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Abstract
General circulation model projections are inadequate for impact studies due to their coarse resolution and inherent 
biases. Therefore, there is a need to accurately correct these biases and examine the abilities of these correction tech-
niques in replicating the observed climate change signals. Over the Komadugu-Yobe Basin, this study investigates the 
performance of univariate empirical and parametric quantile mapping, as well as multivariate bias-correction (BC) tech-
niques, using; N-dimensional probability density function transform (MBCN), Spearman rank correlation dependency 
(MBCR) and Pearson correlation dependency (MBCP) in correcting the biases in some selected CMIP5-Coordinated 
Regional Climate Downscaling Experiment model temperature projections based on the historical period (1975–2005) 
and the future (2020–2050) for annual, dry and wet periods under two emission scenarios (RCP 4.5 and 8.5). The temporal 
temperature variability of the BC outputs is further assessed. In correcting the temperature distribution, both univari-
ate BC perform well for all seasons, while MBCN performs best during the dry season. The latitudinal-time cross-section 
result shows that high temperatures are mismatched either by the years of occurrence or by the latitudes at which they 
occurred. The univariate BC techniques and MBCN performed best in replicating the observed monthly variability. There 
is a positive temperature trend in most parts of the basin, however, with increased magnitudes in the future. Overall, the 
bias-corrected model ensemble mean performs better in replicating the trend in temperature, while the multivariate BC 
methods correct the joint dependence structure between them modelled variables, thereby providing a general-purpose 
methodology to the climate community.
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1 Introduction

The effect of the increasing concentration in atmospheric 
greenhouse gases on the global climate system is simu-
lated by Global Climate Models (GCMs). These models 
have coarse resolutions which make it difficult to meet the 

requirement of many users demanding high-resolution 
outputs to produce regional to local-scale climate projec-
tions as well as climate impact studies [1]. To address the 
limitations, various GCM models (e.g. the Coupled Model 
Intercomparison Project 5 (CMIP5) models) have been 
dynamically downscaled regionally as Regional Climate 
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Models (RCMs), while others developed different bias-
correction methods.

Previous studies have evaluated the use of different 
model refinement, dynamical and statistical downscaling 
techniques in various parts of the world, e.g. in the USA 
and Europe [2–4]. Other studies have analysed regional-
scale model discrepancies [5–7]. However, model biases 
vary for different regions, thereby making it difficult to 
draw a definite conclusion as to which model or statisti-
cally downscaling and bias correction methods perform 
best. Hence, there is a need to evaluate the performances 
of different downscaling and bias-correction methods in 
different regions.

Various bias-correction (BC) algorithms have been 
developed [8–10], other studies evaluated the perfor-
mances of the BC algorithms [11, 12], while others expati-
ated on their limitations [13–15]. One of the most widely 
used bias-correction approaches in climatology is the 
univariate quantile mapping approach which aims at 
mapping the source distribution quantiles to target dis-
tribution quantiles. Grillakis et al. [16] presented a trend-
preserving method based on quantile mapping bias-
correction of climate modelled temperature over Europe. 
This method preserves the standard deviation, the long-
term signal in the model mean, and the lower and higher 
percentiles of temperature. Hempel et al. [9] presented a 
trend-preserving BC method in the Inter-Sectoral Impact 
Model Intercomparison Project (ISIMIP). Various studies 
[17, 18] have used the trend-preserving univariate bias-
correction methods such as equidistant quantile matching 
and quantile delta mapping methods.

However, just like other bias-correction methods, quan-
tile mapping has been used in correcting biases in indi-
vidual climate variables, thereby disregarding the depend-
encies and correlation between different variables [7, 19]. 
Since these dependencies are ignored in univariate BC 
methods, biases inherent in the dependence structure can 
affect further analyses making use of multiple variables 
(e.g. drought monitoring, hydrological modelling) [20]. To 
preserve this dependency, the multivariate BC methods 
have been developed [21–24]. These bias-correct multi-
ple variables concurrently either by considering the whole 
multivariate dependence structure [22, 24] or assuming 
stationarity in the temporal sequence of model variables 
[21].

In the Komadugu-Yobe Basin (KYB), Adeyeri et al. [7] 
reported a significant positive trend in warm spell dura-
tion, warm day-, and warm night frequencies over the 
Komadougu-Yobe Basin (KYB) using the bias-corrected 
model output from univariate empirical quantile map-
ping technique. They also predicted more frequent 
extreme temperature events in the future. Adeyeri et al. 
[25] showed that heavy precipitation intensity in the 

KYB is boosted by temperature increase. This acceler-
ates moisture convergence at low levels which drives 
the precipitation event. The consequence of the heavy 
precipitation intensity is more river discharge and sub-
sequent flood events in the basin.

Even though studies involving bias-correction of cli-
mate models in the basin are limited, it is unknown if 
the previous methodologies adopted in bias-correcting 
climate models preserves the climate signals and the 
joint dependence structure of the climate variables in 
the different climatic zones of the basin.

Therefore, this study compares multiple bias-correc-
tion techniques using eight GCMs-RCM for the historical 
period (1975–2005) and future (2020–2050) for annual, 
dry (December to March) and wet periods (June to Sep-
tember [26]). However, due to the temporal limitation of 
the observed data, the historical period is further divided 
into calibration (1975–1990) and validation (1991–2005) 
periods. The objective of this study is to assess the per-
formance of two univariate and three multivariate BC 
methods in reproducing the observed maximum tem-
perature distribution as well as the temperature variabil-
ity over the KYB using eight GCMs-RCM and the mean 
of the original GCMs-RCM simulation (model ensemble 
mean) at the historical and future period under rep-
resentative concentration pathway (RCP) 4.5 and 8.5 
scenarios.

2  Study area

The Komadugu-Yobe Basin (KYB) is a sub-basin of the Lake 
Chad Basin. It is a transboundary basin shared by Nigeria 
and Niger Republic. The basin is positioned to the south 
of the Sahara Desert of Africa with an area of 150,000 km2 
(Fig.  1) which is approximately 35% of the Lake Chad 
Basin. Its elevation varies between 285 and 1750 m [27]. 
The water losses from the basin are majorly through infil-
tration, evaporation and irrigation. The average annual 
precipitation ranges from 300 to 1200 mm [28]. The aver-
age annual maximum air temperature varies from 28 to 
36 °C, while the minimum air temperature varies from 15 
to 22 °C [7]. The KYB houses some valuable wetlands which 
are significant to both national and international commu-
nities because they are sources to some rivers feeding the 
Lake Chad Basin [28]. The occurrence of three drought 
periods and recent flood events has called for appropri-
ate adaptation and mitigation practises to combat climate 
change and extremes in the basin. This requires a good 
understanding of the present climate considering the past 
climate events as well as having a good projection into the 
future, for proper planning.
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3  Data and methods

The analyses utilise the observed maximum temperature, 
minimum temperature, air temperature and precipitation 
data series for fourteen stations from 1975 to 2005, archived 
by the Direction de la Meteorologie Nationale (DMN) of the 
Niger Republic and Nigeria Meteorological Agency (NiMet) 
(Table 1). The quality control and homogenization pro-
cesses of the daily maximum temperature data follow the 
methodology described in Domonkos and Coll [29] and 
Adeyeri et al. [7, 25]. These data are used as a reference to 
correct the biases in eight GCMs-RCM and their ensemble 
mean, obtained from the Coordinated Regional Climate 
Downscaling Experiment (CORDEX) (Table 2). These GCMs 
are downscaled dynamically by the Swedish Meteorologi-
cal and Hydrological Institute-Rossby Centre Atmosphere 
model version 4 (RCA4) RCM. RCA4 has a resolution of 
0.44° × 0.44° with an embedded Bechtold Kain-Fritsch con-
vection scheme. Additional information about the domain 
setup, physical parameterizations and boundary conditions 
are described in Samuelsson et al. [30]. This RCM has been 

Fig. 1  Map of the study area

Table 1  List of climatic stations

s/n Country Station Lat Long Acronyms

1 Niger Diffa 13.31 12.61 Diffa
2 Niger Goure 13.98 10.3 Goure
3 Niger Zinder 13.75 8.98 Zind
4 Niger Magaria 12.98 8.93 Mag
5 Niger Maine-Soroa 13.23 11.98 Maine
6 Nigeria Maiduguri 11.81 13.27 Maid
7 Nigeria Potiskum 11.86 10.77 Pot
8 Nigeria Katsina 13 7.53 Kat
9 Nigeria Kaduna 10.52 7.44 Kad
10 Nigeria Kano 12 8.52 Kano
11 Nigeria Gombe 13.32 11.17 Gombe
12 Nigeria Nguru 12.88 10.45 Nguru
13 Nigeria Bauchi 10.28 9.7 Bauchi
14 Nigeria Jos 9.92 8.9 Jos
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proven to perform well in replicating some climate extreme 
indices over the basin [7]. Point-scale bias-correction of the 
GCMs-RCM is based on the fourteen stations during the 
historical period (1975–2005). The historical period is fur-
ther divided into calibration (1975–1990) and validation 
(1991–2005) periods. The point-scale precipitation series 
was extracted from the GCMs-RCM grid using the first-
order conservative remapping technique [31–33], while 
the temperature series was extracted using the nearest 
neighbourhood remapping technique [33]. Subsequently, 
the station points were extracted from the GCMs-RCM grid 
for the future (2020–2050) under RCP 4.5 and 8.5. RCP 4.5 
is the carbon dioxide emission scenario at 650 ppmv, while 
RCP 8.5 is the carbon dioxide emission at 1370 ppmv.

3.1  Bias‑correction techniques

Bias-correction (BC) minimizes discrepancies between 
observed and simulated climate variables. Therefore, this 
study compares the performances of five BC techniques, 
namely univariate empirical quantile mapping (EQM), uni-
variate parametric quantile mapping (PQM), multivariate 
bias-correction method using N-dimensional probability 
density function transform (MBCN), multivariate bias-cor-
rection method using Spearman rank correlation depend-
ency (MBCR) and multivariate bias-correction method 
using Pearson correlation dependency (MBCP).

For the univariate BC, two quantile mapping tech-
niques are applied to the daily maximum temperature 
variable. Quantile mapping (QM) is a quantile depend-
ent correction function between the model simulation 
quantiles and the observation quantiles. This func-
tion translates the simulated data into bias-corrected 
data. However, the assumption here is that models 
can accurately project the variable’s ranked categories 
(the quantiles), i.e. the same probability distribution for 
both historical and future period [34]. These quantiles 

can either be fitted based on empirical (e.g. Déqué et al. 
[34]) or parametric distribution (e.g. Piani et al. [12]). In 
the empirical QM, changes in the model’s Cumulative 
Distribution Function (CDF) during the calibration and 
future periods are calculated quantile by quantile. The 
changes are further rescaled based on the CDF during 
calibration before adding it, quantile by quantile to the 
observed quantile, to get a newly calibrated CDF for 
the future period with exhibited climate change signal 
(Amengual et al. [35]), while the parametric QM assumes 
that both model and observation intensity distributions 
are well approximated by a given distribution. This fol-
lows a theoretically fitted distribution. Specifically, the 
QM transformation can be expressed as follows [7]:

where S is the daily observed time series, k is the transfer 
function and C is the CORDEX time series having the dis-
tribution of S.

For a known series distribution,

where Fs is the CDF of C and F−1
O

 is the inverse CDF of S.
On the other hand, the multivariate BC uses the QM 

approach in adjusting the marginal distributions of the cli-
mate model simulations while conserving the projected 
changes in the simulated quantiles. The multivariate res-
caling technique is used to adjust the joint multivariate 
dependency structure [18]. For the multivariate BC, three 
multivariate techniques (MBCN, MBCR and MBCP) are 
applied to the maximum temperature variable.

The MBCN [23] is a multivariate equivalent of the uni-
variate quantile delta mapping (QDM) in which all char-
acteristics of the observed distribution are reassigned 
to the simulations.

In QDM, the observed values are multiplied by the 
ratio of the modelled values at the same quantiles. The 

(1)S = k(C)

(2)S = F−1
O

(
Fs(C)

)

Table 2  List of GCMs used 
as boundary conditions for 
the Rossby Centre Regional 
Atmospheric (RCA) model

No Modelling centre GCM Acronyms

1 Canadian Centre for Climate Modelling and Analysis CanESM2 CCMA
2 Centre National de Recherches Météorologiques/Centre 

Européen de Recherche et Formation Avancée en Calcul 
Scientifique

CNRM-CM5 CNRM

3 EC-EARTH consortium EC-EARTH ICHEC
4 NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2M NOAA
5 Met Office Hadley Centre HadGEM2-ES MOHC
6 Atmosphere and Ocean Research Institute (The University 

of Tokyo), National Institute for Environmental Stud-
ies and Japan Agency for Marine-Earth Science and 
Technology

MIROC5 MIROC

7 Max Planck Institute for Meteorology MPI-ESM-LR MPI
8 Norwegian Climate Centre NorESM1-M NCC
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relative or absolute quantile changes between the cali-
bration and future periods are calculated. Thereafter, the 
bias-corrected future projection is obtained by multiply-
ing these relative changes by the bias-corrected values 
during the calibration period. This preserves the relative 
or absolute quantile changes.

The QDM transfer function is given as;

where XS , XP and XT are the historical climate model simu-
lations, climate model projections and historical observa-
tions, respectively. FS , FP and FT are the CDF of the historical 
climate model simulations, climate model projections and 
historical observations, respectively. Δ(i) is an operator 
which preserves the relative changes in quantiles.

The MBCN extends the N-dimensional probabil-
ity density function transform algorithm with QDM 
and works with data from XS , XP and XT  . It rotates the 
XS , XP and XT  and applies the absolute change from 
Eq.  (3) to each rotated XS , XP and XT  variables. Subse-
quently, the rotated XS , XP and XT  are rotated back as 
X
[j+1]
S

, X
[j+1]
P

, X
[j+1]
T

 . This process is repeated until X [j+1]
S

 
matches XT  . To preserve the trends in XP , each column 
of XP elements is ordered based on the ordinal ranks of 
the corresponding elements of each column of X [j+1]

P
 . 

(3)X̃P(i) = F−1
T

(
FP
(
XP(i)

))
+ Δ(i)

(4)Δ(i) = XP(i) − F−1
S

(
FP
(
XP(i)

))

For this study, the multivariate BC of maximum 
temperature relies on the observed maximum tem-
perature, minimum temperature, air temperature and 
precipitation data series at both annual and seasonal 
time scales.

3.2  Evaluation, trend and interpolation

The performance of the BC methods in replicating the 
observed maximum temperature distribution is assessed 
by ranking each method using a comparative model skill 
score (MSS) [37] for all models with the ensemble mean. 
This calculates the space–time statistics. The time statistics 
is derived by comparing and quantifying the phase errors 
of the space-averaged values time series, while the space 
statistics is based on the time-average of the study area 
(Fig. 1) [37]. Thereafter, the MSS is derived from the sum of 
the normalised (Ynorm) values of space (S) and time (t) cor-
relation (r), bias (B), mean absolute error (MAE) and the index 
of agreement (d) [38].

where 0 ≤ Ynorm ≤ 1 ; Y is the space or time-averaged r, B, 
MAE or d. Ymax and Ymin are the best and worst perfor-
mance index from all model simulations.

Therefore, MSS is expressed as;

High values MSS denotes good performance, while low 
values denote bad performance.

The trend in the observation and BC model maximum 
temperature data series are analysed at annual, wet and 
dry periods. The trend detection follows the Mann–Kend-
all (modified Mann–Kendall) description as presented in 
Adeyeri et al. [27]. Additionally, the results from the point-
wise bias-corrected GCMs-RCM were interpolated across 
the entire basin using ordinary kriging method [39, 40].

4  Results

4.1  Performance evaluation of different BC 
methods for correcting maximum temperature 
distribution

Climate models exhibit biases due to systematic model 
errors, spatial averaging and discretization within grid cells. 
This is further buttressed in the empirical CDF plot of the 

(5)Ynorm =
Yi − Ymin

Ymax − Ymin

(6)
MSS =

(
Srnorm +

[
1 − S|B|norm

]
+
[
1 − SMAEnorm

]
+ Sdnorm

+trnorm +
[
1 − t|B|norm

]
+
[
1 − tMAEnorm

]
+ tdnorm

)
× 100

Whilst the convergence of MBCN depends on iteratively 
rotating matrices randomly, the influence of this random 
rotation is examined through the convergence speed of 
multivariate distribution using the energy distance [36]. 
The details of this method are presented in Canon [23]. 
Conversely, MBCR and MBCP [24] match ranked corre-
lation dependence structure using multivariate linear 
rescaling and subsequently match the marginal distri-
butions using univariate transformations. The corrected 
dependence structure is measured either by Spearman 
rank correlation or Pearson correlation. In both cases, 
the ranked correlation dependence structure is aligned 
with the observations. Here, the sequence of the origi-
nal model output is preserved because MBCP and MBCR 
sequence modification is quite small.

Nevertheless, in all three multivariate BC methods, 
the marginal distributions are adjusted based on the 
change-preserving QDM technique [18].
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uncorrected climate models against the stations’ observed 
temperature (supplementary file, Fig. S1). The distribution 
of the models varies greatly from the observation. For 

example, 20% of the observations have temperature value 
of 30.00 °C, while at least 90% of climate model outputs 
have temperature values of 30.00 °C. Hence, there is a need 

Table 3  Comparative 
performance scores (%) for the 
basin during the calibration 
period

BC methods CCMA CNRM ENS ICHEC MIROC MOHC MPI NCC NOAA

(a) Annual
RAW 42.3 41.4 38.1 31.1 40.3 39.2 38.3 38.9 33.0
EQM 87.1 87.2 89.4 88.9 90.4 86.3 88.4 87.4 89.1
PQM 86.4 87.7 89.5 89.1 90.4 86.4 88.4 87.3 88.9
MBCN 86.4 88.2 86.0 84.5 87.0 84.3 84.4 83.6 87.6
MBCP 86.7 88.8 86.7 85.1 87.1 84.8 85.0 84.0 87.7
MBCR 86.5 87.4 87.4 84.6 86.2 83.4 85.9 84.4 87.3
(b) Dry season
RAW 65.5 71.5 61.8 56.0 66.0 65.5 59.9 60.5 50.9
EQM 78.9 79.6 77.9 80.1 80.5 74.7 81.1 78.3 77.0
PQM 79.0 79.3 78.1 79.9 80.7 74.5 81.0 78.1 76.8
MBCN 82.4 83.4 86.8 87.2 87.8 79.4 88.1 81.2 84.5
MBCP 72.0 78.7 70.8 79.2 70.6 79.0 76.7 76.2 78.2
MBCR 79.0 75.6 70.3 71.2 77.2 70.5 74.6 79.4 73.2
(c) Wet season
RAW 42.7 37.6 39.8 31.4 40.3 40.7 38.7 41.6 36.5
EQM 85.7 87.8 89.1 88.2 85.4 85.9 88.5 87.0 87.7
PQM 85.6 87.9 89.1 88.2 85.3 85.9 88.6 86.8 87.7
MBCN 73.8 68.8 74.4 73.9 74.5 72.1 74.6 77.5 81.0
MBCP 80.3 73.9 80.6 78.2 78.4 76.5 77.3 82.4 81.9
MBCR 85.7 76.2 85.3 82.5 83.3 79.5 81.8 83.4 81.9

Table 4  Comparative 
performance scores (%) for the 
basin during the validation 
period

BC methods CCMA CNRM ENS ICHEC MIROC MOHC MPI NCC NOAA

(a) Annual
RAW 43.9 43.9 39.2 32.0 41.8 39.8 39.3 39.5 34.4
EQM 88.6 88.6 87.1 86.8 88.9 87.7 89.0 89.0 87.4
PQM 88.5 88.5 87.0 86.9 88.8 87.5 88.9 89.1 87.3
MBCN 84.8 84.8 85.6 85.6 86.8 83.2 84.7 88.1 84.0
MBCP 84.7 84.7 87.2 86.7 90.4 89.7 85.2 89.8 88.2
MBCR 82.5 82.5 85.5 86.6 86.2 81.7 85.1 87.6 85.2
(b) Dry season
RAW 58.8 67.3 58.6 54.0 64.0 61.3 57.2 57.2 48.6
EQM 81.5 78.1 73.2 73.4 74.4 70.4 76.1 79.5 69.0
PQM 81.2 78.2 73.4 73.6 74.5 70.6 76.3 79.7 68.9
MBCN 83.1 81.4 82.7 89.1 85.7 82.1 84.7 89.2 82.5
MBCP 73.9 72.6 64.7 71.9 66.4 68.7 73.0 72.8 67.2
MBCR 76.9 74.1 63.3 65.0 67.8 69.2 75.0 74.9 69.1
(c) Wet season
RAW 48.6 37.7 41.5 32.2 41.5 40.5 39.8 42.4 38.6
EQM 83.2 87.2 83.6 83.0 85.4 82.6 86.2 85.8 83.9
PQM 83.2 87.1 83.4 83.0 85.4 82.5 86.1 85.7 83.8
MBCN 77.5 72.0 79.9 75.9 77.2 70.6 79.2 81.5 80.1
MBCP 78.4 84.4 79.7 80.3 79.3 81.4 81.0 80.7 80.9
MBCR 81.1 79.8 81.0 86.3 84.4 76.6 84.2 83.8 81.1
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to correct these biases and evaluate the performances of 
the adopted bias-correction methods (supplementary file, 
Fig. S2). To evaluate the ability of the different BC methods 
in correcting the maximum temperature in the study area, 
three statistical validation measures are adopted (Eq. 6). 
The results of the models’ comparative performance scores 
for both calibration and validation periods are presented 
in Tables 3 and 4a, b and c for annual, dry and wet peri-
ods, respectively. The performance scores differ for indi-
vidual GCMs-RCM and also differ for each BC methods. For 
example, in the annual series, the performance score dur-
ing the calibration period is highest for MIROC using EQM 
and PQM BC methods (90%). However, the BC methods 
exhibit acceptable performance scores, ranging from 83.4% 
(MOHC-MBCR) to 90% (MIROC-PQM, EQM) (Table 3a).

The performance scores for the BC methods during the 
dry season (Table 3b) range between 70.3% (ENS-MBCR) 
and 88.1% (MPI-MBCN). The range for the wet season is 
between 68.8% (CNRM-MBCN) and 89.1% (ENS-PQM, 
EQM). Comparing the percentage bias of the model 
ensemble mean, using different BC methods for example, 
during the dry season for the calibration period (Fig. 2) 
shows that EQM, PQM and MBCN have the lowest percent-
age bias of between 1 and − 4%. The MBCP has the highest 

range of between − 4 and 21%. The highest range of bias is 
seen in the uncorrected (raw) model ensemble mean with 
values between − 14 and 21%. For the annual period (Fig. 
S3), all BC methods show percentage bias of between − 2 
and 2%. For the wet season (Fig. S4), EQM, PQM and MBCR 
have the lowest range of percentage bias of from 0% to 
2%, 0% to 2% and 0% to − 2%, respectively.

For the validation period, the performance scores 
(Table 4) show acceptable performances for the annual 
period. The MBCN performs best for the dry season, while 
there are mixed performances for the wet period with 
CNRM-EQM having the best performance of 87.2%. For 
percentage bias (Fig. 3), taking the model ensemble mean 
as an example, the MBCN has the lowest percentage bias 
of between 0 and − 2%. The performances for other sea-
sons are reported in the supplementary file (Figs. S4–S6).

In general, the performance of each model and the BC 
method varies with season. However, both univariate BC 
perform well for all seasons during the calibration and 
validation periods. For multivariate BC, MBCN performs 
best during the dry season for all models, while MBCR 
performs best for the wet season. There are mixed perfor-
mances between the multivariate BC and the models for 
the annual period.

Fig. 2  Percentage bias (%) in model ensemble mean for dry season temperature for calibration period (1975–1990) for a raw and the differ-
ent BC methods (b–f). Positive and negative bias means overestimation and underestimation, respectively
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4.2  Joint dependency structure

To examine the ability of the BC methods in observing the 
joint dependency structures between the variables consid-
ered, the RMSE result between the observed and BC out-
put Spearman maximum and minimum temperature cor-
relation for the model ensemble mean is calculated over 

all stations considering the entire evaluation period. As an 
example, Fig. 4a shows that the global RMSE values for the 
correlation coefficients between mean annual maximum 
and minimum temperature are identical for all multivariate 
BC methods with values between 0 and 0.1. The Spear-
man correlation coefficient ranges between 0.4 and 0.5 for 
EQM, between 0.35 and 0.45 for PQM and between 0.2 and 

Fig. 3  Percentage bias (%) in model ensemble mean for dry season temperature for calibration period (1991–2005) for a raw and the differ-
ent BC methods (b–f). Positive and negative bias means overestimation and underestimation, respectively

Fig. 4  a Boxplots of RMSE 
values for the correlation coef-
ficients between mean annual 
maximum and minimum tem-
perature between 1975 and 
2005. b Rates of convergence 
of MBCR and MBCP for bias-
correction of annual maximum 
and minimum temperature 
and absolute errors w.r.t. the 
observation
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0.5 for the uncorrected model ensemble mean. The high 
RMSE values show that the univariate BC methods are una-
ble to reproduce the observed joint dependency structure 
between the variables, while the low RMSE values for mul-
tivariate BC methods show the strength of these methods 
in representing the joint dependencies. This same pattern 
is recorded for the Spearman correlation between maxi-
mum temperature and precipitation (not shown).

Although the multivariate BC of maximum temperature 
relies on observed maximum temperature, minimum tem-
perature, air temperature and precipitation data series, it 
is noteworthy that the convergence of MBCR and MBCP 
(based on ranked correlation dependence structure) 
to the targeted multivariate distribution occurs quickly 
(Fig. 4b). Contrariwise, the MBCN is based on iteratively 
rotating matrices randomly, whose convergence speed to 
the targeted multivariate distribution is evaluated using 
the energy distance. To measure the consequence of the 
random rotation matrices on the model, the energy dis-
tances are evaluated for the uncorrected and BC climate 
model using MBCN, following 100 iterations and 50 trials 
(Fig. S7). Convergence rates differ for different models with 
respect to the energy scores. For example, convergence 
occurs quickly for MPI, MIROC and ENS after 25 iterations 
with smaller energy distances, while the random rotations 
for NCC are suppressed after 80 iterations and at bigger 
energy distances. This shows that NCC is affected more by 
these random rotations, hence a need for more iterations.

4.3  Monthly variability of domain’s average 
temperature

The temporal distribution and comparison of temperature 
over the basin for the entire historical period (1975–2005) 
using the univariate BC methods are presented in Fig. 5. 
The comparison between the observation (Fig. 5a) and 
the uncorrected model ensemble mean (Fig. 5b) shows 
no match as the uncorrected model constantly underes-
timates temperature for all months and years. The EQM 
(Fig. 5c) performs well in hot months but either underes-
timates or overestimates in months with low temperature. 
The PQM (Fig. 5d) performs relatively well in replicating 
the monthly variability; however, there are little overesti-
mations in months with low temperatures. For multivari-
ate BC methods (Fig. 6), all methods represented the hot-
test months relatively well. Nonetheless, there are some 
underestimations in months with low temperature. In all 
cases, PQM and MBCN replicate the monthly variability 
satisfactorily.

4.4  Spatial distribution of temperature variability

Figure 7 presents the result of the spatial distributions of 
the dry season temperature over the basin. The tempera-
ture increases (except the uncorrected model (Fig. 7b)) 
from the south-western part of the basin to the north-
eastern corner, with the lowest temperature range of 

Fig. 5  Monthly variability of basin’s maximum temperature (°C) 
over the KYB. a Observation. b Uncorrected model ensemble mean. 
c Corrected model ensemble mean using univariate empirical 

quantile mapping. d Corrected model ensemble mean using uni-
variate parametric quantile mapping
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between 28.70 and 32.10  °C and highest temperature 
range of between 33.80 and 35.50 °C. Although some parts 
of the study area are overestimated especially by MBCP 
and MBCN, conversely, PQM replicates the spatial pattern 
satisfactorily. The multivariate methods overestimate by at 
least 1.70 °C in the Sahelian parts of the basin. However, 
the coldest part of the basin is accurately replicated. For 
the wet season (Fig. S9), there is an evident latitudinal tem-
perature increase across the basin with temperatures rang-
ing from 25.30 to 37.90 °C. Nevertheless, there is an over-
estimation of over 1 °C by EQM method in the Sahelian 
end of the basin. For all seasons, the uncorrected model 
ensemble mean underestimated the basin’s temperature, 
while the PQM and MBCN perform well for univariate and 
multivariate BC methods, respectively.

4.5  Cross‑sectional assessment of temperature 
variability

As an example, Fig. 8 shows the latitude-time cross-sec-
tion of the model ensemble mean temperature variability 
in the dry season for the entire study period. There is an 
increase in temperature from lower to higher latitudes for 
the observation and all BC methods. The uncorrected (raw) 
model ensemble mean shows the opposite. However, the 
representation of the magnitude is captured differently by 

each BC methods. The temperature of ≥ 31 °C is captured 
from year 1975 to 2015 and 1988 to 2005 between lati-
tudes 10.8°N and 15°N for the observed series (Fig. 8a). The 
uncorrected model ensemble mean (raw) model, on the 
other hand, is not able to capture this variability (Fig. 8b). 
This magnitude is captured between year 2004 and 2005 
between latitudes 10.8°N and 13.2°N for EQM (Fig. 8c). The 
PQM captures this magnitude for all latitudes from year 
1998 to 2005. The MBCN and MBCP capture this magni-
tude between latitudes 11.0°N and 15°N for all the years, 
although with a temperature of 30 °C in some years. In 
general, the low temperatures are captured well by the 
PQM and MBCN methods. However, the high tempera-
tures are mismatched either by the years of occurrence or 
by the latitudes at which they occurred. The longitudinal 
cross-section also shows varying degrees of mismatches. 
However, the PQM seems to perform best (Fig. S10).

4.6  Trends in temperature

To verify the ability of the different BC methods to cor-
rectly replicate the observed trend and trend magnitude 
of temperature in the study period, the model ensemble 
mean is subjected to the adopted BC methods at annual, 
dry and wet periods. As an example, the MBCN method is 
subsequently used for future trend projection (2020–2050) 

Fig. 6  Monthly variability of basin’s maximum temperature (°C) 
over the KYB. a Observation. b Corrected model ensemble mean 
using multivariate N-dimensional probability density function 

transform. c Corrected model ensemble mean using multivariate 
Spearman rank correlation dependency. d Corrected model ensem-
ble mean using multivariate Pearson correlation dependency
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at RCP 4.5 and 8.5, respectively. The results are presented 
in the sections below.

4.6.1  Historical trend in temperature

The model ensemble mean boxplots distribution of 
maximum temperature trend for all stations in the basin 
between 1975 and 2005 show predominantly positive 
trends in annual series for the observation, the uncor-
rected model and all BC outputs (Fig. 9a). None of the 
methods accurately represents the annual trends, none-
theless, the highest trend range is exhibited by MBCN 
(0.03–0.13  °C/year) as against the observation with 

trends ranging between 0.00 and 0.06 °C/year. For the 
dry season (Fig. 9b), the univariate PQM performed best 
in estimating the trend with values between 0.02 and 
0.09 °C/year. However, for the multivariate BC, the MBCN 
performed best with values between 0.04 and 1.12 °C/
year. There is a constant overestimation of trends for the 
other multivariate BC methods, while the EQM under-
estimates the observed maximum trends. For the wet 
season, no method replicates the observed trend. How-
ever, MBCR performed best with values ranging between 
0.04 and 1.12  °C/year. Although there are incidences 
of negative trends in the wet season, no BC method 
captures this. As noted by Mararun [41], due to the 

Fig. 7  Spatial comparison of dry season maximum temperature 
(°C) of Ensemble RCMs mean for historical period between 1975 
and 2005. a Observation, b raw RCMs ensemble mean, c empirical 
quantile mapping bias-correction method, d parametric quantile 
mapping bias-correction method, e multi-bias-correction method 

using N-dimensional probability density function transform, f 
multi-bias-correction method using Spearman rank correlation 
dependency, g multi-bias-correction method using Pearson corre-
lation dependency
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Fig. 8  Latitude-time cross section of dry season maximum temperature (°C) for the entire study period (1975–2005). a Observation. b Raw 
and the different BC methods g–f 

Fig. 9  Boxplots distribution of maximum temperature trend for all stations in the basin between 1975 and 2005. a Annual. b Dry season. c 
Wet season
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time-independent error component of the climate mod-
els (which is arbitrarily time-dependent), the modelled 
climate change is generally incorrect. This is evident in 
the trends presented in the uncorrected model—as it 
constantly shows no definite trend pattern. This invari-
ably affects the BC outputs trend, thereby limiting the 
efficiency of the BC methods [15].

Furthermore, due to the discrepancies in the perfor-
mance of the climate models used, the model ensemble 
mean is used to assess the spatial trend of temperature 
across the basin for the entire study period (1975–2005). 
Results show a predominantly positive trend of tem-
perature with the magnitude of trend varying between 
0.00 and 0.12 °C/year on the annual scale (Fig. 10). All 
BC methods overestimate the trends’ magnitude with 
values between 0.03 and 0.09 °C/year in most parts of 
the basin. For the dry season (Fig. S15), PQM and MBCN 
accurately represent the trend with the magnitude of 
the trend between 0.03 and 0.09 °C/year. However, there 
are some overestimations in the spatial representation 
of some parts of the basin. Other multivariate methods 
overestimate the trends’ magnitude in most parts of the 
basin. Only MBCR accurately replicates the trend and 
magnitude of the trend of between 0.02 and 0.1 °C/year 

of wet season temperature in some parts of the basin 
(Fig. S16). Other BC methods overestimated the magni-
tude of the trend by at least 0.04 °C/year.

4.6.2  Future distribution of maximum temperature 
and trend

Figure 11a–c shows the spatial distribution of the trend of 
maximum temperature for the future under RCP 4.5. There 
is an evident positive trend in annual temperature in the 
basin with a magnitude between 0.00 and 0.12 °C/year. For 
the dry season, the trend remains positive with an excep-
tion of the area close to the Lake Chad. The magnitude is 
between − 0.04 and 0.12 °C/year, but the high magnitude 
of between 0.08 and 0.12 °C/year is seen in the middle 
part of the basin. For the wet season, a high magnitude of 
between 0.08 and 0.16 °C/year is dominant in the basin. 
In comparison with the historical period for all seasons, 
there is a slight decrease in the magnitude of the trend 
in the southern part of the basin (from − 0.02 to − 0.04 °C/
year), while there is an increasing magnitude (from 0.06 
to 0.12 °C/year) in other parts of the basin. However, low 
magnitudes are present in the south of the basin for every 
season.

Fig. 10  Spatial comparison of 
annual maximum temperature 
trend (positive/negative) and 
magnitude of trend (°C/year) 
of Ensemble RCMs mean for 
historical period between 1975 
and 2005. a Observation, b 
raw RCMs ensemble mean, c 
empirical quantile mapping 
bias-correction method, d 
parametric quantile mapping 
bias-correction method, e 
multi-bias-correction method 
using N-dimensional probabil-
ity density function transform, 
f multi-bias-correction method 
using Spearman rank correla-
tion dependency, g multi-bias-
correction method using Pear-
son correlation dependency



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1221 | https://doi.org/10.1007/s42452-020-3009-4

Figure 11d–f shows the spatial distribution of annual, 
dry season and wet season maximum temperature, respec-
tively, for the future under RCP 4.5. There is an evident 
25.00 to 33.70 °C temperature range in the south-western 
end of the basin. However, the annual temperature ranges 
from 25.00 to 45.37 °C. This is a significant increase when 
compared to the historical period (26.00–38.00 °C) (Fig. 
S8). The dry season temperature ranges between 25.00 
and 42.50 °C as against the historical temperature range 
of 28.70 and 35.50 °C (Fig. 7). For the wet season, the tem-
perature ranges do not differ from the historical period 
(25.00–36.60 °C). Likewise, the spatial spread of these tem-
perature ranges differs from the historical to the future 
period.

Under RCP 8.5, the spatial distribution of the trend 
and magnitude of the trend of maximum temperature 
between 2020 and 2050 (Fig.  12a–c) show a positive 
annual trend and the magnitude is between 0.00 and 
0.18 °C/year. This is 0.12 and 0.06 °C/year more than the 
historical period and future period under RCP 45, respec-
tively. The dry season shows a negative trend of between 
− 0.06 and 0.00 °C/year towards the Sahelian end of the 

basin, while the other parts of the basin have a magnitude 
of between 0.00 and 0.18 °C/year. The wet season shows 
no negative trend but exhibits the highest magnitude of 
the trend of between 0.00 and 0.24 °C/year. This is 0.14 and 
0.08 °C/year more than the historical period and future 
period under RCP 45, respectively.

The spatial distribution of annual maximum tempera-
ture (Fig. 12d) shows a temperature range of between 
26.00 and 43.15 °C. The dry season temperature (Fig. 12e) 
ranges from 26.00 to 45.60 °C, while the wet season tem-
perature (Fig. 12f ) ranges from 26.00 to 35.80 °C. Whilst 
there is an increasing temperature for annual and dry sea-
son when compared with the historical period and future 
period under RCP 4.5, the wet season shows a decreasing 
temperature. For example, the wet season temperature 
for historical period varies from 25.30 to 36.50 °C; for the 
future period under RCP 4.5 it varies between 25.00 and 
36.60 °C, while for RCP 8.5 it varies between 26.00 and 
35.80 °C. While there is an increasing temperature at the 
south-western part of the basin, the other parts of the 
basin show relative decreasing temperature.

Fig. 11  Spatial distribution of maximum temperature trend (positive/negative), magnitude of trend (°C/year) (a–c) and maximum tempera-
ture (°C) (d–f) for future period between 2020 and 2050 under RCP 4.5 using MBCN



Vol.:(0123456789)

SN Applied Sciences (2020) 2:1221 | https://doi.org/10.1007/s42452-020-3009-4 Research Article

Even though the uncertainties connected with the use 
of climate models cannot be under-emphasised for impact 
studies, this study attempts to reduce the range of uncer-
tainty by using the model ensemble mean as well as other 
participating individual models.

5  Discussion

In evaluating the different BC methods for maximum 
temperature distribution correction, MBCN performs 
best during the dry season for all models, while there are 
mixed performances between the multivariate BC and the 
models for the annual and wet periods. Additionally, the 
performances of these BC methods vary for different cli-
mate models. Although the BC methods aim to remove 
historical biases relative to observation [24], there are 
still some residual errors which could be attributed to the 
internal variability of climate models that differ from the 
observation [41]. As emphasised by Cannon [24], large-
scale circulation biases that cannot be adjusted usually 
limit the efficiency of bias-correction techniques. Also, the 

multivariate BC methods do not preserve but modify the 
climate model output temporal sequence (i.e. breaking the 
temporal consistency) while aiming to restore some prop-
erties of the climate model time series. This modification is 
necessary for correcting the multivariate joint dependency 
structure [18]. In observing the joint dependency structure 
between variables, the multivariate BC methods show low 
RMSE values, indicating the ability of these methods in 
preserving the joint dependency structure.

In assessing the monthly variability of temperature, 
the EQM performs well in hot months, whereas PQM and 
MBCN perform well in replicating the monthly variability. 
The performance of MBCN agrees with Cannon [23] who 
reported that MBCN outperforms other multivariate BC 
techniques for all seasons except in autumn. However, 
Cannon [23] bias-corrected precipitation and argued that 
the poorer performance in autumn could be attributed to 
sampling variability in the calibration sample. In assessing 
the spatial distribution of temperature variability, there is 
an increasing annual temperature from the Savanna to the 
Sahelian part of the basin. This agrees with Funk et al. [42] 
and Adeyeri et al. [7, 25] who reported separately that the 

Fig. 12  Spatial distribution of maximum temperature trend (positive/negative), magnitude of trend (°C/year) (a–c) and maximum tempera-
ture (d–f) for future period between 2020 and 2050 under RCP 8.5 using MBCN
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southern edges of the Sahel have the coolest air tempera-
ture. Since the BC methods aim to adjust some particular 
aspects of climate models [41] (e.g. spatial, multivariate, 
temporal and marginal aspects), it is evident that the cli-
mate change signal of the considered aspects is well rep-
resented after bias-correction. In the dry season, the mul-
tivariate methods overestimate in the Sahelian parts of the 
basin. However, the coldest part of the basin is accurately 
replicated. For the wet season, the EQM method overesti-
mates in the Sahelian end of the basin.

For the historical trend and magnitude of trend, there is 
a positive trend of annual, dry and wet period temperature 
in most parts of the basin. This could be connected to the 
warming of the northern Atlantic Ocean and the Mediter-
ranean [25, 43].

However, a small portion of the basin exhibited a vary-
ing degree of negative trend in the wet season. In general, 
the MBCN and MBCR capture these trends relatively well 
in dry and wet seasons, respectively.

Particularly, the MBCN unlike other multivariate bias-
correction algorithms is not limited to specified measure 
correction of joint dependence (e.g. Spearman rank corre-
lation) neither does it assume stationarity in the temporal 
sequence of climate models [24]. Nevertheless, it exhibits 
strong convergence properties using the N-dimensional 
probability density function transform algorithm [44]. 
However, the convergence of MBCR and MBCP (based on 
ranked correlation dependence structure) to the targeted 
multivariate distribution occurs faster than MBCN.

For the future under RCP 4.5, the positive trend contin-
ues for all seasons, however, with increased magnitudes. 
Conversely, when compared with the historical period, 
there is a slight decrease in the magnitude of trend in 
the southern part of the basin, while the northern parts 
(Sahelian part) have increased magnitude. Under RCP 8.5, 
the spatial distribution of the trend and magnitude of the 
trend of maximum temperature shows a more intense 
annual temperature. These uniformities could be related 
to the representative concentrated pathway emission sce-
narios, demonstrating the connection between potential 
environmental impacts and anthropogenic greenhouse 
gas emissions. In contrast to the historical temperature 
and RCP 4.5, the dry season shows a negative trend 
towards the Sahelian end of the basin. However, the high-
est magnitude of trend is observed during the wet season. 
Berg et al. [45] argued that increased temperature in the 
wet season could be attributed to drying soil processes. 
On the effect of rising temperature on agriculture and its 
produce, pastures to feed livestock may be limited, crop 
yield may reduce drastically and the severity droughts 
may be intensified [46]. On the other hand, the warm-
ing climate will intensify the effects of drought on water 
demand and supply by natural systems and humans [47]. 

Additionally, high temperatures could intensify convective 
precipitation especially in areas like the study area where 
the ocean plays an important role in driving [25, 45]. This 
coupled with human activities has modified the basin’s 
hydrological systems and regimes, thereby affecting the 
food chain balance, water quality and river’s biodiversity 
in the basin [25, 26, 40]. Therefore, there is a need for an 
accurate understanding of the historical climate as well 
as a correct representation of the future basin’s hydro-
climatological features.

6  Conclusion

This study compares multiple bias-correction tech-
niques using eight climate models and their ensemble 
mean for the historical period (1975–2005) and future 
(2020–2050) over the KYB for annual, dry and wet peri-
ods. The historical period is divided into calibration 
(1975–1990) and validation (1991–2005) periods. The 
BC methods adopted are the univariate EQM and PQM 
as well as the multivariate MBCN, MBCP and MBCR. 
Mostly, the uncorrected model output performs poorly 
in replicating the site-specific temperature variability 
and observed trend over the basin for all seasons. How-
ever, the BC model provides a worthy output similar to 
the observation which buttresses the need for correct-
ing biases in climate models before it can be used for 
impact studies [48]. Overall, the multivariate methods 
correct the dependence structure of variables, thereby 
providing a general-purpose methodology to the cli-
mate community. Although the MBC methods correct 
the inter-variable dependence structure, due to its 
complex algorithm and iteration sequence, it is time-
consuming and computationally expensive. For exam-
ple, the MBCN is computational more expensive than the 
other multivariate BC methods, as many iterations are 
required to converge the distribution to the observed 
multivariate distribution [24]. In MBCP, bias-correction 
is done by iteratively correcting the univariate distribu-
tion and the inter-variable correlations, until the correla-
tion coefficient between the model and observation is 
acceptable. Even though the multivariate BC is compu-
tationally expensive, it can be used directly in downscal-
ing applications [23] as against critiques on univariate 
quantile mapping (e.g. Maraun [14]). Furthermore, the 
energy distance provides concise information on the 
performance and stability of multimodel-multivariate 
BC method and is recommended for picking between 
models and BC algorithms. Beyond these specifics of 
this present study, more regional climate simulations 
with improved physical schemes should be adopted to 
reduce doubts and inconsistencies in model outputs. 
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Additionally, explicit multiple time scales bias correction 
of climate models should be incorporated. Furthermore, 
the performances of these BC methods on the basin’s 
hydrological components should be investigated.
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