacent surrounding coastal
zones. Higher Fe-P in CE and Andong salt marshes indicate
that these P could be released to the water column during
anoxic condition.
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Appendix 1

SeeTable 4.

Table 4 Sampling time and locations’information

Location Time Depth  Longitude (N) Latitude (E)
Changjiang Estuary
20 23 August 2014 150m  31.768° 121.103°
4 23 August 2014 13.7m  31.276° 121.870°
6 23 August 2014 9.1Tm 31.252° 121.994°
11 22 August 2014  23.6m  31.106° 122.535°
13 22 August 2014 39.0m  31.101° 122.805°
21 22 August 2014  57.0m  31.101° 123.000°
Andong salt marsh Transect A
A8 14 August 2014 0-5cm* 30.366° 121.193°
A7 14 August 2014 0-5cm* 30.369° 121.193°
A6 14 August 2014  0-5cm* 30.371° 121.192°
A5 14 August 2014 0-5cm* 30.373° 121.192°
A4 14 August 2014 0-5cm* 30.376° 121.192°
A3 14 August 2014 0-5cm* 30.378° 121.192°
A2 14 August 2014 0-5cm* 30.379° 121.191°
Al 14 August 2014 0-5cm* 30.381° 121.191°
Andong salt marsh Transect C
c10 14 September 0-5cm* 30.366° 121.185°
2014
c9 14 September 0-5cm* 30.367° 121.186°
2014
c8 14 September 0-5cm* 30.370° 121.186°
2014
c7 14 September 0-5cm* 30.371° 121.186°
2014
(@) 14 September 0-5cm* 30.372° 121.185°
2014
(e} 14 September 0-5cm* 30.377° 121.184°
2014
2 14 September 0-5cm* 30.379° 121.184°
2014
(@ 14 September 0-5cm* 30.381° 121.184°
2014

* The depths for Andong salt marsh locations represent the depths
of the surface sediments; the depths for the Changjiang Estuary
represent water depth
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Appendix 2

SeeTable 5.

Table 5 Sampling locations in the Zhoushan salt marshes A, B and
C which were visited on 10 March 2018

Sampling locations Longitude (N°) Latitude (E°)
Al 29.9913 122.1718
A2 29.9908 122.1728
A3 29.9902 122.1738
A4 29.9894 122.1748
A5 29.9890 122.1754
B1 30.0194 122.3353
B2 30.0188 122.3342
B3 30.0183 122.3322
B4 30.0185 122.3298
cl 29.9793 122.1975
(o 29.9789 122.1992
c 29.9783 122.2011
c4 29.9778 122.2031
c5 29.9765 122.2071
Appendix 3

See Table 6.
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Appendix 4

SeeTable 7.

Table 7 Proportions of sedimentary P species for each system

Locations Concentration of P species (mg/kg)
(a) Mg/kg
AD authigenic P (37.98-91.54 mg/kg) > Ex-P (20.68-71.43 mg/kg) > Fe-P (12.46-50.60 mg/kg) > OP (4.45-13.47 mg/kg) > De-P
(1.95-3.78 mg/kg)
CE authigenic P (59.61-83.05 mg/kg) > Ex-P (33.38-60.13 mg/kg) > Fe-P (9.20-31.19 mg/kg) > OP (3.05-18.55 mg/kg) > De-P

(2.14-2.97 mg/kg)
ZS-A and Ad-B  authigenic P (155.60-224.62 mg/kg) > Ex-P (63.61-106.30 mg/kg) > Fe-P (5.36-26.08 mg/kg) > OP (1-16 mg/kg) > De-P
(2.37-4.27 mg/kg)

Z5-C Ex-P (63.31-116.09 mg/kg) > authigenic P (16.90-65.07 mg/kg) > Fe-P (9.50-32.46 mg/kg) > OP (2.15-19.24 mg/kg) > De-P
(2.38-5.04 mg/kg)

Locations Percentages of P species

(b) Percentages

AD-A Authigenic P (42.81%) > Ex-P (29.01%) > Fe-P (19.22%) > OP (6.86%) > De-P (2.10%)
AD-C Authigenic P (41.77%) > Ex-P (33.77%) > Fe-P (16.85%) > OP (5.83%) > De-P (1.79%)
CE Authigenic P (45.67%) > Ex-P (30.64%) > Fe-P (13.78%) > OP (8.16%) > De-P (1.74%)
ZS-A Authigenic P (61.25%) > Ex-P (31.16%) > Fe-P (4.45%) > OP (2.12%) > De-P (1.02%)
Z5-B Authigenic P (61.97%) > Ex-P (28.49%) > Fe-P (6.12%) > OP (2.34%) > De-P (1.08%)
Z5-C Ex-P (57.86%) > Authigenic P (24.45%) > Fe-P (12.34%) > OP (2.85%) > De-P (2.49%)
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Appendix 5
SeeTable 8.

Table 8 Correlations results
among the P species

SN Applied Sciences

A SPRINGERNATURE journal

Ex-P Fe-P Authigenic P De-P OP P TP

(a) Andong salt marsh Transect A (AD-A)

Ex-P 1.00

Fe-P -0.21 1.00

Authigenic P -0.55 0.25 1.00

De-P 0.63 0.20 -0.27 1.00

OP 0.89% 0.20 -048 0.62 1.00

IP -0.07 0.63 0.76* 0.21 0.17 1.00

TP 0.06 0.64 0.67 0.29 0.31 0.99% 1.00
(b) Andong salt marsh Transect C (AD-C)

Ex-P 1.00

Fe-P -0.28 1.00

Authigenic P -0.52 0.42 1.00

De-P -0.34 0.30 0.28 1.00

OP 0.61 -0.33 -0.11 0.14 1.00

IP 0.03 0.73* 0.72* 0.21 0.11 1.00

TP 0.09 0.68 0.70 0.22 0.21 0.99% 1.000
(c) Changjiang Estuary

Ex-P 1.00

Fe-P 0.32 1.00

Authigenic P 0.48 0.26 1.00

De-P -0.49 0.05 0.03 1.00

OP 0.40 0.11 -0.09 0.07 1.00

IP 0.83* 0.67 0.76* -0.20 0.21 1.00

TP 0.86* 0.63 0.66 -0.16 0.47 0.96* 1.00
(d) Zhoushan salt marsh A (ZS-A)

Ex-P 1

Fe-P -0.19 1

Authigenic P -0.12 -0.42 1

De-P 0.19 0.63 0.01 1

Or-P 0.24 -0.11 -0.52 —-0.68 1

TP 0.34 -0.23 0.84* 0.17 -0.28 1
(e) Zhoushan salt

marsh (ZS-B)

Ex-P 1

Fe-P -0.55 1

Authigenic P -0.23 0.87* 1

De-P 0.20 0.55 0.88* 1

Or-P -0.25 0.02 -043 -0.72 1

TP 0.28 0.63 0.84* 0.90* -0.37 1
(f) Zhoushan salt marsh C (ZS-C)

Ex-P 1

Fe-P —-0.42 1

Authigenic P -0.71 0.40 1

De-P -0.29 0.56 0.75* 1

Or-P 0.31 0.14 0.12 0.71 1

TP 0.27 0.41 0.39 0.80* 0.72 1

*Indicates p is significant to 0.05
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