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Abstract
Unsteady magneto-hydrodynamic heat and mass transfer analysis of hybrid nanofluid flow over stretching surface with 
chemical reaction, suction, slip effects and thermal radiation is analyzed in this problem. Combination of carbon nano-
tubes and silver nanoparticles are taken as hybrid nanoparticles and water is considered as base fluid. Using similarity 
transformation method, the governing equations are changed into system of ordinary differential equations. These 
equations together with boundary conditions are numerically evaluated by using finite-element method. The influence 
of various pertinent parameters on the profiles of fluids concentration, temperature, and velocity is calculated and the 
outcomes are plotted through graphs. The values of non-dimensional rates of heat transfer, mass transfer and velocity 
are also analyzed, and the results are depicted in tables. Temperature sketches of hybrid nanofluid intensified in both 
steady and unsteady cases as volume fraction of both nanoparticles rises.

Keywords  MWCNT/Ag‒water hybrid nanofluid · Magneto-hydrodynamics · Chemical reaction · Slip effects · Thermal 
radiation · FEM

Abbreviations
Cf	� Skin friction coefficient
ϕ2	� Nanoparticle volume fraction of silver
kf	� Thermal conductivity of basefluid
Nux	� Nusselt number
ϕ1	� Nanoparticle volume fraction of MWCNT
Rex	� Local Reynolds number
C∞	� Ambient fluid concentration
u∞	� Velocity of mainstream
Tw	� Wall constant temperature
T∞	� Ambient temperature
T	� Fluid temperature
C	� Fluid concentration
qw	� Wall heat flux
Jw	� Wall mass flux
f	� Dimensionless stream function
uw	� Velocity of the wall
K*	� Mean absorption coefficient

σ*	� Stephan–Boltzmann constant
Shx	� Sherwood number
Pr	� Prandtl number
(u, v)	� Velocity components in x- and y-axis
R	� Radiation parameter
τw	� Shear stress
Sc	� Schmidt number
M	� Magnetic field parameter
Dm	� Diffusion coefficient
Sc	� Schmidth number
U	� Composite velocity
(x, y)	� Direction along and perpendicular to the wedge
Cr	� Chemical reaction parameter
V0	� Suction parameter
Cw	� Concentration at the wall
s1	� First solid component
s2	� Second solid component
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Greek symbols
α	� Thermal diffusivity of base fluid
�	� Kinematic viscosity
μ	� Fluid viscosity
ρp	� Nanoparticle mass density
S	� Dimensionless nanoparticle volume fraction
η	� Similarity variable
θ	� Dimensionless temperature
λ	� Velocity slip parameter
σ	� Electrical conductivity
ξ	� Thermal slip parameter

Subscripts
∞	� Condition far away from cone surface hnf hybrid 

nanofluid
f	� Base fluid
nf	� Nanofluid

Superscript
′	� Differentiation with respect to η

1  Introduction

In modern days, the concept of nanofluids has turned 
into more extensive area for the research people owing 
to its enormous range of significances in biomedicine, 
heat exchangers, cooling of electronic devises, double 
windowpane, food, transportation, etc. To amplify the 
general fluids thermal conductivity such as ethylene gly-
col, water, kerosene, engine oils, we have to add different 
types of nanoparticles, like, graphene, silica, silver, gold, 
copper, alumina, carbon nanotubes, etc. to the base flu-
ids. Good numbers of research articles are identified in 
survey of literature which deals the enhancement of the 
base fluids thermal conductivity by adding various types 
of nanoparticles [1–6]. Carbon-based nanomaterials can 
greatly contribute to environment sector and agriculture 
because of their enormous absorption potential due to 
their high surface area. Carbon-based nanomaterials are 
categorized into three kinds based on the shape of the 
nanoparticles, such as spheres or ellipsoidal shape, horn 
shape, and tube shape. CNTs are further categorized as 
single-wall carbon nanotubes (SWCNTs) and multi-wall 
carbon nanotubes (MWCNTs) depending on the number 
of concentric layers of rolled graphene sheets. Abbasi et al. 
[7] presented theoretical and experimental results on ther-
mal conductivity of MWCNTs and TiO2 nanoparticles and 
revealed that experimental values of thermal conductiv-
ity are higher than the theoretical values. Imtiaz et al. [8] 
detected higher temperature enhancement in MWCNTs 
than the SWCNTs in their work on heat transfer analysis 
of carbon nanotubes between rotating stretchable disks. 
Hayat et al. [9] deliberated flow and heat transfer analysis 

of carbon nanotubes–water-based nanofluid flow over 
a thin moving needle and noticed amplification in the 
sketches of velocity as volume fraction parameter rises. 
Estelle et al. [10] measured rheological and thermal con-
ductivity properties of carbon nanotubes–water nanofluid 
in their experimental study and also measured the impact 
of volume fraction and type of base fluid on these prop-
erties. Hussain et al. [11] studied the influence of Darcy 
Forhheimer parameter on mass and heat transfer char-
acteristics of carbon nanotubes-water-based nanofluid 
flow over flat plate/stretching cylinder by taking hetero-
geneous–homogeneous reactions. Sreedevi et  al. [12] 
presented single and multi-walled carbon nanotubes heat 
transfer characteristics over a vertical cone with convective 
boundary conditions. Sudarsana Reddy et al. [13] deliber-
ated Maxwell fluid flow between two stretchable rotating 
disks filled with carbon nanotubes-water nanofluid and 
detected reduction in the temperature of the both nano-
fluids with rising values of nanoparticle volume fraction 
parameter. Ahmadi et al. [14] presented flow and heat 
transfer characteristics of Bungiorno’s model nanofluid 
flow over a heated stretching sheet and identified aug-
mentation in the values of Nusselt number with up surging 
values of Brownian motion parameter. Qasim et al. [15] 
perceived heat and mass transfer analysis of Bungiorno’s 
model nanofluid thin film flow over a stretching sheet and 
noticed reduction in the values of heat transfer rates as 
Brownian motion parameter values rises. Biglarian et al. 
[16] studied the influence of various types of nanoparticles 
and volume fraction of nanoparticles on heat transport 
and flow of unsteady nanofluid between parallel plates. 
Mahdy et al. [17] noticed elevation in the values of skin 
friction coefficient with rising values of Weissenberg num-
ber in their analysis on time-dependent hyperbolic tan-
gential nanofluid flow over stretching wedge. Sheremet 
et al. [18] presented heat transfer analysis of Al2O3–water-
based nanofluid flow in square inclined cavity with the left 
vertical wall is maintained sinusoidal temperature distribu-
tion. Hashim et al. [19] perceived the impact of thermo-
phoresis and Brownian motion on mass and heat transport 
characteristics of Williamson nanofluid flow over a wedge.

“Hybrid nanofluids” are special kind of fluids having bet-
ter thermal conductivity compared to the nanofluids and 
base fluids. Hybrid nanofluids have similar kind of applica-
tions as compared with the nanofluids. The superior ther-
mal efficiency is predicted in hybrid nanofluids because of 
its better performance. Hybrid nanofluids are generated 
by dispersing two different types of nanoparticles in the 
base fluid. Megatif et al. [20] detected 38% intensification 
in the coefficient of heat transfer of CNT/TiO2–water-based 
hybrid nanofluid with volume fraction of nanoparticles is 
0.2 wt% in their experimental study. Sidik et al. [21] noticed 
that the hybrid nanofluids have higher thermal properties 
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compared to the nanofluids with single nanoparticle and 
base fluids. Further, they observed that volume frac-
tion and temperature are highly influencing the thermal 
properties of hybrid nanofluids. Ahammed et  al. [22] 
experimentally investigated heat transport capabilities of 
alumina/graphene–water hybrid nanofluid flow in a min-
ichannel. Rahman et al. [23] deliberated heat transfer capa-
bilities of Al2O3/Cu–water hybrid nanofluid flow through 
an axisymmetric tube and perceived augmentation in 
rates of heat transfer as the values of volume fraction of 
hybrid nanofluid rises. Yarmand et al. [24] presented inten-
sification in the heat transfer of hybrid nanofluid made up 
of platinum/graphene nanoplatelet–water at a four-sided 
microchannel whose boundaries are maintained with con-
stant heat flux. Hussien et al. [25] experimentally examined 
the heat transport characteristics of GNPs/MWCNTs–water 
hybrid nanofluid flow through a minitube and detected 
43.4% augmentation in the rate of heat transfer of hybrid 
nanofluid. Izadi et al. [26] presented lattice Boltzmann 
method (LBM) to analyze natural convection of hybrid 
nanofluid generated by Fe2O4–water over ┴-shaped cavity. 
Asadi et al. [27] studied MWCNT/Al2O3–water hybrid nano-
fluid heat transfer efficiency as a cooling fluid in energy 
management and thermal applications. Kumar et al. [28] 
theoretically and experimentally investigated heat trans-
port enhancement of MWCNT/Al2O3–water nanofluid flow 
over minichannel heat sink and noticed intensification in 
the coefficient of heat transfer in the range of 30–35% as 
the hydraulic diameter of the decreases. Bhattad et al. [29] 
studied pressure drop and heat transfer characteristics of 
hybrid nanofluid made up of MWCNT/Al2O3–water on 
heat exchanger plate and detected 39.16% enhancement 
in heat transfer coefficient. Maddah et al. [30] perceived 
analysis of TiO2/Al2O3–water-based hybrid nanofluid flow 
in turbulent flow regime. Akilu et al. [31] detected 6.9% 
augmentation in coefficient of heat transfer in their study 
taking carbon/ceramic copper oxide as hybrid nanopar-
ticles and glycerol/ethylene glycol as base fluids. Waini 
et al. [32] deliberated analysis of Cu/Al2O3–water-based 
hybrid nanofluid over shrinking/stretching sheet and 
identified deterioration in the sketches of temperature 
with higher values of suction parameter. Recently, several 
authors [33–41] discussed about intensification in the val-
ues of heat transfer coefficient by taking different types 
of nanoparticles and hybrid nanoparticles over various 
geometries.

Careful observation on available literature reveals that no 
studies have reported to analyze the impact of slip effects 
and chemical reaction on mass and heat transport character-
istics of magneto-hydrodynamic hybrid nanofluids prepared 
by considering MWCNTs/Silver as nanoparticles and water 
as base fluid over stretching sheet. The resultant equations 
are solved using finite-element method with Mathematica 

10.0. The problem addressed in this analysis has immedi-
ate applications in generator cooling, transformer cooling, 
electronic cooling, etc.

2 � Mathematical analysis of the problem

Consider unsteady, laminar, two-dimensional, MHD bound-
ary layer heat and mass transfer of MWCNT/Ag–water-based 
hybrid nanofluid flow through a stretching sheet with slip 
effects as depicted in Fig. 1. Along the stretching surface and 
in the direction of flow the x-axis considered and y-axis is 
measured normal to it. Uw (x, t) is the velocity of the stretch-
ing sheet. A constant magnetic field of strength B0 is applied 
normal to the plate. Tw and Cw are considered as sheet sur-
face uniform temperature and concentration, and further-
more, T∞ and C∞ are taken as ambient fluid temperature and 
concentration, correspondingly. Under the above assump-
tions, the governing equations describing the momentum, 
energy and concentration in the presence of chemical reac-
tion, slip effects and thermal radiation are given by Asadi 
et al. [27].
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Fig. 1   Physical model and coordinate system
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The following physical boundary conditions are

The subsequent similarity transformations are presented 
to streamline the mathematical study of the problem

Additionally,

By utilizing Rosseland estimation for radiation, the radia-
tive heat flux qr is demarcated as

The transformed equations are

The associated converted boundary conditions are

The associated non-dimensional parameters are defined 
as
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hybrid nanofluid are specified by:
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where

represents the local Reynolds number.

3 � Numerical solution of the problem

3.1 � The finite‑element method

The variational finite-element process [42–45] is imple-
mented to evaluate numerically above Eqs. (10)–(12) with 
boundary conditions (13)–(14). Compared with other 
numerical methods, finite element method is the better 
method to solve both ordinary and partial differential 
equations numerically. The steps involved in the finite 
element method are as follows.

3.1.1 � Finite‑element discretization

The whole domain is divided into a finite number of sub-
domains, which is called the discretization of the domain. 
Each subdomain is called an element. The collection of 
elements is called the finite-element mesh.

3.1.2 � Generation of the element equations

1	 From the mesh, a typical element is isolated and the 
variational formulation of the given problem over the 
typical element is constructed.

2	 An approximate solution of the variational problem 
is assumed, and the element equations are made by 
substituting this solution in the above system.

3	 The element matrix, which is called stiffness matrix, is 
constructed by using the element interpolation func-
tions.

3.1.3 � Assembly of element equations

The algebraic equations so obtained are assembled by 
imposing the inter-element continuity conditions. This 
yields a large number of algebraic equations known as 
the global finite-element model, which governs the whole 
domain.
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3.1.4 � Imposition of boundary conditions

The essential and natural boundary conditions are imposed 
on the assembled equations.

3.1.5 � Solution of assembled equations

The assembled equations so obtained can be solved by any 
of the numerical techniques, namely the Gauss elimination 
method, LU decomposition method, etc. An important con-
sideration is that of the shape functions which are employed 
to approximate actual functions.

For the solution of system of non-linear ordinary differen-
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where w1, w2, w3 , and w4 are arbitrary test functions 
and may be viewed as the variations in f, h, θ, and S, 
respectively.

3.3 � Finite‑element formulation

The finite-element model may be obtained from above 
equations by substituting finite-element approximations 
of the form

With, w1 = w2 = w3 = w4 = �i(i = 1, 2, 3, 4).

Here ψi are the shape functions for a typical element (
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 and are defined as
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is given by
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4 � Results and discussion

The impact of slip effects on heat transport coefficient of 
MWCNT/Ag–water hybrid nanofluid flow over stretching 
sheet is analyzed in this analysis. Variations in the sketches 
of concentration, temperature, and velocity with respect to 
influenced parameters are calculated and plotted through 
graphs from Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 
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Fig. 2   The effect of (ϕ1) on f′
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16, 17, 18, 19, 20 and 21. The thermophysical properties 
of nanoparticles and water are depicted in Table 1. Com-
parison of present numerical code with existing values is 
made and depicted in Table 2.

Figures 2, 3, 4, 5, 6 and 7 reflect the sway of nanoparti-
cle volume fraction parameters ϕ1 and ϕ2 on the sketches 
of concentration, temperature and velocity for both 
unsteady and steady cases of MWCNT/Ag–water hybrid 
nanofluid. The velocity scatterings depreciate with escalat-
ing values of both ϕ1 and ϕ2. Furthermore, this phenom-
enon is significantly higher in unsteady case than steady 
case of MWCNT/Ag–water hybrid nanofliud as shown in 

Figs. 2 and 5. With rising ϕ1 and ϕ2 values, the sketches of 
both concentration and temperature intensifies in both 
unsteady and state cases of hybrid nanofluid. Furthermore, 
this intensification is slightly higher in unsteady case than 
steady case of MWCNT/Ag–water hybrid nanofluid as 
shown in Figs. 3, 4, 6 and 7. This is due to the fact that with 
growing values of nanoparticle volume fraction param-
eters the thermal boundary layer thickness intensifies. This 
means the rate of heat transfer augments in the fluid area 
as the volume fraction of nanoparticle deteriorates.

We professed from Fig. 8 that the sketches of veloc-
ity declines in both unsteady and state case MWCNT/

1  0.01, 0.05, 0.1. Solid Lines: Steady
Dotted Lines: Unsteady

2  0.01, M  0.3, R 1.0, 
V0  0.5, Pr  6.2, Cr  0.1,

  0.5,    0. 5, Sc  1.0.
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Fig. 3   The effect of (ϕ1) on θ 
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Fig. 4   The effect of (ϕ1) on S 
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Fig. 5   The effect of (ϕ2) on f′
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Ag–water-based hybrid nanofluid with escalating values 
of magnetic parameter (M) and this escalating tendency is 
slightly more in unsteady case than steady case MWCNT/
Ag–water hybrid nanofluid. The scatterings of both tem-
perature and concentration of unsteady and steady case 
MWCNT/Ag–water hybrid nanofluid with rising values of 
(M) is depicted in Figs. 9 and 10. The concentration and 
temperature scattering optimize with amplifying values 
of (M), and this amplifying nature is less in steady case 
MWCNT/Ag–water hybrid nanofluid than unsteady case. 
This is due to the fact that the presence of magnetic field in 

the flow creates a force known as the Lorentz force which 
acts as a retarding force, and consequently, the momen-
tum boundary layer thickness decelerates throughout the 
flow region. To overcome from this Lorentz force fluid has 
to perform extra work, which intensifies the temperature 
of the fluid.

Thickness of thermal boundary layer with altered val-
ues of Radiation parameter (R) in both unsteady and 
steady case of MWCNT/Ag–water hybrid nanofluid is 
portrayed in Fig. 11 and detected that thermal boundary 
layer thickness upsurges with cumulating values of (R) 
in both cases. The intention for this nature is that, as the 

2  0.01, 0.05, 0.1. Solid Lines: Steady
Dotted Lines: Unsteady
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Fig. 7   The effect of (ϕ2) on S 
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Fig. 8   The effect of (M) on f′
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Fig. 9   The effect of (M) on θ 
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Fig. 10   The effect of (M) on S 
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values of (R) rises, the Rosseland radiative absorptive k* 
diminutions. Consequently, the radiative heat flux �qr

�y
 

values and the radiative rates of heat transfer into the 
liquid upsurges. This higher radiative heat transfer 
results the intensification in the thickness of thermal 
boundary layer. Moreover, this cumulating nature is 
slightly higher in unsteady case than steady case 
MWCNT/Ag–water hybrid nanofluid. Figure 12 shows the 
disparities in temperature scatterings with altered values 
of Prandtl number (Pr) for both unsteady and state case 
of MWCNT/Ag–water hybrid nanofluid. The temperature 
sketches worsen with up surging values of (Pr), and this 
phenomenon is marginally higher in steady case than 

unsteady case MWCNT/Ag–water-based hybrid nano-
fluid. Form the characterization of Prandtl number, val-
ues raises means thermal diffusivity of the liquid worsens 
which causes lesser heat dispersion. Subsequently, the 
distributions of thermal boundary layer thickness as well 
as temperature of nanoliquid are both deteriorate in the 
fluid region.

MWCNT/Ag–water-based hybrid nanofluid concentra-
tion scatterings shrinks in both unsteady and steady cases 
with rising values of Schmidt number (Sc), and this shrink-
ing nature in concentration sketches is more in steady case 
than unsteady case of MWCNT/Ag–water-based hybrid 
nanofluid (Fig. 13). Figure 14 exhibits the significance 
of chemical reaction parameter (Cr) on concentration 
sketches in both steady and unsteady cases of MWCNT/
Ag–water-based hybrid nanofluid and noticed deterio-
ration in the profiles with cumulated values of (Cr). It is 
cleared that the deterioration is consequently higher in 
steady case than unsteady case hybrid nanofluid.

Figures 15, 16 and 17 show the disparities in the thick-
ness of hydrodynamic, thermal and solutal boundary lay-
ers with altered values of suction parameter (V0) in both 
unsteady and steady case MWCNT/Ag–water-based hybrid 
nanofluid. The thickness of hydrodynamic boundary layer 
escalates with amplifying values of (V0) in both cases, 
whereas, the thickness of thermal and solutal boundary 
layers diminishes with higher values of (V0). Furthermore, 
the escalating nature in the thickness of hydrodynamic 
boundary layer and diminishing nature in the thickness of 
both thermal boundary layer and solutal boundary layers 
is slightly more steady case than unsteady case of MWCNT/
Ag–water-based hybrid nanofluid. The authenticity for this 
behavior is that sucking the warm liquid from liquid area 
definitely deteriorates the thickness of the concentration, 
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Dotted Lines: Unsteady

1  0.01, 2  0.01, M 0.5, 
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Fig. 11   The effect of (R) on θ 

Fig. 12   The effect of (Pr) on θ 
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thermal and hydrodynamic boundary layers, and conse-
quently, all profiles of the liquid worsen.

The impact of velocity slip parameter (�) on scatterings 
of concentration, temperature and velocity is depicted in 
Figs. 18, 19 and 20. It is perceived from Fig. 18 that flu-
ids velocity amplifies with improving values of (�) in both 
unsteady and steady cases of MWCNT/Ag–water-based 
hybrid nanofluid. This is true because as the values of (�) 
rises the thickness of thermal boundary layer denigrates, 
consequently, velocity of the liquid grows. Nevertheless, 

the temperature and concentration sketches depreciate 
with intensifying values of (�) in both unsteady and steady 
cases of MWCNT/Ag–water-based hybrid nanofluid. Fur-
thermore, amplifying tendency in velocity sketches and 
depreciation in temperature, concentration scatterings is 
marginally more in steady case than unsteady case.

Figure  21 describes the sway of temperature slip 
parameter (�) on thermal boundary layer thickness in 
both unsteady and steady cases of MWCNT/Ag–water-
based hybrid nanofluid. With up-surging values of (�) , the 
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Fig. 13   The effect of (Sc) on S 
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Fig. 14   The effect of (Cr) on S 
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Fig. 15   The effect of (V0) on f′
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temperature sketches degenerates in both cases and this 
degenerating phenomenon is slightly more in steady case 
than unsteady case.

Tables 3 and 4 reveal the sway of pertinent parameters 
on non-dimensional rates of mass transfer, heat transfer, 
and velocity in both unsteady and steady cases of MWCNT/
Ag–water-based hybrid nanofluid. It is perceived that 
values of Sherwood number, Nusselt number, and skin 

friction coefficient decrease in both unsteady and steady 
cases of MWCNT/Ag–water-based hybrid nanofluid as the 
values of �1,�2 and M rises. With rise in the values of (Pr), 
the dimensionless values of (Cf) and (Nux) are intensifies in 
both steady and unsteady cases, while, the opposite trend 
is noticed in (Shx) values. As the values of (R) improves, 
the values of non-dimensional rates of mass transfer, heat 

 V0  0.1, 0.2, 0.3. Solid Lines: Steady
Dotted Lines: Unsteady
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Fig. 17   The effect of (V0) on S 
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Fig. 18   The effect of (λ) on f′
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transfer and rates of velocity values deteriorate in both 
unsteady and steady cases of MWCNT/Ag–water-based 
hybrid nanofluid.

The values of (Cf ), (Nux) and (Shx) upsurges in both 
steady and unsteady state hybrid nanofluid as the val-
ues of (Cr) intensifies. The non-dimensional rates of 
velocity, temperature, and concentration values are 
optimized as the values of (V0) upsurges in unsteady 
state hybrid nanofluid as well as this behavior is similar 

in steady state hybrid nanofluid. The values of 
(
f ��(0)

)
 

and 
(
−��(0)

)
 diminish; however, the values of 

(
−S�(0)

)
 

intensify with rising values of (Sc) in steady state case. 
The rates of velocity and Sherwood number values rise, 
whereas Nusselt number values diminish with (Sc) in 
unsteady case. As the values of (�) rise the values 

(
f ��(0)

)
 

decelerate, whereas the values 
(
−��(0)

)
 and 

(
−S�(0)

)
 

intensify in both unsteady and steady cases of MWCNT/
Ag–water-based hybrid nanofluid. The non-dimensional 
rates of velocity and temperature values worsen with 
improved values of (ξ) in both unsteady and steady 
state cases. However, with the higher values of (ξ), the 
values of (Shx) rise in both cases.

5 � Conclusion

The present study addressed MWCNT/Ag–water-based 
hybrid nanofluid heat and mass transfer analysis over a 
stretching sheet. The impact of velocity slip, tempera-
ture slip, chemical reaction, and thermal radiation on 
MWCNT/Ag–water-based hybrid nanofluid flow is also 
analyzed. We have investigated the sway of different 
crucial parameters through plots and tables. The most 
noteworthy findings are as follows:

1	 We have noticed up to 22.4% enhancement in 
the rate of heat transfer from viscous fluid (water) 
to Ag–water-based nanofluid as the values of 
ϕ1 rises from 0.01 to 0.1 and with fixed values of 
M = 0.3, R = 1.0, V0 = 0.5, Pr = 6.2, Cr = 0.1, � = 0.5,

� = 0.5, Sc = 1.0. However,  26.7% augmenta-
tion is perceived in the rate of heat transfer from 
Ag–water-based nanofluid to MWCNT/Ag–water-
based hybrid nanofluid as the values of ϕ1 and ϕ2 
increases from 0.01 to 0.1 and with fixed values of 
M = 0.3, R = 1.0, V0 = 0.5, Pr = 6.2, Cr = 0.1, � = 0.5,

� = 0.5, Sc = 1.0.

2	 As the volume fraction parameters of both nanofluids 
ϕ1 and ϕ2 intensifies the thickness of thermal boundary 
layer upsurges in both unsteady and steady cases of 
MWCNT/Ag–water-based hybrid nanofluid.

3	 Temperature and concentration of MWCNT/Ag–water-
based hybrid nanofluid deteriorate as the values of (V0) 
rise in both unsteady and steady cases.

4	 Both temperature and concentration sketches worsen 
with rising values of velocity slip parameter (�) in both 
unsteady and steady cases of MWCNT/Ag–water-
based hybrid nanofluid.

5	 Rising values of (M) lead to depreciation in the values 
of Sherwood number, Nusselt number, and skin fric-
tion coefficient.
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Fig. 21   The effect of (ξ) on θ 

Table 1   Thermo-physical properties of water and nanoparticles

Fluid ρ (kg/m3) Cp (J/kg K) k (W/mK)

Pure water 997.1 4179 0.613
MWCNTs 1600 796 3000
Silver (Ag) 10,500 235 429

Table 2   Comparison of 
(
−��(0)

)
 with the results of Waini et al. [32] 

for various values of (Pr) and �1 = 0, �2 = 0

Parameter Waini et al. [32] Present results
Pr

(
−��(0)

) (
−��(0)

)

2.0 0.911353 0.911341
6.13 1.759682 1.759676
7.0 1.895400 1.895397
20.0 3.353902 3.353915
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6	 The dimensionless rates of heat transfer shrinks with 
rising values of (�) in both unsteady and steady cases 
of MWCNT/Ag–water-based hybrid nanofluid.
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Table 3   Values of skin-
friction coefficient 

(
f ��(0)

)
 , 

Nusselt number 
(
−��(0)

)
 and 

Sherwood number 
(
−S�(0)

)

Parameters Steady-MWCNT/Ag–water Unsteady-MWCNT/Ag–water

ϕ1 ϕ2 M Pr R
(
f ��(0)

) (
−��(0)

) (
−S�(0)

)
.

(
f ��(0)

) (
−��(0)

) (
−S�(0)

)
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Table 4   Values of skin-
friction coefficient 

(
f ��(0)

)
 , 

Nusselt number 
(
−��(0)

)
 and 

Sherwood number 
(
−S�(0)

)

Parameters Steady-MWCNT/Ag–water Unsteady-MWCNT/Ag–water

C
r

V0 Sc � �
(
f ��(0)

) (
−��(0)

) (
−S�(0)

)
.

(
f ��(0)

) (
−��(0)

) (
−S�(0)

)
.

0.1 0.5 1.0 0.5 0.5 0.10627 1.16293 0.78842 0.09768 1.12220 0.74926
0.2 0.5 1.0 0.5 0.5 0.10645 1.16325 0.99664 0.09786 1.12357 0.96850
0.3 0.5 1.0 0.5 0.5 0.10875 1.17548 1.16697 0.10235 1.13258 1.14476
0.1 0.1 1.0 0.5 0.5 0.02622 0.49275 0.90043 0.01951 0.39062 0.88228
0.1 0.2 1.0 0.5 0.5 0.03083 0.66010 0.95686 0.02314 0.56794 0.93762
0.1 0.3 1.0 0.5 0.5 0.03590 0.82505 1.01632 0.02724 0.74827 0.99607
0.1 0.5 1.0 0.5 0.5 0.04786 1.12421 1.14439 0.03691 1.07552 1.12268
0.1 0.5 1.2 0.5 0.5 0.04773 1.12354 1.28568 0.03698 1.07452 1.26165
0.1 0.5 1.4 0.5 0.5 0.04532 1.08962 1.42166 0.03754 1.06548 1.39553
0.1 0.5 1.0 0.1 0.5 0.06988 1.11707 1.14099 0.05422 1.06919 1.12007
0.1 0.5 1.0 0.2 0.5 0.04786 1.12421 1.14439 0.03691 1.07552 1.12268
0.1 0.5 1.0 0.3 0.5 0.03428 1.12850 1.14646 0.02630 1.07929 1.12425
0.1 0.5 1.0 0.5 0.1 0.04786 0.92769 1.14388 0.03691 0.89429 1.12195
0.1 0.5 1.0 0.5 0.2 0.04658 0.78967 1.14452 0.03785 0.76533 1.12365
0.1 0.5 1.0 0.5 0.3 0.03265 0.68739 1.15432 0.03954 0.66888 1.12536
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