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Abstract
Faults detection and isolation is a major issue for a large variety of manufacturing systems because such systems combine 
operations performed by several machines and use some common resources. The failure of a single machine slows down 
or even stops the whole system. This paper is about some specific insidious faults—namely temporal drifts—that affect 
manufacturing systems with mass production. Such temporal drifts are studied in a probabilistic setting by modeling 
the operation durations with random variables and by considering significant variations of the probability density func-
tion of these variable as the faults to be detected and isolated. Labeled stochastic timed Petri nets are used to model 
the considered systems and faults. A new class of observers—namely elementary trajectory observers—that estimate 
characteristic segments of the state trajectory is developed. Then, moving average control charts and observers are 
combined in order to detect the variations of the firing durations mean values. The proposed analysis is suitable to detect 
variations in the mean value of the operation durations when parameters vary gradually. It is also suitable to isolate the 
faults thanks to a set of minimal-size elementary trajectories consistent with the successive measurements. Detection 
and isolation decision functions are proposed, and the approach is illustrated on an example.
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1  Introduction

Fault detection and diagnosis is an important challenge 
for many systems, in particular manufacturing systems. 
On the one hand, fault detection consists in generating 
an alarm once a fault is detected based on the available 
measurements. On the other hand, fault diagnosis consists 
in isolating the detected fault among a set of fault candi-
dates [1]. Fault detection and diagnosis methods may be 
separated into model-based and data-based approaches. 
Model-based approaches have been intensively studied 
for continuous time systems [2] and also for discrete event 
systems [3, 4]. Among model-based approaches, numer-
ous methods are based on the design of an observer. The 
aim of such an observer is to estimate the system state. 

In the context of faults diagnosis, the state estimation is 
compared to the measurements to track the occurrence 
of faults. With continuous time systems, observers serve 
to generate residual signals that reveal the occurrence of 
faults when these signals become significantly different 
from zero [2]. With discrete event systems, the faulty states 
are mainly incorporated in the model [1] and the observer 
is transformed into a diagnoser that tags each possible 
state as normal or faulty. Consequently, state estimation 
leads directly to fault diagnosis. Diagnosis methods based 
on observers have been first developed for finite state 
automata [5], stochastic automata [6], and timed automata 
[7]. Then, methods have been extended to Petri nets [8, 
9]. The previous methods are mainly devoted to logical 
faults (i.e., some unexpected events). Among data-based 
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approaches, the use of statistical control charts has been 
successfully used in many application domains and in par-
ticular to detect and diagnose operation faults in manufac-
turing systems [10–12]. One limitation of such approaches 
is that they consider the systems according to an atomic 
point of view and consequently focus on specific opera-
tions. But, the advantages of such methods are efficient 
for temporal faults (i.e., unexpected changes in the occur-
rence frequency of some events). One contribution of this 
work is to combine a discrete event observer with control 
charts in order to reveal timed drift (due, for example, to 
unexpected delays) in timed discrete event systems.

From a high-level point of view, manufacturing systems 
are basically modeled as discrete event systems (DES) that 
are pure logical models [2, 3]. In order to incorporate tem-
poral specifications [13], DES can be enriched by adding 
time stamps or some information that represent the tem-
poral evolution of the systems. Petri nets (PN) have dem-
onstrated their ability to model such specifications and 
present numerous advantages. They are ready to perform 
qualitative and quantitative analysis of the systems thanks 
to their underlying mathematical structure; they can be 
directly converted into simulation models; in addition, 
they are graphical, easy to develop, extend, and offer a 
good understanding of the dynamic behavior of the sys-
tems. In particular, activities, resources, and constraints of 
a manufacturing system can be represented in a single 
consistent formulation. In the context of manufacturing 
systems, a large variety of PN subclasses have been listed 
and discussed, in particular to solve scheduling problems 
[14]. Some examples of these subclasses of models are sys-
tems of simple sequential processes with resources (S3PR) 
[15], systems of sequential systems with shared resources 
(S4R) [16] proposed for job-shop problems (that consist of 
several operations with total precedence constraints), and 
sets of simple open processes with resources (S2OPR) [17] 
proposed for open-shop problems (that consist of several 
jobs with full routing flexibility within the operations). In 
order to add flexibility at the operation level, colored Petri 
nets have been also used to model manufacturing sys-
tems [18], in particular for control applications [19]. A few 
applications are also devoted to diagnosis issues [20], but 
the extension of colored nets applied to temporal faults 
remains to the best of our knowledge an open question.

In this article, we aim to apply the principles of statis-
tical control charts to timed DES in order to extract sig-
nificant information about potential faults from hetero-
geneous measurements collected in different parts of the 
system. In particular, we propose to use a moving average 
(MA) control chart to detect and diagnose faults of manu-
facturing systems that are modeled as stochastic DES with 
labeled timed Petri nets (LTPN) [8]. LTPN are characterized 
by deterministic timed transitions that fire after constant 

durations and also stochastic timed transitions that fire 
according to probability density functions (PDF) of finite 
supports. LTPN encode the system sensors as a measure-
ment function that define the measurements collected 
when observable events occur. The considered faults cor-
respond to significant variations of the PDF supports that 
define the stochastic firing durations. For detection and 
isolation purposes, MA control charts [21] are combined 
with observers that compute the set of trajectories consist-
ent with the observation collected thus far. For this pur-
pose, the MA control charts smooth the successive meas-
urements and compare these measurements with some 
thresholds. In particular, the proposed observers provide a 
set of minimal-size elementary trajectories (MSET) consist-
ent with each new measurement. The MSET are also used 
for fault isolation (or diagnosis) by identifying the suspi-
cious transitions for which the mean firing durations are 
outdated. Detection and isolation functions are proposed 
as a result of the approach. This approach is applicable 
when large sets of transition firing durations are collected. 
In contrast with many other diagnosis approaches, main 
advantages of the proposed approach are: (1) to detect 
and isolate temporal faults that only affect the mean 
duration of some activities (such faults are more or less 
undetectable to the main existing diagnosis methods as 
in [5–8, 22]); (2) to be applicable with a large variety of 
time processes; (3) to be suitable also for slow deviations 
and gradual drifts; (4) to reduce the number of sensors 
and consequently the cost of the sensoring (compared to 
approaches used at the level of the workstations): For an 
appropriated sensor configuration, it becomes possible 
to detect various faults; (5) to avoid the computation of 
the trajectory probabilities that is very expensive in time 
and space [23]. The current work continues our preliminary 
study on slow deviations of firing durations [24]. More pre-
cisely, in [24] we have proposed a simple method to use 
control charts for manufacturing systems based on the 
decomposition of the system with some specific paths. The 
main limitation of that former approach is that it is only 
suitable for 1-bounded nets (i.e., systems where a single 
operation is performed at each time and where multiples 
products cannot circulate simultaneously). The main con-
tribution of the present paper is to introduce a new class 
of observers that track the recent trajectories in the state 
space for system where several operations and products 
may be simultaneously considered.

The rest of this document is organized as follows: In 
Sect. 2, tools and useful definitions are introduced. In 
Sect. 3, the working assumptions and the model of the 
temporal faults are detailed. Section 4 provides a detailed 
explanation of the observer design. Section 5 describes 
the detection and diagnosis functions used to generate 
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alarms and to isolate the faulty transitions. Section 6 sums 
up conclusion and future works.

2 � Definitions and notations

2.1 � Notations

Table 1 explains the notations and acronyms used in the 
rest of the paper.

2.2 � Timed Petri nets

A PN structure is defined as PN =
⟨
P, T ,Wpr,Wpo

⟩
 , where 

P = {P1,… , Pn} is a set of n places, T = {T1,… , Tq} is a set 
of q transitions, Wpr ∈ (�)n×q and Wpo ∈ (�)n×q are the pre- 
and post-incidence matrices (N is the set of nonnegative 
integer numbers), and W = Wpo −Wpr is the incidence 
matrix. ⟨PN,MI⟩ is a PN system with initial marking MI, and 
M ∈ (N)n represents the PN marking vector corresponding 
to the number of tokens in each place. A transition Tj is 

enabled at M if M ≥ Wpr(∶, j) , where Wpr (:, j) stands for the 
column j of matrix Wpr. When Tj is enabled at M, we write 
M [Tj〉, and then, Tj may fire. When Tj fires once, the marking 
varies according to ΔM = M� −M = W(∶, j) . This is denoted 
as M [Tj〉 M′, and T (M,M�) ⊆ T  is defined as the subset of 
transitions such that M[T〉M′. If σ is a sequence of several 
firings, feasible at M, then one can write M[σ〉M′ and X(σ) 
refers to the firing count vector of σ. For systems with a 
finite number N of states, R and G are, respectively, the set 
of reachable markings and the generator matrix (i.e., G is a 
matrix of dimension N × N such that the entry g(M, M′) ∈ G 
is the transition T such that M [T〉 M′) of the reachability 
graph of the net system 〈PN, MI〉.

As far as time is considered, the basic logical PN model 
can be extended to include the time stamps. Time is meas-
ured with time units (TU) and can be associated with the 
duration of the transitions firing or with the sojourn of the 
tokens in the places. In this paper, the time is associated 
with the transitions and we refer to such extension of PN 
as timed-transition Petri nets (TPN): The firing of each tran-
sition T occurs after a time d that is either deterministic 

Table 1   Abbreviations and notations

Abbreviation Description

DES Discrete event system
PN Petri net
TPN Timed-transition Petri net
LTPN Labeled timed-transition Petri net
ETO Elementary trajectory observer
PDF Probability density function
MSET Minimal-size elementary trajectories
MA Moving average

Notation Description

P Set of Petri net places
T Set of Petri net transitions
E Set of observable labels
Wpo, Wpr, W Post-, pre- and incidence matrices
M Marking vector
MI Initial marking
Ω Weight vector with firing probability of each transition
L Labeling function
σ A given sequence
(MO, MD, σ) A given trajectory
UNXPL Set of unexplored trajectories already obtained
Robs Set of ETO states
Gobs Generator matrix of the ETO
S A set of trajectories that form an ETO state
SO(S) Set of the origin markings to state S
SD(S) Set of the destination markings from state S
N′ET Number of MSET in all states of the ETO
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(d has a constant value) or stochastic (d is a random vari-
able (RV) with a PDF f(d)) [25]. When d is deterministic, its 
value is either strictly positive or can eventually be zero. 
In that case, the firing is said to be immediate; in the other 
cases, it is said to be delayed. When d is stochastic, the 
firing times are distributed according to an arbitrary PDF 
that is assumed to have a finite support. In addition, this 
support is known for each transition. In the next, we will 
consider TPN with stochastic firing durations with two par-
ticular types of PDF: uniform PDF on finite support (Fig. 1 
left) and symmetrical triangular PDF (Fig. 1 right) defined, 
respectively, with Eqs. (1) and (2):

The time semantic of the considered TPN [26, 27] is com-
pleted by defining the server, choice, and memory policies:

a.	 The servers are single server.
b.	 The choice policy is a preselection policy. Such a policy 

is used in case of effective conflicts. In such situations, 
the next transition is randomly chosen from all cur-
rently enabled transitions according to a uniform PDF 
and a set of weights ωj, j = 1,…,q associated with the 
transitions. The weight vector Ω = (ωj) ∈ (R+*)q (R+* is 
the set of strictly positive real numbers) determines 
the firing probability of each transition. For simplicity 
and without any loss of generality, ωj = 1, j = 1,…,q, in 
the rest of the paper and the firing probability of the 
transitions in conflict is identical.

c.	 The enabling memory is a memory policy. With such a 
policy, at each firing, the residual durations associated 
with still enabled transitions are decremented and the 
residual durations associated with disabled transitions 
are reset.

A timed firing sequence is defined as σ = T(j1, t1) T(j2, t2) 
… T(jh, th) with T(jk, tk) ∈ T, k = 1,…,h being the transitions 
that consecutively fire in the sequence σ. The integers jk 

(1)
f (d) = 1∕(b − a) if d ∈ [a, b]

f (d) = 0 otherwise

(2)
f (d) = 4∕(b − a)2 ⋅ (d − a) if d ∈ [a, (a + b)∕2]

f (d) = 4∕(b − a)2 ⋅ (b − d) if d ∈ [(a + b)∕2, b]

f (d) = 0 otherwise

are the indexes of the transitions that successively fire, 
the times tk are the time stamps of the successive firings 
and h is the length of σ. In addition, a timed trajectory is 
defined as (M(t0), M(th), σ) = M(t0)[T(j1, t1)〉 M(t1) … [T(jh, th)〉 
M(th), from marking M(t0) at time t0 to marking M(th) at 
time th according to the timed firing sequence σ. Making 
abstraction of the timing information, a firing sequence is 
defined as σ = T(j1) T(j2) … T(jh) with T(jk) ∈ T, k = 1,…,h and 
a trajectory is defined as (M(0), M(h), σ) = M(0)[T(j1, 1)〉 M(1) 
… [T(jh, h)〉 M(h).

Example 1  Figure  2 is an example of TPN with a set 
of places P =

{
P1,… , P8

}
 and a set of transitions 

T =
{
T1,… , T6

}
 . Matrices WPR,WPO are both of dimensions 

8 × 6. For example, WPR(1, 1) = WPR(7, 1) = WPO(2, 1) = 1 
describes how transition T1 is connected to the rest of 
the net. The initial marking MI in this example is such that 
MI =

(
n1 0 0 n2 0 0 r1 r2

)T
 with n1, n2, r1, r2 ∈ N* (the set of 

strictly positive integer numbers). The transitions T1 and 
T4 are enabled at MI . The firing durations in this TPN are 
stochastic and defined with a set of uniform PDF of sup-
port [ai, bi], i = 1, …, 6. The values of ai and bi are reported 

Fig. 1   PDF of the transition 
firing durations: bounded 
uniform PDF (left); symmetrical 
triangular PDF (right)

Fig. 2   An example of manufacturing system modeled with a TPN
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in Fig. 2 so that “ T1 ∶ [2.7, 3.3] ” means that transition T1 
needs a time d1 that is uniformly distributed within the 
time interval [2.7, 3.3] before it fires. For the values n1 = 1, 
n2 = 1, r1 = 2, and r2 = 2, the system owns nine reachable 
markings and no deadlock. Increasing n1, n2, r1, r2 increases 
the number of reachable markings. When r1 < n1 + n2 or 
r2 < n1 + n2, deadlocks appear. For n1 = 1, n2 = 1, r1 = 2, and 
r2 = 2, an example of timed firing sequence enabled at MI 
is σ = T(4, 2.8) T(1,3.1) T(5,3.8) T(2,4.2). The corresponding 
timed trajectory is (M(0), (4.2), σ) = M(0) [T(4, 2.8)〉 M(2.8) 
[T(1, 3.1)〉 M(3.1) [T(5,3.8)〉 M(3.8) [T(2,4.2)〉 M(4.2) with 
M(0) = MI = (1 0 0 1 0 0 2 2)T and M(4.2) = (0 0 1 0 0 1 1 1)T.

2.3 � Labeled timed Petri nets

The transitions of the net are basically separated into 
observable transitions that deliver a label and silent ones 
that do not. L: T → E ∪ {ε} is a labeling function that assigns 
a label to each transition where E = {e1,…,eqo} is the set of 
qO labels that are assigned to observable transitions and ε 
is the null label that is assigned to the silent ones.

Labeled timed Petri nets (LTPN) are finally defined as 
<PN, PDF, Ω, L, MI> where PN is a Petri net structure, PDF is 
a set of density probability functions, Ω is a set of weights, 
L is the measurement function that defines the sensor con-
figuration and MI is the initial marking. The measurement 
of any trajectory is obtained according to the selected 
sensor configuration. The function L collects the K succes-
sive dated measurements of a timed trajectory (σ, MI) over 
time interval [t0, tp]. These measurements are organized in 

a measured trajectory: TRo = L(σ, MI) = (e1, τ1) … (eK, τK) that 
will be analyzed in the next section to detect and isolate 
temporal faults.

Example 2  Consider again the TPN in Fig. 2 with n1 = 1, 
n2 = 1, r1 = 2, and r2 = 2. Assume that transition T3 delivers a 
label a when T3 fires and similarly that transition T6 deliv-
ers b when T6 fires. The other transitions are assumed to 
be silent. Consequently, the labeling function is defined 
as L(T3) = a, L(T6) = b, and L(Tj) = ε, for j = 1, 2, 4, 5. With the 
addition of the labeling function, the TPN is now a LTPN. 
Figure 3 reports the observations captured by the labe-
ling function when the LTPN works during a period of 100 
time units (TU). According to the labeling function, only 
the complete execution of the cycles {T1, T2, T3} and {T4, T5, 
T6} is detected. Figure 3 top reports the number of execu-
tions of cycle {T1, T2, T3} in red light (resp. cycle {T4, T5, T6} in 
blue dark) with respect to (wrt) time (in TU). One can notice 
that n1 = 1, n2 = 1, r1 = 2, and r2 = 2. Both cycles are executed 
at maximal speed with an average period of 6 TU (25 execu-
tions of each cycle are detected within the time window of 
width 150 TU). Figure 3 bottom reports the distributions of 
the durations of the cycles {T1, T2, T3} in light gray and {T4, 
T5, T6} in dark gray. One can notice the dispersion of these 
distributions due to the uniform pdf of the firing durations.

2.4 � Models of manufacturing systems with LTPN

From a high-level perspective, a manufacturing system 
is often considered as a workshop composed of multiple 

Fig. 3   Number of executions 
(top) of cycle {T1, T2, T3} in 
red (resp. cycle {T4, T5, T6} in 
blue) with respect to the time; 
histogram of the durations 
(bottom) of cycle {T1, T2, T3} in 
light gray (resp. cycle {T4, T5, T6} 
in dark gray)
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jobs where each job consists of a set of operations per-
formed on several resources. Sensors are used to detect 
the achievement of some operations.

•	 Each operation oj is modeled by a transition Tj, an input 
buffer represented by a place and an output buffer rep-
resented by another place (that may be in the same 
time the input buffer of the next operation of the job 
when intermediate buffers do not exist). The duration 
of oj is represented by the firing delay dj of Tj. The defi-
nition of the firing delay as a stochastic distribution is 
suitable to take into account some uncertainties in the 
execution of the operations.

•	 A set of resources Rj is generally required to perform 
each operation oj. Each type k of resource is repre-
sented by a specific place with an initial marking rk that 
indicates how many resources of type k are available to 
perform the different operations. The resource place 
is simultaneously in the preset and postset of Tj (and 
can also belong to the preset and postset of other tran-
sitions to model resources that are shared by several 
operations).

•	 Sensors are used to measure the activities in the work-
shop. The labeling function collects particular labels 
when some transitions fire and these labels give the 
information that the corresponding operation is 
achieved. Note that improved strategies for data collec-
tions have been investigated (see, for example, cloud 
infrastructure-based methods which collect data in real 
time from intelligent devices [28]) and can be used for 
the same purpose.

In addition, a supervisor may be added to remove some 
forbidden markings (for example to avoid the deadlock 
markings).

Example 3  Consider again the TPN in Fig. 2. This net is the 
model of a manufacturing system with two jobs. The first 
job J1 consists in three operations {o1, o2, o3} that are mod-
eled with the transitions T1, T2, and T3. The second job J2 
consists in the operations {o4, o5, o6} that are modeled with 
the transitions T4, T5, and T6. The lot size (i.e., the number 
of products that are simultaneously accepted by the job) 
for J1 (resp. J2) is given by the initial marking of the place P1 
(resp. P4). Two types of resources are required to perform 
the operations, and the initial marking (r1 and r2) of the 
places P7 and P8 gives the number of resources of each 
type. The resource r1 is needed to perform the operation 
{o1, o2} and {o5, o6}. Similarly, the resource r2 is needed to 
perform the operation {o2, o3} and {o4, o5}. No supervisor 
has been considered in this example. The labeling func-
tion introduced in Example 2 gives the information that 
operation o3 and consequently job J1 are performed when 

a label a is detected, whereas it gives the information that 
operation o6 and job J2 are performed when a label b is 
detected. Consequently, Fig. 3 top can be interpreted as 
the number of executions of job J1 in red light (resp. J2 
in blue dark) and Fig. 3 bottom can be interpreted as the 
distributions of the durations of job J1 in light gray (resp. 
J2 in dark gray).

3 � Faults modeling and control charts

3.1 � Assumptions

Assumptions 1–8 will be considered in the next:

1.	 The LTPN are bounded, and consequently, the set R 
and generator matrix G are of finite dimensions.

2.	 T(M, M′) is at most of cardinality 1, for any pair of mark-
ings M, M′ ∈ R.

3.	 The silent part of the considered LTPN is acyclic.
4.	 The system parameters, the PDF of the stochastic firing 

durations, and the net initial marking are assumed to 
be known.

5.	 The time semantic is defined according to single 
server, preselection, and enabling memory policies.

6.	 The temporal faults correspond to significant varia-
tions of the PDF support (with respect to the meas-
urement errors).

7.	 Single faults are considered.
8.	 The type of the PDF is not affected by the faults.

Assumptions 1–4 are usual assumptions needed to 
design observers for labeled Petri nets [8, 9]. In particular, 
Assumptions 1 and 3 ensure that a finite size determin-
istic observer exists. Assumption 2 is stated for simplic-
ity and may be relaxed as the knowledge of initial mark-
ing (Assumption 4). Then, Assumptions 5–8 are required 
to obtain significant residuals for the temporal faults. 
Assumption 5 describes the time semantic specifications 
and is frequently used for timed stochastic discrete event 
systems [27]. Assumption 7 is also a common assumption 
for fault isolation [2]. Finally, Assumptions 6 and 8 restrict 
the class of considered temporal faults in order to make 
the approach tractable.

3.2 � Support variation of the PDF

The firing durations of the transitions are random vari-
ables defined by their PDF. The core of the approach is to 
detect and characterize the PDF support variations accord-
ing to the variation of the firing durations mean value. 
Such a variation is captured by a control chart as illustrated 
in Fig. 4. In particular, Fig. 4 left shows a translation for a 
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bounded uniform PDF and Fig. 4 right shows a translation 
for a symmetrical triangular PDF. The original PDF has a 
support [ac, bc] and a mean value mc, whereas the resulting 
PDF has a support [am, bm] and a mean value mm.

From the perspective of manufacturing systems, the 
time drifts represented in Fig. 4 concern the operation 
execution times. In a given workshop, delays may occur 
due to an accumulation of atomic unexpected behaviors. 
In many cases, the occurrence and increase in such delays 
are the symptom of dysfunctions in the system.

Example 4  Consider again the TPN in Fig. 2 as the model 
of a manufacturing system with two jobs and the labeling 
function introduced in Example 2. Assume that a time drift 
of more or less 1% affects the duration of operation o3. 
The sensoring of the system remains unchanged. Figure 5 
top reports the number of executions of job J1 in red light 
(resp. J2 in blue dark) for this situation. Observe that the 
job J1 gradually slows down, whereas the makespan of J2 

is not affected by the dysfunction. In addition, Fig. 5 bot-
tom reports the distributions of the durations of job J1 in 
light gray (resp. J2 in dark gray) and one can notice that 
the dispersion of job J1 durations increases with respect 
to the time. This example illustrates how time drifts may 
affect the makespan of the manufacturing systems and 
how such time drifts could be tracked with LTPN models.

3.3 � Detection of the PDF support variation 
with control chart

The firing durations of a given transition T are initially dis-
tributed according to the PDF of known support [ac, bc]. A 
variation of this PDF support is deducted by the calculation 
of the mean and the standard deviation of the durations 
of N consecutive firings for the same transition. Then, the 
new PDF support [a, b] can be computed. The support [a, 
b] of a bounded uniform PDF is computed from the mean 
m and the standard deviation σ of this PDF by Eq. (3) [24]:

Fig. 4   Support variation of a symmetrical triangular (left) and bounded uniform (right) PDF

Fig. 5   Number of executions 
of job J1 in red (resp. J2 in blue) 
with respect to the time (top); 
histogram of the durations of 
job J1 in light gray (resp. J2 in 
dark gray) when a temporal 
drift affects the duration of 
operation o3
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In a similar way, the support [a, b] of a symmetrical trian-
gular PDF is computed from the mean m and the standard 
deviation σ of this PDF by Eq. (4) [24]:

A MA control chart aims to detect the variations in the 
average of a data series. For this purpose, N consecutive 
measurements collected by the sensors of the system are 
saved and some computations are proposed for these his-
tories of data. In particular, lower and upper thresholds δ 
and Δ are defined according to the desired tolerances of 
the system. Then, a fault is detected in case of violation of 
the thresholds. A time window of variable size that con-
tains N consecutive values of the firing duration associated 
with a given transition T is considered, and the mean value 
MA(dn) of the N firing durations dn−N+1,…,dn is computed. 
For n > N, an updating of MA(dn) is obtained with Eq. (5):

The detection thresholds δ and Δ define the acceptable 
variations of the mean value: The system is assumed to 
have a fault-free behavior as long as MA(dn) ∈ ]δ, Δ[; other-
wise, it is assumed to have a faulty behavior. Consequently, 
the thresholds are selected in order to fulfill some desired 
performance with respect to safety requirements. A usual 
method is to compute these thresholds according to 
mean m and standard deviation σ of the firing durations 
of T measured during nominal (i.e., fault-free) behavior: 
Δ = m + γ·σ and δ = m − γ·σ where γ is an input parameter.

4 � Observer design

4.1 � Elementary trajectory observer design

In this section, elementary trajectory observers for LTPN 
are detailed to track the trajectories consistent with the ini-
tial marking and the successive measurements. The design 

(3)
a = m−� ⋅ (3)1∕2

b = m + � ⋅ (3)1∕2

(4)
a = m−� ⋅ (6)1∕2

b = m + � ⋅ (6)1∕2

(5)MA(dn) = MA(dn−1) +

(
dn − d(n−N+1)

)

N
if n > N

of such observers is motivated by the fact that the tempo-
ral fault of a given transition will affect the durations of the 
sequences in which this transition occurs. An elementary 
trajectory observer (ETO) that computes all elementary tra-
jectories (i.e., trajectories between two consecutive meas-
urements) consistent with the measurements observed 
thus far is obtained with Algorithm 1. This algorithm aims 
to design in an iterated way all trajectories that are feasible 
at a given marking. Then, it projects the firing sequence of 
the trajectory within the set of observable labels. Only the 
trajectories that coincide with the sequence of observa-
tions collected thus far are saved for diagnosis issues. As 
far as the number of consistent trajectories will necessarily 
grow with respect to the number of successive collected 
observations, only elementary trajectories between two 
successive observations are considered. This motivates the 
design of the ETO. This algorithm uses the labeling func-
tion L and a list of unexplored states UNXPL. It returns the 
set RTO of observer states and the generator matrix Gobs of 
the ETO. Each state S of ETO is composed by a set of trajec-
tories tr = (MO, MD, σ) where MO is an origin marking, MD is 
a destination (final) marking and σ is a logical (i.e., making 
abstraction of the timing information) feasible sequence 
from MO to MD (i.e., MO [σ〉  MD) that satisfies: σ = σ′T with 
L(σ′) = ε and L(T) = e (i.e., σ is consistent with a given label e 
and has no silent closure). Consequently, by construction, 
all edges arriving in a given state of the elementary tra-
jectory observer will be tagged with the same label. Note 
that a given origin marking MO (resp. a given destination 
marking MD) can appear in several elementary trajecto-
ries associated with the same state. From S, it is easy to 
compute the set SO(S) of origin markings and the set SD(S) 
of destination markings. The set SD(S) represents also the 
set of the current markings consistent with the measure-
ment. The states are stored in Robs. Each entry gobs(S, S′) of 
Gobs is composed by the label that is measured when the 
observer state varies from S to S′.
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Proposition 1  Consider a LTPN < PN, PDF, Ω, L, MI > that sat-
isfies Assumptions 1–4. The ETO obtained with Algorithm 1 
has a finite number of states that does not exceed

The set S′ of elementary trajectories (M′O, M′D, σ′) origi-
nated from a marking M′O ∈ SD(S) and such that σ′ = σ″T 
with L(σ″) = ε and L(T) = e is computed with Algorithm 2.
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where hmax is the maximal number of consecutive silent 
transitions.

Proof 

	 i.	 A trajectory of length k includes not only a firing 
sequence of length k but also the origin and des-
tination markings, and because of Assumption 2, 
a trajectory of length 1 (MO, MD, T) is indifferently 
defined by (MO, T) or (MO, MD). Consequently, the 
total number of trajectories of length k does not 
exceed N1 = Nk+1 where N is the finite number of 
system states. Moreover, the number of states with 
trajectories of length k cannot exceed the sum of the 
combinations C1

N1
+⋯ + CN1

N1
= 2N1 − 1.

	 ii.	 According to Assumption 3, the number of consecu-
tive silent transitions is finite and cannot exceed a 
maximal number referred to as H. Consequently, 
the trajectories encoded by the observer states 
have a maximal length of H + 1 and each state of the 
observer is a combination of trajectories with length 
1 to H + 1.

The upper bound 
∑

j=1,…,H+1

�
2(N

j+1) − 1
�

 results from (i) 

and (ii).� □

Proposition 2  Consider a LTPN < PN, PDF, Ω, L, MI > that sat-
isfies Assumptions 1–4. The ETO obtained with Algorithm 1 is 
of minimal size.

Proof  First observe that the ETO is designed in an iterated 
schema: For each state S and label e, a new state S′ is cre-
ated only if the set of trajectories encoded in S′ is different 
from the set of trajectories encoded in S. Now, imagine 
a reduced observer obtained by merging two different 
states S and S′ in a single state S″. For simplicity and with-
out any loss of generality, assume that S and S′ differ only 
by a single trajectory of length k: tr ∈ S and tr ∉ S′.

In case S″ is defined so that tr ∈ S″, all trajectories that 
results in S′ have a postfix different from tr. So, tr is not 
consistent with some sequences of observation and 
the reduced ETO is no longer an elementary trajectory 
observer.

In case S″ is defined so that tr ∉ S″, there exist trajec-
tories with a postfix tr that results in S but not in S″ and 
the reduced ETO is no longer an elementary trajectory 
observer.□

∑

j=1,.…,H+1

(
2(N

j+1) − 1
)
.

Fig. 6   The LTPN system: < PN2, PDF, Ω, L, MI > of Example 5

Fig. 7   ETO for < PN2, PDF, Ω, L, MI > (for clarity labels are reported 
near to the states—all edges that reach the same state sharing the 
same label)
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Example 5  Consider the marked LTPN system < PN2, PDF, 
Ω, L, MI > in Fig. 6 with M1 = (1 0 0 0 0)T and the sensor 
configuration defined by L(T1) = e1, L(T3) = e2, L(T4) = e3 
and L(Tj) = ε for j = 2, 5, 6, 7. The reachability set of < PN2, 
PDF, Ω, L, MI > has five states: M1 = (1 0 0 0 0)T; M2 = (0 1 0 0 
0)T; M3 = (0 0 1 0 0)T; M4 = (0 0 0 1 0)T; and M5 = (0 0 0 0 1)T. 
The observer of < PN2, PDF, Ω, L, MI > has 11 states and is 
reported in Fig. 7. Note that this observer is composed of 
a transient part that corresponds to the set of states {S1, S2, 
S3} and to a steady state part that corresponds to the other 
states. The list of elementary trajectories consistent with 
each state of the ETO is reported in the second column of 
Table 2. Let us also report in column 3 the mean duration 
in nominal behavior for these trajectories. Such a mean 
duration is not calculated for the transient states for which 
only a single measurement is collected at most.

4.2 � Minimal‑size elementary trajectories

In the previous simple example, each state is associated 
with a single elementary trajectory. This is no longer the 
case for more complex systems or when the initial marking 
increases. To illustrate this difficulty, let us consider the pre-
vious example of Fig. 6 and an initial marking M1(k) = k·(1 
0 0 0 0)T that depends on k; Table 3 illustrates how the 
system size N, the observer size Nobs, and the number NET 
of elementary trajectories increase with respect to k. In 
particular, one can notice the rapid increase in NET with 
respect to k.

In order to limit this explosion of complexity, minimal-
size elementary trajectories (MSET) are introduced. A 
MSET: MO [σ〉 MD in state S is defined as an elementary 
trajectory that is matched [22, 29, 30] by all other elemen-
tary trajectories in S and originated from the same mark-
ing MO. A trajectory MO [σ′〉 M′D matches another trajec-
tory MO [σ〉 MD if σ′ contains all transitions of σ and these 
transitions respect the same precedence conditions (i.e., 
fire in the same order). In a more formal way, a sequence 
σ′ matches a sequence σ ≠ ε (one write σ ≪ σ′) if σ = σ1 σ2 
with σ1 ∈ T* (“*” denotes the Kleene star and T* is the set of 
sequences of transitions in T) and σ2 ∈ T* and there exists 
σ′1 ∈ T* and σ′2 ∈ T* such that σ′ = σ′1 σ1 σ′2 and σ2 ≪ σ′1. 
MSET(S) is defined as the set of MSET in S. MSET(S) is the 
subset of elementary trajectories of S that is matched by all 
other elementary trajectories in S that are originated from 
the same marking MO. N′ET is defined as the global num-
ber of MSET in all states of the ETO (i.e., in Robs). The idea 
behind the MSET computation is to remove the transitions 
that fire concurrently in some (but not all) elementary tra-
jectories. Such an elimination is reasonable because when 
a temporal fault affects such a transition, it will not affect 
the collected measurements. Algorithm 3 computes the 
set MSET(S) of MSET for a given state S of the ETO. In this 
algorithm, T(h) stands for the hth transition of sequence σ.

Table 2   Elementary trajectories and mean duration in fault-free 
behavior

S Elementary trajectories Mean duration

S1 – –
S2 {M1 [T1〉 M2} –
S3 {M1 [T4〉 M3} –
S4 {M2 [T2T5T1〉 M2} 7.03
S5 {M2 [T2T3〉 M4} 3.51
S6 {M2 [T2T5T4〉 M3} 8.02
S7 {M3 [T5T1〉 M2} 5.00
S8 {M3 [T3〉 M4} 1.50
S9 {M3 [T5T4〉 M3} 6.04
S10 {M4 [T6T7T1〉 M2} 8.52
S11 {M4 [T6T7T4〉 M3} 9.46

Table 3   Complexity increases 
with respect to initial marking k 1 2 3 …

N 5 15 35 …
Nobs 11 53 157 …
NET 10 664 18992 …
N′ET 10 185 1418 …
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In the elementary trajectory M3 [T5T1〉 M2, the transi-
tion T5 fires concurrently with T1, but the measurement is 
obtained when T1 fires. A fault in T5 will not affect the dura-
tion of the sequence M3 [T5T1〉 M2, and this trajectory can 
be removed. The global number N′ET of MSET is reported in 
Table 2 with respect to k, and one can notice the reduction 
of complexity, compared to NET.

5 � Detection and diagnosis

In this section, a detection and diagnosis method is pro-
posed for temporal faults. This method uses a moving 
average control chart and the ETO previously defined. It 
has three steps: (a) the computation of residuals for each 
MSET, (b) the computation of the detection function, and 
(c) the computation of the isolation function. In addition 
to Assumptions 1–4 that are needed to obtain the ETO, 

M3[T1⟩M5;

M5[T5T1⟩M4;

M7[T5T1⟩M5.

Example 6 illustrates the computation of MSET.

Example 6  Consider again the marked LTPN system < PN2, 
PDF, Ω, L, MI > in Fig. 6. If M1 = (2 0 0 0 0)T, the ETO has 53 
states and each state is composed of a set of elementary 
trajectories. Consider, for example, a particular state S 
composed of nine elementary trajectories: 

with M2 = (1 1 0 0 0)T; M3 = (1 0 1 0 0)T; M4 = (0 2 0 0 0)T; 
M5 = (0 1 1 0 0)T; M7 = (0 0 2 0 0)T.

From these elementary trajectories, three MSET are 
computed:

S = {M3[T1⟩M5;

M3[T5T1⟩M2;

M5[T2T5T1⟩M5;

M5[T2T5T5T1⟩M2;

M5[T5T1⟩M4;

M5[T5T2T1⟩M5;

M5[T5T2T5T1⟩M2;

M7[T5T1⟩M5;

M7[T5T5T1⟩M2}
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Assumptions 5–8 will be also considered in this section to 
compute significant residuals.

5.1 � Residuals computation

Once the MSET are computed, the durations between two 
successive measurements are affected to all MSET that are 
consistent with these measurements. The detection and 
isolation of temporal faults is then based on the analysis of 
a set of residuals obtained for the MSET. For each MSET, the 
mean duration of the nominal behavior is first evaluated 
and dN(mset, S) is defined as the mean duration in nomi-
nal behavior for the minimal-size elementary trajectory 
mset in set MSET(S). This evaluation can be obtained from 
an analytical computation or from the statistical analysis 
of a fault-free sequence of measurements or finally from 
an expert knowledge about the system. In order to com-
pute the residuals used to detect and isolate the temporal 
faults, the proposed approach has the following steps:

1.	 For each pair of consecutive measurements (ek−1, 
τk−1) and (ek, τk) of TRO, the state S consistent with the 
observed trajectory TRo(k) = (e1,τ1) … (ek−1,τk−1) (ek,τk) 
is computed thanks to the ETO.

2.	 The duration dk = τk − τk−1, measured at time τk, is fil-
tered with the MA control charts to smooth the varia-
tions.

3.	 The filtered duration MA(dk) is associated with each 
minimal-size elementary trajectory mset in set 
MSET(S). The series of measurements collected for the 
minimal-size elementary trajectory mset in state S at 
time τk is consequently defined as D(mset, S, τk): 

4.	 One difficulty is that the series of measurements 
D(mset,S,τk) are generated at specific values of times 
τk that only depend on the occurrence of the observ-
able events. On the contrary, the detection and diag-
nosis decision are expected to be computed periodi-
cally. To solve this issue, the series of measurements 
D(mset,S,τk) are resampled with a given sampling time 
dt according to Eq. (7): 

(6)D(mset, S, �k) = {(MA(dk), �k) such thatmset ∈ MSET(S) and S is consistentwith TRo(k)}

	   A consequence of the resampling operation is that 
the values of the firing durations are maintained con-
stant and equal to the last collected value as long as 
no new measurement is collected in series D(mset,S,τk).

5.	 The series of residuals are computed from the series of 
durations. The filtered resampled durations MA(dh) are 
used to compute the residuals δ(MA(dh), mset, S) for all 
mset ∈ MSET(S): 

5.2 � Detection and isolation of temporal faults

For each transition Tj ∈ T, let us first define the set MSET(Tj) 
of MSET in which Tj fires. The two following functions are 
then defined for detection and diagnosis issues:

The function detect(h.dt) is proposed as a detection func-
tion that captures the variation of the collected durations 
and evaluates whether a temporal fault has occurred at 

(7)

D
�(mset, S, h.dt) = {(MA(dh), h.dt), h = 0,… , ⌊�k∕dt⌋ + 1,

and (MA(dh), h.dt) ∈ D(mset, S, �k) is themeasurement such

that �k is the largermeasurement time that satisfies �k ≤ h.dt}

(8)�(MA(dh),mset, S) = MA(dh) − dN(mset, S)

(9)
diag+(Tj , h.dt) = max{�(MA(dh),mset, S) for allmset

∈ MSET(Tj) and S ∈ Robs}

(10)
diag−(Tj , h.dt) = min{|�(MA(dh), mset,S)| for allmset

∈ MSET(Tj) and S ∈ Robs}

Table 4   Support of the 
transition PDF for <SPN2, L, MI>

T1 T2 T3 T4 T5 T6 T7

ac 1.8 1.8 1.3 2.8 2.8 3.3 2.8
bc 2.8 2.2 1.7 3.2 3.2 3.7 3.2

sampled time h.dt. This function is sensitive to the sum of 
the maximal residuals computed for each transition:

This function will be compared with a detection thresh-
old ΔD in order to generate an alarm when the threshold 
is excessed.

(11)detect(h.dt) =
1

q

∑

Tj∈T

diag+
(
Tj , h.dt

)
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The fault isolation results from the combine use of the 
functions diag+(Tj, h.dt) and diag−(Tj, h.dt). These func-
tions evaluate how the firing of a given transition Tj is 
affected by the variation of the collected durations. On 
the one hand, the function diag+(Tj, h.dt) is sensitive to 
the maximal value of the residuals computed for Tj. When 
this function increases significantly from zero, it means 
that a variation of the durations affects at least one of the 
MSET where Tj appears. Note that the use of diag+(Tj, h.dt) 
without diag−(Tj, h.dt) for isolation may lead to diagnosis 
errors by overestimating the risk that the temporal fault 
concerns Tj. On the other hand, the function diag−(Tj, h.dt) 
is sensitive to the minimal absolute value of the residu-
als computed for Tj. When this function increases signifi-
cantly from zero, it means that a variation of the durations 

affects necessarily all MSET where Tj occurs. The use of 
diag−(Tj, h.dt) without diag+(Tj, h.dt) may also lead to diag-
nosis errors by underestimating the risk that the temporal 
fault concerns Tj. Consequently, both functions are used 
together to compute the probability prob(Tj, h.dt) that the 
detected fault has affected the transition Tj. Let us intro-
duce a normalization parameter N(h.dt) at time h.dt with 
Eq. (12):

(12)

N(h.dt) =
∑

Tj such that(
detect(h ⋅ dt) > ΔD

)

∧(diag+
(
Tj , h ⋅ dt

)
> ΔD)

diag−
(
Tj , h.dt

)

Fig. 8   Diagnosis of < PN2, PDF, Ω, L, MI > with MI = (1 0 0 0 0)T: a detection function wrt time (TU); isolation functions wrt time (TU); b T1; c T2; d 
T3; e T4; f T5; g T6; h T7 (diag+(Tj, h.dt) in full line and diag−(Tj, h.dt) in dashed line)
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The probability prob(Tj, h.dt) is computed for each h and 
Tj with Eq. (13):

Note that the detection delay depends on the time drift 
and on the number of sensors used by the labeling func-
tion. For poor sensoring systems, this delay may increase 
in a critical way. Improving the detection delay is one of 
the perspectives of this work.

Example 7  Consider again the marked LTPN system < PN2, 
PDF, Ω, L, MI > in Fig. 6 with MI = (1 0 0 0 0)T and L(T1) = e1, 

(13)prob(Tj , h.dt) = diag−(Tj , h.dt)∕N(h.dt), if (detect(h.dt) > ΔD) ∧ (diag+(Tj , h.dt) > ΔD)

prob(Tj , h.dt) = diag−(Tj , h.dt)∕N(h.dt), otherwise

L(T3) = e2, L(T4) = e3. Uniform bounded PDF are considered 
for all transitions with supports provided in Table 4.

The mean values resulting from a fault-free trajectory 
of duration 4000 TU are reported in the last column of 
Table 1. Note that mean values are not computed for the 
transient states S1, S2, and S3 because these transitions fire 
at most once.

It is now assumed that transition T2 experiences a PDF 
support variation from [1.8, 2.2] to [5.8, 6.2] between 2000 
and 4000 TU (for the clarity of the presentation, an abrupt 

Fig. 9   Fault probabilities for < PN2, PDF, Ω, L, MI > with MI = (1 0 0 0 0)T: b T1; c T2; d T3; e T4; f T5; g T6; h T7 (prob(Tj, h.dt) in full line and diag−(Tj, 
h.dt) in dashed line)
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change of the support was preferred for this example 
instead of a slow timed drift). The detection threshold is 
defined as ΔD = 1.

The functions detect(h.dt), diag+(Tj, h.dt) (in full line), 
and diag−(Tj, h.dt) (in dashed line) resulting from this simu-
lation are reported in Fig. 8. Temporal faults are detected 
once the detection function detect(h.dt) exceeds the 
detection threshold (Fig. 8a). For the considered series, 
the detection time is 2020 TU and the delay is 20 TU that 
corresponds more or less to ten successive transition fir-
ings. One can notice that the function diag+(Tj, h.dt) is 
not enough to isolate the fault. This is because T2 occurs 
in MSET that also include the transitions T1, T3, T4, and 
T5 (Table 2). For this reason, these transitions are also 

suspicious. The use in addition of the function diag−(Tj, 
h.dt) confirms that the fault has affected T2. Note that in 
the present case, the function diag−(Tj, h.dt) by itself clearly 
indicates the faulty transition, but for more complicated 
cases, both functions are required. This is confirmed with 
the probabilities prob(Tj, h.dt) reported in Fig. 9 in addition 
to the residuals diag−(Tj, h.dt). In particular, one can notice 
that the probability prob(T2, h.dt) that isolates transition 
T2 is more or less equal to 1 from the detection time at 
2020 TU.  

Consider again the marked LTPN system < PN2, PDF, 
Ω, L, MI > in Fig. 6 with MI = (2 0 0 0 0)T, L(T1) = e1, L(T3) = e2, 
L(T4) = e3 and the supports provided in Table 4. The transi-
tion T2 experiences again a PDF support variation from 

Fig. 10   Diagnosis of < PN2, PDF, Ω, L, MI > with MI = (2 0 0 0 0)T: a detection function wrt time (TU); isolation functions wrt time (TU); b T1; c T2; 
d T3; e T4; f T5; g T6; h T7 (diag+(Tj, h.dt) in full line and diag−(Tj, h.dt) in dashed line)
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[1.8, 2.2] to [5.8, 6.2] between 2000 and 4000 TU. The 
detection threshold is defined as ΔD = 2.

The detection and isolation results are reported in 
Figs. 10 and 11. The isolation of transition T2 that should 
be preferred compared to the other transitions results 
from the comparison of the probabilities prob(Tj, h.dt) 
after detection at date 2100 TU. In that case, the detec-
tion delay increases to 100 TU. One can notice that the 
diagnosis decisions (and even the detection one) have less 
confidence in the present case due to the large number of 
possible behaviors that increases the risk of error.

6 � Conclusion

This article has proposed an approach that can be used 
to detect and isolate temporal drifts in timed manufac-
turing systems that are characterized by cyclic behaviors 
and repetitive operations. Such systems were modeled 
as timed Petri nets where operations are represented by 
the net transitions and their durations correspond to the 
transition firing times considered as random variables 
with arbitrary PDF. In this context, the temporal drifts 
were characterized by the variations of the mean firing 
durations. The detection and isolation problem has been 
solved by combining moving average control charts with a 
new class of observers that estimate the recent elementary 

Fig. 11   Fault probabilities for < PN2, PDF, Ω, L, MI > with MI = (2 0 0 0 0)T: b T1; c T2; d T3; e T4; f T5; g T6; h T7 (prob(Tj, h.dt) in full line and diag−
(Tj, h.dt) in dashed line)
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trajectories consistent with the last measurements. On the 
one hand, fault detection has been obtained by comparing 
residual signal with some thresholds. On the other hand, 
the isolation of the faulty operation among the set of fault 
candidates has been performed thanks to the analysis of 
the measurements with respect to the set of minimal-size 
elementary trajectories generated by the observer. The 
following concluding comments hold that lead to some 
interesting perspectives:

•	 The proposed method can also be used to test and 
compare several sensor configurations in order to 
select the most appropriated one. One interesting issue 
is to reverse the problem and to propose a method that 
aims to search for the best selection and positioning of 
the sensors in order to improve the performance of the 
detection.

•	 When competition is used as a choice policy instead of 
preselection, one can compute, in a similar way, addi-
tional residuals based on the frequency of the MSET 
occurrences. With competition, conflicts are solved 
according to the duration of the firings. When a tran-
sition experiences a temporal fault, the conditions of 
the competition change and this modifies the MSET 
frequency.

The main limitation of the proposed approach is due 
to the rapid increase in the complexity in the design of 
the observers. In particular, the size of the elementary 
trajectory observer grows rapidly with respect to the 
initial marking of the LTPN and to the labeling function 
that models the sensors, resulting in large nets that may 
prevent to use the method for more complicated systems. 
Consequently, the first objective in our future work will be 
to consider the complexity and scalability issues. Another 
perspective is to pay more attention to the detection delay 
and to improve the approach in order to decrease this 
delay. The possible combined use of time and colors in 
Petri nets models lies also under the perspectives of that 
work.
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