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Abstract
Decision tree-based classifier ensemble methods are a machine learning (ML) technique that combines several tree 
models to produce an effective or optimum predictive model, and that allows well-predictive performance especially 
compared to a single model. Thus, selecting a proper ML algorithm help us to understand possible future occurrences 
by analyzing the past more accurate. The main purpose of this study is to produce landslide susceptibility map of the 
Ayancik district of Sinop province, situated in the Black Sea region of Turkey using three featured regression tree-based 
ensemble methods including gradient boosting machines (GBM), extreme gradient boosting (XGBoost), and random 
forest (RF). Fifteen landslide causative factors and 105 landslide locations occurred in the region were used. The land-
slide inventory map was randomly divided into training (70%) and testing (30%) dataset to construct the RF, XGBoost 
and GBM prediction models. Symmetrical uncertainty measure was utilized to determine the most important causa-
tive factors, and then the selected features were used to construct susceptibility prediction models. The performance 
of the ensemble models was validated using different accuracy metrics including Area under the curve (AUC), overall 
accuracy (OA), Root mean square error (RMSE), and Kappa coefficient. Also, the Wilcoxon signed-rank test was used to 
assess differences between optimum models. The accuracy results showed that the model of XgBoost_Opt model (the 
model created by optimum factor combination) has the highest prediction capability (OA = 0.8501 and AUC = 0.8976), 
followed by the RF_opt (OA = 0.8336 and AUC = 0.8860) and GBM_Opt (OA = 0.8244 and AUC = 0.8796). When the Wilcoxon 
sign-rank test results were analyzed, XgBoost_Opt model, which is the best subset combinations, were confirmed to be 
statistically significant considering other models. The results showed that, the XGBoost method according to optimum 
model achieved lower prediction error and higher accuracy results than the other ensemble methods.
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1 Introduction

In many parts of the world, natural disasters like landslides 
are major natural hazard and cause threat to human’s life, 
economic losses and the environment. Over the last 2 dec-
ades or so, international organizations in disaster manage-
ment including government and research institutions have 
been focused on produced assessment methodologies 

and to portray its spatial distribution in maps [41]. In any 
type of landslide hazard assessment methodology, there 
is a need to consider several processes such as landslide 
inventory map (LIM) production, determination of opti-
mum factors combination, selection of method for the 
preparation of landslide susceptibility maps (LSMs) and 
performance analysis [49, 72, 78]. For produce reliable and 
accurate map showing the susceptibility of a particular 
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region to landslide, a prerequisite is to have information 
regarding the spatial and temporal frequency of land-
slides.[34, 80]. Furthermore, in the LSM studies, landslide 
inventory is also useful to production of models, accuracy 
assessment of the resulting map and validation of output 
scores.

Another challenge faced by researchers is the nature 
of the Earth is not the same and the factors triggering 
the landslide is not consistent [67]. Researchers also have 
to decide the best combination of factors to create the 
desired prediction model for each study area [24, 52, 56]. 
Chen et al. [16], were applied to principal component anal-
ysis to select significant and independent factors trough 
17 contributing factors. As a result, six factors (slope, dis-
tance from fault, aspect, lithology, elevation, and settle-
ment density) were selected as the explanatory features 
that contribute to landslide occurrence for this study 
area. Tsangaratos and Ilia [99] stated that multicollinearity 
analysis can be used in order to determine the conditional 
independence among variables for the feature selection 
process. Also, feature selection algorithm as fisher score 
[40, 56], gain ratio [94, 107], χ2 [46, 56], learning vector 
quantization [66], correlation based feature selection 
[84] and information gain [11, 79] was used to determine 
the best feature combination or feature ranking by sev-
eral researches. Due to the complexity of mechanism of 
system structure of landslide more flexible nonlinear ML 
algorithms [14, 63, 64] have also been utilized to found 
more efficient or irrelevant factors for producing landslide 
related applications.

While the quality of the data is important issue for per-
formance of landslide modelling, modeling approaches to 
be selected is another issue in LSM. Although, there is no 
universally accepted specific methodology or procedure 
for assessment and prediction pattern of landslide hazard, 
to date, there are several approaches have been utilized 
for the prediction of LSM [41, 78]. These approaches gener-
ally can be divided into two broad categories as qualitative 
and quantitative methods from logical, experience-based 
analysis, extending to complex mathematical and com-
puter-based systems [30]. Generally, qualitative methods 
called heuristic approaches are based on expert opinions. 
These methods depend on previous landslide occurrence 
to determine locations in disaster-prone areas. There are 
number of qualitative methods have been employed 
to produce LSMs, e.g., analytical hierarchy process [51], 
weighted linear combination [6] and frequency ratio [2]. 
Although qualitative studies have been carried out for 
landslide hazard management, it has been gradually aban-
doned due to the risk that expert judgment and become 
more subjective than quantitative methods [20]. Quantita-
tive methodology such as logistic regression (LR), decision 
tree, artificial neural network and, support vector machine 

is broadly construed and refers to subjective view involved 
in statistical/mathematical modeling, sampling methods 
and model development. In recent years, ensemble learn-
ing has been widely applied to improve accuracy in clas-
sification as well as regression problems beyond the level 
reached by separate input data [41, 20, 30]. On the other 
hand, a series of ensemble-based methods (e.g. random 
forest, rotation forest and canonical correlation forest) 
have recently attracted great attention within the LSM 
community [18, 19, 48, 50, 82, 90].

The use of multiple learning algorithms instead of a 
single algorithm to unravel a given difficult problem has 
always been an accepted solution. Ensemble methods 
have been theoretically and empirically obtained better 
performance than single weak learners, especially while 
handle computational with high dimensional, complex 
regression and classification problems [15]. Bagging 
and Boosting, are the classical tree-based ensemble 
approaches including classification and regression, that 
have been improved with the objective of reducing the 
over-fitting problem and while leading to better accuracy 
[97, 101]. Also, in terms of ensemble, various approaches 
have been proposed and utilized in application of hazard 
and risk assessment, such as random forest [14, 45], rota-
tion forest [18, 19, 72], AdaBoost [48, 64, 73], multiboost 
[83, 98] and Random Subspace [73, 85]. Alternatively, for 
LSM, Gradient Boosting Machines (GLM) has been used 
[61, 76, 95], which is an extremely powerful ML algo-
rithm and that produces a strong learner in the form of 
an ensemble of weak learners/models. In more recent 
years, Extreme Gradient Boosting (XGBoost) has become 
a popular decision tree-based ensemble ML technique 
and that has been dominating applied ML for structured 
or tabular data. Although only very few studies are avail-
able in LSMs applications, XGBoost has been successfully 
used for regression or classification by researchers since 
its release [28, 38].

The primal objective of this work is to investigate 
of the three different state-of-art tree-based ensem-
ble methods, namely RF, GBM and XGBoost for land-
slide susceptibility mapping at Ayancik district, Sinop 
province in the Black Sea region of Turkey. A number 
of papers have been published about the LSM assess-
ment in the literature and most of them focus only on 
the feature ranging process for the detection of the fac-
tor importance or correlation with each other [29, 79, 
87, 88], and only a few cases take into account detailed 
analysis factor relation with landslide susceptibility pro-
cess [62, 64]. The novelty of this work is to search the 
combination of the optimal factors based on a hybrid 
approach using Symmetrical uncertainty (SU) for feature 
ranking algorithm, LR for model producing, and the Wil-
coxon sign-rank test for detection of the significance of 
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the differences in LR model. Unlike similar studies, this 
study evaluates to analyze the effect of models includ-
ing varying number of factors model will be tried to 
determine for this study area. Moreover, to analyze 
the performance of these models OA, AUC, Root mean 
square error (RMSE) and Kappa coefficient were used. 
Moreover, the level of performance difference of the 
models was confirmed by Wilcoxon sign-rank test con-
sidering to each of the stages in modelling process. The 
computation process was executed using R language 
environment software (ver. 3.5.3) and spatial data were 
analyzed in ArcGIS 10.

2  Study area and data used

The selected study area covered the central part of 
Ayancik District, Sinop province in the Black Sea region 
of Turkey. The research site is was cropped to a rectan-
gular area of about 544 km2, which is bounded by 34° 
30′ 27″ to 34° 45′ 45″ west–east longitudes and 41° 43′ 
8″ to 41° 57′ 20″ north–south latitudes (Geographic Lat/
Lon WGS 84 Projection). The type of landslide activi-
ties in the study area are mainly shallow landslides and 
are triggered by extreme precipitation [23]. The mean 
annual precipitation ranged between 750 and 900 mm/
year and the mean temperature is about 14 °C. Analysis 
of mean annual precipitation is investigated, it should 
be clearly said that, the spatial distribution of the mean 
annual precipitation in the region that appears to be 
significantly higher than the mean annual precipitation 
value given for Turkey [70]. Also, several studies [69, 74] 
have indicated for the black sea region covering the 
study area that extreme rainfall events can potentially 
lead to landslide activities. During February and March 
1985, the heavy rains that were effective in the Middle 
and Western Black Sea region caused many landslide 
events including Sinop region. In these events, many 
houses were destroyed or damaged, roads were closed, 
and many families had to abandon the houses. Fortu-
nately, no loss of life occurred, but hundreds of acres of 
farmland have been unusable due to natural hazards.

Based on the Mineral Research and Exploration of 
Turkey (MTA), the generalized surface geology mainly 
consists of clastic and carbonate rocks (coverage about 
66% of study area), undifferentiated quaternary, grani-
toid and neritic limestone. Shallow landslides can often 
occur in study area and that happen frequently in most 
of the generalized geologic units especially with the 
exception of the neritic limestone and granitoid. Altitude 
and slope angles in the field of study ranged between 
around 0 and 1670 m and 0° to 72°, respectively.

2.1  Landslide inventory map

The LIM of the study was achieved from the map pro-
vided by the MTA. The main scarp of each landslides which 
includes depletion and accumulation areas was obtained 
as a vector features (i.e. polygons) and build in a geoda-
tabase containing a series of polygon shapefiles. In this 
study area, the landslide activities of mass movements 
are classified into two groups as active and inactive, and 
only active slides that were classified as shallow landslide 
(depth < 5  m) were considered [32]. Also, all landslide 
areas were carefully edited and cleaned considering that 
based on two basic facts [37]: landslide activity is not likely 
to happen on river channels and on terrains with slope 
angles lower than 5°. After all, totally 105 polygons (rep-
resented either by landslide area) covering 6460 pixels (i.e. 
grid cells) were available and each pixel of the landslide 
area with a 30 m spatial resolution. A different landslide 
(1) and non-landslide (0) group samples are required for 
the application of LSM using ML. In region excluding land-
slides occurred site, areas on the river channel and places 
having slope angles between 0° and 5° were considered 
as non-landslide areas. Many sources such as digital ortho-
photo, high-resolution satellite image, and updated map 
from a filed survey using stratified random sampling have 
also been utilized in this process [27, 53, 55]. Finally, 63 
non-landslide polygons covering 3730 pixels were deter-
mined and, all non-landslide and landslide area each 
other were stored in LIM. There is no rule for specifically 
the determination of training and validation sample size 
[42], but the most common and preferred ratio is 70–30 
training-validation split [93]. Landslide inventory dataset 
was divided randomly into 70% of the total number of 
landslides and 70% of the total number of non-landslides 
for the training (74 landslides and 49 non-landslides areas) 
and the rest 30% (31 landslide and 14 non-landslide areas) 
for validation data. It should be noted that the training and 
testing set were selected at random, with an equal number 
of pixels in each subset in the assessment, validation, and 
recognition of model learning. Study area including inven-
tory map was given Fig. 1.

2.2  Landslide conditioning factors

When the previous studies were analyzed, it could be 
said that there is still no universal guidelines or agree-
ment for selecting landslide causative factors and con-
ditioning factors are usually selected based on the land-
slide types, data availability and the characteristics of 
the study area [5, 29]. In this work, 15 landslide causative 
factors are determined to apply LSM models and to pre-
dict the distribution of landslide susceptibility. The caus-
ative factors can be categorized into four major types, 
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topographic factors [slope, aspect, elevation, plan cur-
vature, profile curvature, Topographical Position Index 
(TPI), Topographical Roughness Index (TRI)], geological 
factors (lithology), hydrological factors (Topographical 
Wetness Index (TWI), drainage density, Stream Power 
Index (SPI), Sediment Transport Index (STI), distance to 
river), and land cover (land use/land cover (LULC) and 
Normalized Difference Vegetation Index [NDVI]). Table 1 
contained detailed information used in this study is 
given. Some of the factors can be classified as continu-
ous or categorical form. Hence, each input factor data 
was converted to the same scale and intervals depend-
ing on their data structure. In addition, continuous for-
mat of maps was divided into discrete classes for stand-
ardize the maps. Hence, continuous data factors were 
reclassified into eight intervals by using natural break 
classifier [56, 68].

2.2.1  Topographic factors

Digital Elevation Model (DEM) is a crucial component to 
understand the nature of the terrain and it is an important 
input for topography for the accurate modelling and pre-
diction of LSMs [57]. The quality of DEM has direct impacts 
of the derived factors (e.g. slope, aspect, curvatures, etc.) 
[12]. In this study, the DEM from digitized elevation con-
tours was converted to raster format with 30 m pixel reso-
lution. The following derived factors [slope, aspect, TRI 
(Topographic roughness index), TPI (Topographic position 
index), Topographical wetness index (TWI), plan and pro-
file curvatures, STI and Stream power index (SPI)] were uti-
lized for preparing the susceptibility models. Slope angle 
is one of the most important and the main controlling 
factor in LSM [24, 51]. Because the landslide occurrences 
and slope angles are directly associated with each other 
and parameter of slope is frequently used in many LSM 
by researchers [10, 22, 32, 104]. Slope angles were divided 
into 8 susceptibility level using natural break (NB) classi-
fier from 0° to 72.3°. Altitude or elevation above sea level 
can express both topographic conditions and, indirectly, 
the role of thermo-pluviometric conditions [24]. Eleva-
tion map, range between 0 and 1670 m, was classified 
into eight classes using NB method. Slope aspect, which 
is associated with solar radiation, the wind, and rainfall, 
cloud play an accelerated role in the landslide activities 
[92, 104]. Aspect was reclassified nine classes for each of 
the main directions of the compass (i.e., N, NE, E, SE, S, 
SW, W, NW and flat). Topographic curvatures (e.g. plan and 
profile curvatures) control on both continuous and impul-
sive fluxes of water and sediment through the landscape 
which both surface runoff and gravitative stresses acting 
on shallow failure surfaces can converge or diverge. Plan 
curvature and profile curvature were divided into eight 
classes using NB strategy. TRI is a useful measure in the 
characterization of landslide morphology and was reclas-
sified in 8 sub-classes by NB. TPI measures the difference 
between elevation at the central point of a neighborhood 
pixel and the average elevation around this pixel [103] and 
it was reclassified in 8 natural break classes.

2.2.2  Hydrological factors

SPI, a measure of the flow erosion power of the stream at 
the given point of the topographical surface, which can 
control the initiation of landslides. SPI was arranged in 
eight classes with natural break from − 8.7 to 11.9. TWI 
exhibits a topographic effect at the site of the saturated 
area size of runoff generation and so it can be said that 
lower TPI values and higher slope length and SPI values 
represent higher landslide susceptibility [65, 75]. TWI 
was reclassified into eight sub-classes using NB strategy. 

Fig. 1  Location and the map of the study area showing the general 
slope range and landslide inventory including training and valida-
tion data
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Although water is not always directly involved as the 
transporting mass movement processes such as land-
slide, it could be said that it does play an important role. 
In a situation of distance to rivers, water can lead to the 
saturation sediments, reducing the integrity of the slope 
and allowing it to slope movement or mass movement 
[11, 44]. As mentioned above distance to rivers should 
be used for LSMs. Distance to rivers, which ranges from 0 
to 1100 m, map was divided into eight categories. Drain-
age density, which indicates how well or how poorly a 
watershed is overflowed by stream channels, is the total 

length of channels in a drainage basin divided by its 
drainage area [59]. The drainage density was considered 
to use LSM which ranges from 0.0 to 1.508 km−1 and is 
classified into eight classes using NB classifier. STI reflect-
ing the erosive power of overland flow and deposition 
[26]. A high STI signifies for the effect of topography on 
erosion and the probability shows high values of STI is 
more vulnerable to the landslide [87, 88]. STI (0–2019) 
eight classes were constructed using NB algorithm for 
analysis.

Table 1  Landslide casual factor maps used in study and information of subclasses

Major factors Sub-factors Sub-Classes Source Scale/resolution

Geology Lithology (1)  k2s; (2)  e1–2; (3)  k1; (4) Q; (5)  g4; (6) 
 k2e; (7)  j3k1

General directorate of mineral research 
and exploration of Turkey

https ://www.mta.gov.tr

1:100,000

Geomorphology Elevation (m)—DEM 0–163; 163–360; 360–543; 543–726; 
726–903; 903–1080; 1080–1296; 
1296–1670

General directorate of mapping (Tur-
key)

https ://www.harit a.gov.tr/engli sh/

1:25,000

Slope (°) 0–5.39; 5.39–12.20; 12.20–17.30; 17.30–
21.85; 21.85–26.39; 26.39–30.93; 
30.93–36.32; 36.32–72.36

DEM 30 m

Aspect (1) Flat; (2) north; (3) northeast; (4) east; 
(5) southeast; (6) south; (7) southwest; 
(8) west; (9) northwest

TRI 0–53; 53––112; 112–171; 171–230; 230–
293; 293–367; 367––473; 473–794

Plan Curvature − 20.09 to − 8.53; 8.53–-0.83; -0.83 
to − 0.32; − 0.32 to 0.01; 0.01–0.67; 
0.67–1.68; 1.68–8.21; 8.21–22.61

TPI 0–0.14; 0.14–0.29; 0.29–0.40; 0.40–0.49; 
0.49–0.58; 0.58–0.67; 0.67–0.81; 
0.81–1.00

Profile Curvature − 17.80 to − 8.81; 8.81 to − 1.63; − 1.63 
to − 0.79; − 0.79 to 0.23; 0.23–0.19; 
0.19–0.75; 0.75–6.79; 6.79–18.04

Hydrology Drainage density 0–0.21; 0.21–0.42; 0.42–0.62; 0.62–0.82; 
0.82–1.05; 1.05–1.23; 1.23–1.36; 
1.36–1.51

DEM 30 m

Distance to river 0–100; 100–200; 200–300; 300–400; 
400–500; 500–750; 750–1000; 
1000–> 1000

STI 0–7.92; 7.92–31.67; 31.67–71.27; 
71.27–142.54; 142.54–308.84; 308.84–
871.10; 871.10–1496.7; 1496.7–2019.4

SPI − 8.72 to − 3.53; − 3.53 to − 2.55; − 2.55 
to − 1.65; − 1.65 to − 0.59; − 0.59 to 
0.37; 0.37–1.11; 1.11–5.57; 5.57–12

TWI 2.25–4.99; 4.99–5.98; 5.98–7.13; 
7.13–8.57; 8.57–10.40; 10.40–12.53; 
12.53–15.65; 15.65–21.67

Land cover LULC (1) deciduous; (2) coniferous; (3) bare 
soil; (4) bare rock; (5) urban; (6) water

Landsat-8 operational land ımager (OLI) 
multispectral image (2016)

30 m

NDVI − 0.18 to 0.05, 0.05–0.22, 0.22–0.34, 
0.34–0.42, 0.42–0.47, 0.47–0.51, 
0.51–0.86, 0.56–0.68

https://www.mta.gov.tr
https://www.harita.gov.tr/english/
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2.2.3  Land related factors

Another conditioning parameter associated with landslide 
occurrences is the land use and land cover (LULC). LULC 
changes are affected by local, regional, global climate pro-
cesses and human activities. LULC map was produced from 
Landsat 8 OLI (Operational Land Imager) data acquired in 
2016. In general, six classes, including bare soil, conifer-
ous, deciduous, bare rock, water and urban were identi-
fied. Vegetation cover is an important factor affecting the 
occurrence of shallow landslides, and changes to vegeta-
tion cover can affect landslide behavior [35]. Normalized 
difference vegetative index (NDVI), which is a measure of 
the vegetative properties, was used to estimate the den-
sity of biomass and nitrogen phenology [31]. NDVI is cre-
ated from red and near-infrared bands of Landsat 8 OLI 
image was divided into eight sub-classes using NB.

2.2.4  Geological factor

Lithology is the most important feature of landslide phe-
nomena which influence on the geo-mechanical char-
acteristics of terrains [24, 58]. Lithology factor has been 
widely preferred by the researchers contributing the litera-
ture [1, 4, 14]. Most of the landslides that occurred in Sinop 
province were laid over the Cretaceous and Eocene flysch 
structures [77]. According to Turan et al. [100], North of the 
Black Sea region including this study area formed during 
the Cretaceous Period behind and north of the Pontide 
magmatic extrusive in consequence of the subduction 
of the northern Neo-Tethys Ocean. The researchers also 
reported that the Black Sea region has a rough, irregular 
and very heterogeneous morphology that includes steep 
slopes that were shaped by tectonic plate movements 
manifested as mostly North East-South West and North 
West-South East directed folding and fault systems. Geo-
logical formation of the area is represented by seven litho-
logical units (i.e. geological explanations/age) including (1) 
 k2s (Clastic and carbonate rocks (flysch)—Upper Senon-
ian); (2)  e1-2 (Clastic and carbonate rocks—Lower Middle 
Eocene); (3)  k1 (Clastic and carbonate rocks—Upper Cre-
taceous); (4) Q (Undifferentiated quaternar—Quaternary); 
(5)  g4 (Granitoid—Dogger); (6)  k2e (Clastic and carbonate 
rocks—Upper Cretaceous—Eocene); and (7)  j3k1 (Pelagic 
limestone—Upper Jurassic—Lower Cretaceous).

3  Methodology

In order to develop a model for LSM, there are many 
methodology or strategies can be found in the research 
area. The fundamental processing stages of the adopted 
methodology in this study comprises the six main steps: 

(1) obtaining data related to landslides, preparation of 
landslide inventory and construction of a database of 
landslides, (2) preparation of the training and testing 
dataset, (3) feature scoring using symmetrical uncer-
tainty, (4) determination of the best feature set based 
on the logistic regression model, (5) producing of LSM 
using RF, GBM and XGBoost models and (6) comparison 
of performance differences among LSMs.

The Wilcoxon signed-rank test is a non-parametric test 
that is used to compare two sets of scores that come 
from the same population [102]. Therefore, the Wil-
coxon signed-rank test was employed to evaluate the 
statistically significant differences between the model 
performances. Feature selection methods (i.e. symmetri-
cal uncertainty and logistic regression prediction) and 
model prediction processes (i.e. RF, GLM and XGBoost) 
were utilized in R Programming using the “FSelector”, 
“xgboost”, “gbm”, “randomForest”, and “caret” packages, 
respectively. ArcGIS software was used for classification 
of final maps and visual analysis. Flowchart of the meth-
odology followed was given in Fig. 2.

3.1  Evaluating factor importance using 
symmetrical uncertainty

High dimensionality problem can emerge when the 
features are more, or data points are very large [86]. To 
manage this issue feature selection (FS) techniques can 
be employed. In the perspective of this study, FS can 
be defined as the selection of the best landslide con-
tributing factor subset which can represent the original 
data set. One of the most important characteristics of 
FS is that it is possible to conceive the proper predic-
tive model. Hence, it helps the decision makers by pre-
ferring features that can launch the preferable perfor-
mance with limited features [86]. To overcome the high 
dimensionality problem in landslide related factor set, 
Symmetrical Uncertainty (SU) is applied and reduced 
the feature set. SU is applied to analyze the degree of 
association between discrete features based on hypoth-
esis that a good feature subset is on that contains fea-
tures highly correlate with the class, yet uncorrelated to 
each other. SU is derived from entropy. SU is defined as 
follows:

This equation indicates that H(X) and H(Y) represent the 
entropy of features X and Y. This values within the range 
of 0 and 1. The numeric value of 1 state that one variable 
(either X or Y) completely predicts the other variable [60].

(1)SU = 2 ∗
H(X ) + H(Y) − (X , Y)

H(X) + H(Y)



Vol.:(0123456789)

SN Applied Sciences (2020) 2:1308 | https://doi.org/10.1007/s42452-020-3060-1 Research Article

3.2  Determination of optimum feature subset

Generally, a smaller number of features are encouraged 
to generate the model, because it reduces the complex-
ity of the computation, and also simple model is easy to 
understand [86]. Feature importance values for the SU 
method was calculated for each factor, and factors have 
listed in descending order according to their weights. After 
obtaining SU values for each factor, model performances 
including 2–15 factors were evaluated using LR to analyze 
the effect of varying number of factors on susceptibility 
prediction. The highest accuracy of the model was inves-
tigated by using the overall accuracy with the mentioned 

analysis. After that, the goodness of the LR-based models 
was confirmed by the Wilcoxon signed-rank test and the 
most effective factor subset was determined [52, 61].

LR, which has been widely preferred as a benchmark 
method in the literature, was used to produce LSMs from 
the factor ranking obtained by SU application. Another 
important reason for the used LR method was an easy 
operation tool for LSM assessment [105]. Regression analy-
sis is a statistical technique for building a model prediction 
which investigates the relationship between the presence 
or absence of dependent variable (i.e. landslide inventory) 
and a set of independent variables (landslide causative 
factors such as slope, lithology, etc.).

Fig. 2  Flow chart of the overall 
methodology
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4  Ensemble methods for LSM

In general, ensemble methods that build multiple models 
to produce better predictive performance compared to a 
single model. This is done to make more accurate solutions 
than a single model would which incorporates the predic-
tions from all the base learners. In this paper, methods of 
ensemble learning including RF, GBM, and XGBoost were 
used, and their results compared. When landslide suscep-
tibility indexes have positive and negative skewness, the 
best classification methods are quantile or natural break 
approaches [3, 20].In this present study, the produced 
LSMs were subdivided into five susceptibility levels by the 
quantile-based classification approach according to the 
histogram of data distribution.

4.1  Random forest

Random forest (RF), introduced by Breiman [7]. One of the 
important points to be mentioned for the RF algorithm 
can be used to perform both classification and regression 
tasks. The algorithm starts at the rood node of a tree con-
sidering the all data. Each predictor variable is estimated 
to see how well it separates two different nodes. The tree-
based method is usually a pruning process to cut the tree 
down to a size that is less likely to overfit the data and that 
process generally accomplished by cross-validation [8, 39]. 
For the implementation of the RF, it is required to be set 
two main parameters: the number of trees (ntree), and the 
number of randomly selected predictor variables (mtry).

4.2  Gradient boosting machine

As similar to RF, gradient boosting (GBM) is another tech-
nique used for performing supervised ML applications 
including various classification and regression prob-
lems. GBM produced a prediction model in the form of 
an ensemble of weak prediction models, typically deci-
sion trees [96]. GBM includes tree main components: (1) 
a loss function that is to be optimized, (2) a weak learner 
to predict; (3) an additive model to add weak learners to 
optimize the loos function [47]. For GBM model, there are 
three main tuning parameters. These parameters include 
maximum number of trees “ntree”, maximum number of 
interactions between independent variables “tree depth” 
and learning rate also known as shrinkage [54].

4.3  Extreme gradient boosting

XGBoost is a ML system to scale up tree boosting algo-
rithms and that has recently been the most popular and 

dominating method applied in recent years. XGBoost pro-
duces a prediction model in the form of a boosting ensem-
ble of weak classification trees by a gradient descent that 
optimizes the loss function [25]. The algorithm is highly 
effective in reducing the process time and that also can 
be used for both regression and classification task. The 
parameters of XGBoost algorithm can be separated into 
three categories as suggested by Chen et al. [17], namely, 
General Parameters, Task Parameters, and Booster Param-
eters. In this study, there are three general parameters 
chosen to adjust in XGBoost algorithm for application of 
LSM: colsample_bytree (subsample ratio of columns when 
constructing each tree), subsample (subsample ratio of the 
training instance) and nrounds (max number of boosting 
iterations).

5  Results and discussion

5.1  Landslide conditioning factor analysis

In accordance with the proposed methodology, first, fac-
tor database including 15 causative factors and a inven-
tory map (including landslide and non-landslide area) was 
constructed. Correlation between the landslide condition-
ing factors in LSM analysis can be high due to the most 
of them derived from same source (i.e. DEM). Therefore, 
feature selection procedure was utilized to eliminate cor-
related features and to construct the best subset including 
selected factors. For this purpose, to detect and select the 
best subset factors among the used 15 selected variables, 
the SU measure and related rank values was used in this 
study. As it is mentioned, feature importance values for 
each factor estimated by the SU were given in Table 2. 
In the feature importance analyses, the high value esti-
mated by SU in the table indicates the high importance 
level of a feature for LSM. When the results are analyzed, 
the slope has the highest value (0.540), followed by ele-
vation (0.354), TWI (0.334), STI (0.329), drainage density 
(0.326), lithology (0.312), NDVI (0.237) and LULC (0.226), 
respectively. According to estimated importance value, 
on the other hand, SPI, aspect, distance to river, TRI, TPI, 
plan curvature and profile curvature were selected as the 
less effective factors for LSM problem considered dataset 
used in this study.

As the second step of the proposed methodology, for 
the purpose of analyzing the best feature subset pro-
posed by the SU ranking results, variations in the LR per-
formances of each factor sets (including 2–15 factors) were 
analyzed using AUC values (Table 3). The table was four 
section namely Model, Number of Factors, Selected factors 
and AUC. Model section in table was indicated that model 
produced by LR and number (i.e. _2, _3 etc.) represents 
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the number of factor size. For example, Model_1 indicates 
2-factor combination ranked by the SU (e.g. Model_1: 
slope and elevation).

In addition to these accuracy measures, significance 
of the differences in LR model performances was ana-
lyzed through the Wilcoxon signed-rank test. If the test 
statistic value is less than the critical value (i.e. p value 
is less than 0.05 at 95% confidence interval), the differ-
ence in performances in terms of model accuracy is said 
to be statistically significant. In this statistical approach, 
if the p value is greater than or equal to the value, it was 
represented as bold in the table which means there are 
no statistically significant differences between the two 

results within the 95% confidence interval. Results from 
the Wilcoxon signed-rank test are shown in Table 4. When 
the test results were evaluated, it was seen that the dif-
ference between the Model_8 and the following models 
(Model_9, Model_10, etc.) was not statistically significant. 
The Wilcoxon test results revealed that Model_8 includ-
ing 9 factors was not statistically significant. Therefore, it 
can be said that instead of using whole data set (15 fac-
tors), 9 factors combination selected by the SU could be 
used as it produced similar prediction performance. Thus 
slope, elevation, TWI, STI, drainage density, lithology, NDVI, 
LULC and SPI were found to be main conditioning factors 
among all other factors (aspect, distance to river, TRI, TPI, 
plan curvature and profile curvature) for this study area. As 
a result, Model_8 has selected the best factor combination 
and it was used to produce LSMs by RF, GBR and XGBoost 
methods.

5.2  Application of random forest model (RF) 
for landslide susceptibility mapping

In the RF method, the number of trees (ntree) and the 
node split (mytry) has been set by the analyst. The dataset 
contained of nine factors selected by SU analysis, so the 
number of input variables was set to be square root of 
number of input features ( k =

√

m variables at each split 
and m represents the number of input variables). There is 
a need to calculate or estimate the minimum number of 
trees to reduce the Out-Of-Bag error. The input data, which 
is used to generate the tree model, was classified using a 
set of individual trees to estimate of the test error in OOB 

Table 2  Feature importance 
values estimated by SU 
algorithm

Factors Value

Slope 0.54086
Elevation 0.353783
TWI 0.334336
STI 0.328842
Drainage density 0.326181
Lithology 0.311614
NDVI 0.237236
LULC 0.226365
SPI 0.174027
Aspect 0.143255
Distance to river 0.069686
TRI 0.026366
TPI 0.024626
Plan curvature 0.010801
Profile curvature 0.004386

Table 3  All models produced by LR methods and AUC results

Model Number 
of factors

Selected factors AUC 

Model_1 2 Slope, elevation 0.5643
Model_2 3 Slope, elevation, TWI 0.6067
Model_3 4 Slope, elevation, TWI, STI 0.6065
Model_4 5 Slope, elevation, TWI, STI, drainage density 0.7281
Model_5 6 Slope, elevation, TWI, STI, drainage density, lithology 0.7278
Model_6 7 Slope, elevation, TWI, STI, drainage density, lithology, NDVI 0.7301
Model_7 8 Slope, elevation, TWI, STI, drainage density, lithology, NDVI, LULC 0.7302
Model_8 9 Slope, elevation, TWI, STI, drainage density, lithology, NDVI, LULC, SPI 0.7326
Model_9 10 Slope, elevation, TWI, STI, drainage density, lithology, NDVI, LULC, SPI, aspect 0.7326
Model_10 11 Slope, elevation, TWI, STI, drainage density, lithology, NDVI, LULC, SPI, aspect, distance to river 0.7349
Model_11 12 Slope, elevation, TWI, STI, drainage density, lithology, NDVI, LULC, SPI, aspect, distance to river, TRI 0.7350
Model_12 13 Slope, elevation, TWI, STI, drainage density, lithology, NDVI, LULC, SPI, aspect, distance to river, TRI, TPI 0.7463
Model_13 14 Slope, elevation, TWI, STI, drainage density, lithology, NDVI, LULC, SPI, aspect, distance to river, TRI, TPI, plan 

curvature
0.7468

Model_14 15 Slope, elevation, TWI, STI, drainage density, lithology, NDVI, LULC, SPI, aspect, distance to river, TRI, TPI, plan 
curvature, profile curvature

0.7473
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with increasing ntree, and then, the number of 210 trees 
(ntree) was set.

5.3  Application of gradient boosting machines 
(GBM) model for landslide susceptibility 
mapping

GBM model was utilized in the R package “gbm” in this 
study and is a freely available package for regression and 
classification purpose. The total number of trees (ntree) to 
fit is equal to 500 and in this paper, a grid search algo-
rithm was employed to find this parameter. The shrink-
age parameter which also known as the learning rate or 
step-size reduction in GBM, was set in this work to 0.1. 
Maximum number of interactions between independent 
variables “tree depth”, which controls the complexity of 
the boosted ensemble. In this method performs best, tree 
depth was selected 4. On the other hand, the remaining 
parameters have not been changed and default values 
were accepted recommended by “gbm” package.

5.4  Application of extreme gradient boosting 
(XGBoost) model for landslide susceptibility 
mapping

It could be said that some XGBoost parameters have a 
significant effect on the output model, including col-
sample_bytree, subsample, max_depth and nrounds [13]. 
XGBoost was implemented using the ‘xgboost’ package 
in the R programming and the remaining parameters 
were used to the default value with nrounds set to 10. The 
main parameters setup for XGBoost are: Subsample ratio 
of columns (colsample_bytree): 0.5, maximum tree depth 
(“max_depth”): 5 and proportion of data instances to grow 
tree (“subsample”): 0.7. It should be noted that, to guaran-
tee the robustness of the results, each experiment was run 
ten times and reported.

5.5  Evaluating the performance of LSM models

Performance evaluation is a curial step for comparison of 
several models in LSM. Without a validation, no interpreta-
tion is possible, no support of the method or of the input 
information can be provided and have no scientific signifi-
cance [21]. Therefore, for the validation of LSMs two type 
of dataset as best model conditioning factors selected by 
SU with all factor combination were used and compared 
each other. In this purpose, the several metrics (OA, AUC 
values, RMSE and kappa coefficient) were used to evaluate 
models. Also, Wilcoxon signed-rank test was utilized for 
statistical differences between models.

Using both factor datasets (Model_8 and all factor 
combinations), GML, RF, and XGBoost algorithm were Ta
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built using the training dataset and model’s performance 
results were performed using the test dataset. The 
results are shown in Table 5 in the rows which depends 
on the type of percentage and value.

It could be observed that for all samples, XGBoost_
Opt model (the model created by optimum factor combi-
nation) evaluated the highest performance. They are fol-
lowed by the RF and GBM models for optimum factor set. 
For the three models constructed with SU selected sub-
sets and the whole dataset was also applied to measure 
the prediction accuracy in terms of OA. OA is calculated 
as (sensitivity + specificity)/total number of training pix-
els. Figure 3 shows the accuracy test results from a con-
fusion matrix based on OA analysis. It should be noted 
that very high and high classified area were considered 
as landslide zones, and the rest of the classified levels 
(i.e. moderate, low and very low) was considered as non-
landslide in the accuracy assessment. The achieved OA 
results for the all prediction models of both landslide 
and non-landslide locations was above 85% (overall). The 
results showed that XGBoost_Opt model had a higher 
accuracy value (87.52%) that did all models. When the 
comparison results between optimum and all models 
were analyzed, it was shown that only RF_All and RF_
Opt were had the closest accuracy results between each 
other as 86.12% and 86.93%, respectively. On the other 
hand, GBM and XGBoost models considering both data 

sets had considerable accuracy differences as approxi-
mately 1% and 1.2%, respectively.

Also, RMSE and Kappa coefficient were applied to assess 
and compare the difference between the performance of 
ensemble learning methods. Kappa index value shows 
model compatibility powers and the reliability of the 
landslide models. The kappa index for all models varied 
from approximately 0.82–0.93 and this shows a substan-
tial agreement between the models and the reality. RMSE 
is the most popular performance metrics for continuous 
variables can give a clear objective idea of how good a set 
of predictions. The lower RMSE value indicates the more 
accurate prediction model. RMSE values for the whole data 
set of GBM, RF and XGBoost ensemble learning methods 
were calculated as 0.3030, 0.2643 and 0.2321, respectively. 
Furthermore, the calculated RMSE values for optimum 
dataset were 0.2929, 0.2487 and 0.2095 for GBM, RF and 
XGBoost, respectively. When the performance of models 
was analyzed according to RMSE results, it could be said 
that XGBoost method was showed superior prediction 
performance both whole and optimum data sets. In addi-
tion, AUC values, which is the most widely used evalua-
tion metric for calculating the performance, was utilized to 
measure the statistical differences in comparing the accu-
racies of LSMs. The AUC varies between 0.5 and 1 as the 
more the AUC, a score closes to 0.5 would represent a poor 
model and an AUC near to the 1 which means it has good 
measure of separability. AUC values obtained from ensem-
ble models (Table 5) when analyzed it was clearly showed 
that both datasets (i.e. all and optimum factor sets) for 
XGBoost method had higher AUC values (94.87% and 
95.68%, respectively). And it followed by RF_All (93.77%). 
and GBM_Opt (92.15%). As a result, regardless of the data 
structure used, these results show that the performance 
of models is quite acceptable.

Wilcoxon test, rank test used in nonparametric statis-
tics, was applied to measure the statistical significance of 
the difference in the performance of two models. The Wil-
coxon test was used in the comparison of the equality of 
the prediction models of two different subsets especially 
when the performance metric results of the LSMs is very 
similar and became difficult to determine exactly which 
model is the best decision. Results from the Wilcoxon test 
for the models are illustrated in Table 6. Within this confi-
dence level, p value less than 0.05 indicates a statistically 
significant difference between the compared groups, oth-
erwise, the calculated statistic is greater than the p value 
it is mean that there are no statistically significant differ-
ences in the parameters from groups at a 95% confidence 
interval. As the Table 6 shows, if the value of the calculated 
test statistic is greater than the p value, the value was set 
in bold in the table. When the Wilcoxon test results were 
evaluated, XGBoost_Opt model, which is the best subset 

Table 5  Model performance results of OA, AUC, Kappa and RMSE 
metrics

OA (%) AUC (%) Kappa RMSE

GBM_All 85.0299 91.8323 0.8163 0.3030
GBM_Opt 86.0279 92.1486 0.8283 0.2929
RF_All 86.1277 93.7736 0.8602 0.2643
RF_opt 86.9301 94.1529 0.8762 0.2487
XGBoost_All 86.3273 94.8689 0.8922 0.2321
XGBoost_Opt 87.5249 95.6816 0.91216 0.2095

Fig. 3  A graphic illustration of OA results for prediction models
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combinations, were confirmed to be statistically significant 
considering others model and subset combinations. These 
findings supported that XGBoost method with factor com-
bination estimated by SU algorithm serves a valuable con-
tribution according to statistically significant in producing 
accurate LSMs compared to GBM and RF approach consid-
ering the whole and selected dataset used in the study.

In this study, the LMS continuous map of XGBoost_Opt 
was divided by the quantile classification into 5 suscep-
tibility levels including very low, low, moderate, high 
and very high which are shown in Fig. 4. According to 
XGBoost_Opt derived LSM, the very high susceptible 

zones yielded about 21.92% of the total area, while about 
18.48% was classified as a high susceptibility and 19.84% 
of the area as a moderate susceptibility. Also, 39.76% of the 
study area is classified as a low and very low susceptibil-
ity zone. When this LSM was analyzed visually, almost all 
north parts of the area were mainly located on the very 
high and high susceptible zones. In addition, a small part 
to the south of the study area was mainly covered by high 
and very high susceptibility zone. In addition to this, the 
reaming susceptible areas (i.e. very low and low) were 
mainly located along the from east to west-central part 
of the map.

Table 6  Wilcoxon’s signed-rank 
test statistic for LSMs

GBM_All GBM_Opt RF_All RF_opt XGBoost_All XGBoost_Opt

GBM_All – 0.0012 0.1144 0.0796 0.06153 0.0000
GBM_Opt – 0.3797 0.5636 0.9510 0.0002
RF_All – 0.6888 0.2273 0.0001
RF_opt – 0.4047 0.00011
XGBoost_All – 0.0047
XGBoost_Opt –

Fig. 4  LSM prepared by the 
XGBoost model and produced 
from 9-factor model deter-
mined by SU algorithm
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In recent years, ensemble machine learning algorithms 
have been proposed in the literature as alternatives to 
traditional statistical methods for assessment of LSM. The 
past studies are carefully investigated, machine learning-
based approaches have shown outperformed compared 
to others [36, 89]. Additionally, recently proposed ensem-
ble tree learning methods such as Random Subspace [9, 
73], Rotation Forest [71, 85], Boosting and Bagging [38, 98] 
help to improve machine learning prediction process by 
combining several approaches. In this study, a new mem-
ber of ensemble tree methods as XGBoost and GBM was 
proposed. Also, traditional and mostly used RF method 
was used as a benchmark algorithm. XGBoost method has 
outperformed the other models for the prediction of LSM 
as similar to different research studies [33, 106]. The per-
formance of the RF and GBM results are in agreement with 
several studies [43, 61, 95]. Also, the findings of the present 
study have shown similar performance and parallel to pre-
vious findings given by previous studies. For example, Nhu 
et al. [72] applied AdaBoost, bagging, and random sub-
space algorithms in Shoor River watershed in northwest-
ern Iran. The results indicated that all ensembles models 
provided a high goodness-of-fit and prediction accuracy. 
Pham et al. [81] was proposed various ensemble predic-
tive ML models (i.e. Random Subspace with Best First Deci-
sion Tree, Functional Tree (RSSFT), J48 Decision Tree, Naïve 
Bayes Tree and Reduced Error Pruning Trees). Mentioned 
study results showed that the RSSFT model achieved the 
highest performance in terms of predicting future land-
slides and it followed by the other ensemble methods. In 
another study proposed by Sevgen et al. [91], statistical 
and machine learning methodologies (i.e. LR, artificial 
neural network (ANN) and RF) have been applied for the 
production of landslide susceptibility maps. Among the LR 
and ANN methods, ensemble learning method based on 
RF is showed better prediction performance to the other 
two for predicting the future landslides.

6  Conclusions

In this present study introduced a conceptual frame-
work of tree-based ensemble methods in three different 
approaches, (i.e. XGBoost, GBM, and RF) for the LSM in 
Ayancik district, Sinop province in the Black Sea region of 
Turkey. In order to achieve a good quality of LSM model, 
selecting landslide causal factors based on their impor-
tance was found by SU method. For this present study, fif-
teen landslide conditioning factors for the analysis (slope, 
elevation, TWI, STI, drainage density, lithology, NDVI, LULC, 
SPI, aspect, distance to river, TRI, TPI, plan curvature, pro-
file curvature) was used and Model_8 including 9 factors 
(slope, elevation, TWI, STI, drainage density, lithology, 

NDVI, LULC and SPI) was evaluated using the Wilcoxon 
Sign Test integrated with LR method to produce land-
slide susceptibility maps. Tree-Based Ensembles Methods 
constructed with SU-selected subset and whole dataset 
were applied to the testing data to measure the prediction 
accuracy in terms of performance metrics such as OA, AUC, 
RMSE and Kappa coefficient. According to this case study, 
the performance metrics demonstrates that there was 
generally little differentiation in prediction performance 
between method applied to the Model_8 and whole data 
set. In terms of validation results, all the produced models 
(i.e. XGBoost, GBM, and RF) show reasonably good per-
formances and results also stated that the XGBoost has 
the best predictive capability among the other models (i.e. 
Rf and GBM). Therefore, due to differences in accuracy of 
predictions, the Wilcoxon test was applied to determine 
the optimal map production method for factor subset 
options. As a result, result map of the XGBoost_Opt was 
significantly different from the GBM and RF maps (includ-
ing all and optimum factor sets). Also, feature selection 
approach as a SU was proved to be an effective solution 
for this study. The novelty of the research is the use of the 
SU algorithm in factor ranking and to obtain new models 
by using the LR method according to factor sets selected 
by SU and to determine the optimum model among these 
models by Wilcoxon sign-rank test. In summary, results 
revealed the robustness of produced landslide suscepti-
bility maps using the tree-based ensemble methods when 
using the optimal landslide causative factors among too 
many factors.
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