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Abstract
Urbanization is a global trend with a substantial environmental impacts, particularly hydrologic cycle. With this respect, 
storm water management has become the main target of sustainable urban development and has posed the higher 
demand for information related to the interaction between the urbanization process and hydrological attributes in both 
temporal and spatial scales, but little is understood in the context of Ethiopian urban centers. For this, the fast grown 
and flood vulnerable urban area, Adama city, is considered to evaluate the hydrologic influences attributable to urbani-
zation. By preparing the land use/land cover (LULC) maps of the study area for different periods, the dynamics of LULC 
transformations were analyzed. The SCS-CN method was employed to determine the runoff at respective years, and the 
spatio-temporal changes of runoff were assessed at the city watershed and its sub-watersheds. The relation between the 
spatio-temporal changes of imperviousness ratio and runoff depth was explored through regression analysis. The find-
ings show that the urban built-up area undergone about 22% expansion annually from 1995 to 2019. Likewise, the runoff 
depth is increased by 9.5% in the City administration and 12.9% and 6.9% within the two sub-watersheds. The results also 
reveal that at all spatial scales, the temporal change of runoff depth is linearly associated with the rise of imperviousness 
ratio. This study would help planners in the formulation of effective land use plan to manage the hydrological influences 
of urbanization, thereby supports the efforts being made to ensure the sustainable development of urban areas.
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LULC	� Land use/land cover
PIA	� Percent Impervious area
SCS-CN	� Soil conservation service curve number

1 � Background

Around the world, more people are concentrated in towns 
and cities. In 2017, the proportion of urban population was 
55 percent, it is estimated to reach 68 percent in 2050 [54]. 
Urbanization is undeniably an ongoing global trend with 
substantial alterations of land use/land cover (LULC) [16, 

42]. LULC changes are the main causes of global environ-
mental change [20, 23, 29, 30], and manifest in climatologi-
cal, biodiversity and hydrological responses.

Urbanization significantly contributes to the occur-
rence of pluvial floods [18, 19, 44]. By modifying land 
cover around many urban areas, it increases impervious 
surfaces that reduces infiltration and resistance to flow [10, 
34]. Consequently, the volume and flow rate of the runoff 
rise, thereby exceeding the acceptance of local drainage 
capacity. Urban floods are the major threats to several cit-
ies worldwide, and its frequency and related risks are likely 
to increase in the future [42, 43]. In the context of develop-
ing countries, unplanned urban growth is the common 
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scenario [2], leading to rapid densification, and the con-
struction of buildings is associated with a rapid increase 
of impervious land areas.

It has long been recognized that the increase in imper-
vious surface increases the surface runoff, but few recent 
studies [45, 50, 59] have highlighted the deviations from 
direct relationship, suggesting the impacts have regional 
limitations, mainly depend on the spatial distribution of 
impervious surfaces within a watershed and the scale of 
the study area. In addition, other LULC changes could also 
counterbalance the effects of increased impervious area 
[11]. Hence, understanding the relationship between the 
trends of the temporal dynamics of impervious ratio and 
runoff characteristics of watershed and sub-watersheds 
can be useful information for formulation of effective plan-
ning to control the hydrological effects of urbanization, 
thereby supports the efforts being made to ensure sus-
tainable development of urban areas.

In the context of Ethiopia, studies [15, 17, 25, 26, 35, 
48, 57] have been conducted to assess the effects of LULC 
change on watershed hydrology; however, they focused 
on a riverine basin. Among a few studies focusing on 
urban watershed, Billi et al. [4] compared the relative role 
of land use change and rainfall intensity in augmenting 
the frequency of flash flood in Dire Dewa town, due to 
Dechatu River from 1985 to 2006. By taking Addis Ababa 
City, as a case, Birhanu et al. [5] analyzed the flood risk 
and vulnerability attributable to urbanization and climate 
change for the period of 1993–2002 using Soil and Water 
Assessment Tool. However, the issue of spatial variability 
of the impact of impervious area due to urbanization in 
different sub-catchments is not well addressed. Focuses 
on the impacts of urbanization on flood are extending pro-
gressively from hydraulic channels, to impervious ratio and 
impervious pattern in urban settings [50]. Neighborhood 
has become the dominant design unit in the contempo-
rary urban planning for storm water management in urban 
areas, less likely using the catchment [36, 50, 55].

Since the turn of this century, Adama city has been rec-
ognized as one of the rapidly grown and flood vulnerable 
urban areas in the country [6, 8], yet adequate understand-
ing of the influences of urbanization on hydrological char-
acteristics of the city is lacking. Sinha et al. [49] examined 
the built-up area expansion of Adama municipal area from 
1984 to 2015, but the related environmental impacts, par-
ticularly on the hydrology are not addressed. In response 
to the existing flooding problems of Adama city, and the 
thoughtfulness of a potential increase in the future, proper 
storm water management demands spatio-temporal infor-
mation related to interaction between urbanization pro-
cess and hydrological characteristics of the city.

The central aim of this study is to analyze the spatio-
temporal changes of the storm runoff depth in Adama 

city under the influences of urbanization from 1995 to 
2019. More specifically, it is conducted (1) to analyze the 
spatio-temporal changes of LULC in Adama city adminis-
tration from 1995 to 2019; (2) to determine the variations 
of runoff depth due to the LULC changes and (3) to explore 
the relationship between the spatio-temporal changes of 
imperviousness due to urbanization and the runoff depth.

2 � Materials and methods

2.1 � The study area

Adama city is one of the fast-growing and flood vulnerable 
urban areas in Ethiopia [8]. It is located at 8° 33′ N latitude 
and longitude 39° 16′ E longitude. The city is suited in Rift 
Valley, on flat terrain characteristics and surrounded by 
mountains and ridged topography. The latest approved 
land use plan of the city is prepared in 2004 [7]. The admin-
istrative boundary set by this plan is selected to limit the 
spatial extent of the analysis. The city falls in two, main 
watersheds: Awash and Mermersa (Fig. 1), with spatial cov-
erage of 7, 329.7 ha and 6, 036.8 ha, respectively.

The growth rate of population of Adama city from 2004 
to 2016 is about 9% [6]. Since August 2000, Adama has 
become the seat of the National Regional State and Capital 
city of Oromia, the largest Regional State in the country. 
This Administrative status, largely considered as the main 
driver for the rapid urbanization of the city. Hence, time-
series analysis of LULC in the city administration from 1995 
to 2019 is deemed appropriate to provide enhanced pic-
ture of the impacts of urbanization on hydrological char-
acteristics of the area.

2.2 � Data used and image pre‑processing

2.2.1 � Spatial data

The spatial data used in this study were collected from 
different sources, including websites, organizations. Land-
sat 7 TM/ETM + (Enhanced Thematic Mapper Plus) (L1TP 
product of path 168, row 54) was used for mapping LULC 
of the study area. Landsat image is widely used for urban 
LULC mapping, despite its medium spatial resolution and 
mixed pixel problem [12]. It is freely accessible for multi-
ple dates and considered suitable for time-series analysis. 
One image from each year with free cloud contamination, 
except that of 2015 (Table 1) was accessed from the United 
States Geological Survey (USGS) (https​://espa.cr.usgs.
gov/). All bands of the landsat image have 30 m spatial 
resolution. Landsat Level 1 (L1T) images are geometrically 
corrected and orthorectified by the National Aeronautics 
and Space Administration (NASA) [28].

https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
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In this study, the LULC maps serve as the base of the 
analysis, the accuracy of LULC classification has direct 
significant impact the reliability of the runoff depth 
analysis. Accordingly, all images are selected among 
acquired during the dry season, as the accuracy of land-
sat image classification during the dry season is found to 
be higher than during the wet season [32]. Further, the 
atmospheric effects were reduced through conversion of 
raw digital number (DN) values to the surface reflectance 
in radiometric calibration module in ENVI software.

Soil map of the study area was collected from institute 
of water resource engineering, Adama Science and Tech-
nology University. Digital orthophoto acquired in 2014 
and 2018 with 15 cm spatial resolution were obtained 
from Adama city administration.

2.2.2 � Rainfall data

The daily rainfall data for a period of 30 years (1985–2014) 
recorded at Adama meteorological station was collected 
from the National Meteorological Agency (NMA) of Ethio-
pia, Adama branch office. The data were checked for miss-
ing values, and few gaps (91 days about 0.9%) identified in 
the data were filled using XLSAT. Daily precipitation values 
were aggregated to give annual rainfall (Fig. 2). Accord-
ingly, the maximum, minimum, and mean annual precipi-
tation over the last 29 years (1985–2014) are 1371 mm, 
629 mm, and 920 mm, respectively.

In Adama, most of the rain occurs from June to Sep-
tember, whereas the wettest months are July and 
August. The maximum daily precipitation in rainy season 

Fig. 1   Location map of the study area

Table 1   Date of acquisition and the cloud cover (%) of landsat images used for LULC mapping

Year 1995 2000 2005 2010 2015 2019

Date of acquisition Jan 30, 1995 Feb 05, 2000 Feb 18, 2005 Jan 15, 2010 Feb 14, 2015 Jan 08, 2019
Cloud cover – – – – 1% –
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(June–September) was selected for runoff computation for 
analyzing the impacts of urbanization on runoff response 
in the city administration, and its sub-catchments. It is 
found to be 99.8 mm, precipitation record corresponding 
to July 18, 2000. It is used for the study, and helped to 
distill the impacts of LULC on the surface runoff depth of 
the study area, by reducing the effect of rainfall variations.

2.3 � Land use/land cover mapping

Considering the importance of short-term changes in 
urban areas due to rapid urbanization and climate changes 
[59], LULC maps of the study area were prepared at about 
5 years’ interval (1995, 2000, 2005, 2010, 2015 and 2019) 
using landsat images through supervised classification 
method. It involves defining classification scheme, selec-
tion of training samples, running an algorithm to assign 
each pixel into a class and accuracy assessment.

2.3.1 � Defining classification scheme

The analysis focused on spectral resolution because the 
spectral dimension is the most important source of cover 
type information in coarse resolution images. The success 
of LULC usually measured by the ability to match the spec-
tral classes in the data to the information classes of inter-
est [56]. Spectral classes refer to the groups of pixels with 

similar (or near-similar) brightness values in the diverse 
spectral bands of the data. Whereas, information classes 
are those classes of concern that the analyst is attempting 
to identify within the imagery.

In a complex urban landscape, a particular land use 
class may have diverse spectral characteristics (e.g., Roof 
cover of old and new buildings). By contrast, different 
classes (objects) can have the same spectral characteristics 
(e.g., Rock and concrete or bright building roofs). Hence, 
a simple one-to-one relation between the two types of 
classes is rarely identified. Many times it is found that 2–3 
spectral classes merge to form one informational class.

Given the importance of the appropriate classifica-
tion scheme, in this study, initially, by visually analyzing 
the color composite landsat images with different band 
combinations, different classes were identified, and aggre-
gated into four: urban, bare land, agriculture and vegeta-
tion (Table 2).

2.3.2 � Training sample selection

Training samples for each class were collected from each 
image. In order to reduce the sampling biases, consist-
ency in sample selection was kept by selecting pixels 
that remained unchanged at different times to train the 
classifier. First, samples were selected from landsat image 
of 1995 (first image). Subsequently, these samples were 
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Fig. 2   Annual rainfall of Adama city from 1985 to 2019

Table 2   Land use/land cover classification scheme used in the study

LULC class Description

Urban Comprises areas with all types of artificial surfaces, including buildings and transportation infrastruc-
ture (asphalt, gravel, railway). Areas under construction are also included

Barren land Includes a surface with no or little vegetation, open land, exposed soil, rocks and sand (eroded gullies)
Agricultural Includes areas used for cultivation (both annuals and perennials)
Vegetation Comprises areas with vegetation cover, such as areas covered with both indigenous and exotic tree 

and shrub land. It also includes green spaces in built-up areas: an area of grass, trees, or other veg-
etation set apart for recreational or aesthetic purposes inside urban built environment
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treated as training samples for the first image and used 
as a base for the adjacent image (2000). Second, the base 
samples were overlaid with the second image to check if 
change in class occurred. If changes were observed, new 
sample with more confidence was substituted from the 
surrounding area. Similarly, the same procedures were fol-
lowed by selection of training samples for the rest of the 
images.

As a general rule, the number of sample pixels for each 
subclass was determined based on the recommendation 
of Sertel and Akay [47], which sate that the number of pix-
els of training samples for each class should be at least 10 
times the number of bands in an image to classify. In this 
study, the total number of training pixels used for each 
LULC class alongside the respective years is summarized 
in Table 3.

2.3.3 � Classification algorithm

Each image was classified into a set of spectral classes 
using Support Vector Machine (SVM) algorithm in ENVI 
software. SVM is non-parametric classifier. Unlike paramet-
ric classifiers such as maximum likelihood which assumes 
that the data is normally distributed, non-parametric clas-
sifiers do not base classification on a normality assumption 
or statistical parameters [39]. Because of highly heteroge-
neous land covers data (e.g., Urban areas) are unlikely nor-
mally distributed, the distribution of land cover surfaces 
is associated with various uncertainties which prevents 
their description based on data distribution [33]. In this 
respect, non-parametric classifiers provide better results as 
compared to parametric classifiers in complex landscapes.

2.3.4 � Accuracy assessment

Accuracy of land use maps is important in urban studies 
[47]. In thematic mapping from remote sensing data, clas-
sification accuracy refers to the level to which the resulting 
image classification conforms to the ‘truth’ or agrees with the 
reality [22]. This is usually undertaken by using information 
collected from the map and the reference sources. Reference 
sample data is the class label, which derived from sources 
that are assumed to be correct. Whereas, map sample data 
refers to the data derived from the map being assessed. A 

reference sample data for assessing the accuracy of maps 
created from moderate-resolution satellite imagery (e.g., 
Landsat) can be collected from a variety of sources, including 
previously existing maps, aerial photography and Google 
Earth [1, 14, 21, 53].

In this study, LULC classification accuracy was assessed 
quantitatively using error matrix which is the commonly 
used method in LULC classification accuracy assessment 
[56]. In this regard, sample pixels were selected from each 
of classified images through a stratified random sampling 
scheme in ENVI software. This enables to undertake unbi-
ased sample selection, as it includes each LULC class in the 
sample [14].

The samples were overlaid with the existing map (for 
1995), Google Earth (for 2000, 2005 and 2010) and digi-
tal orthophoto (for 2015 and 2019) to visually interpret 
and determine their respective classes. Based on the error 
matrix generated for each classified map, overall accuracy, 
user’s accuracy and producer’s accuracy were calculated, 
in addition to kappa variance. The accuracy requirements 
for change detection analysis were determined based on 
the suggestion of Congalton and Green [14]. In this case, 
the value of the Kappa statistics, greater than 0.8, indicates 
strong agreement between the class label on the map and 
on the reference data.

2.4 � Methods

2.4.1 � Analysis of LULC dynamics

The spatio-temporal changes of LULC were identified using 
areal data generated from LULC maps in GIS environment. 
Quantitative areal data from the overall LULC changes, as 
well as gains and losses in each class were compiled to ana-
lyze the nature and rate of the changes. The percentages of 
changes were computed using Eq. 1. In this case, the positive 
and negative values suggest a gain and loss in spatial extent, 
respectively.

Percentage change LULC ( ΔLULC)

(1)ΔLULC =
A2 − A1

A1

∗ 100

Table 3   Summary of the 
number of traiaing samples

LULC class Year

1995 2000 2005 2010 2015 2019

Agriculture 1709 1430 1764 1183 1269 807
Barren 1640 1276 1493 1685 1761 1890
Urban 650 698 883 1071 1556 1995
Vegetation 610 606 801 524 1378 1378
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where A1 and A2 are areas of a LULC class in the consecu-
tive years.

2.4.2 � Analysis of imperviousness change

Imperviousness refers to the areal proportion of imper-
vious surfaces within the defined boundary (e.g., water-
shed, administrative boundary), i.e., percent impervious 
area (PIA). Impervious surface in urban areas, generally 
comprises anthropogenic features (e.g., Buildings, park-
ing lots, roads, etc.) which rainfall water cannot permeate, 
and they are usually associated with urban expansion [52, 
59]. These features are categorized under urban land use 
class in this study and considered as impervious surfaces, 
similar to other studies [31, 38, 40, 58]. In this regard, the 
urban class in each watershed was extracted and the area 
was computed to provide the extent of impervious surface 
in respective watersheds.

PIA was calculated by using the ratio of impervious 
surface area at different years to the area of the respec-
tive analysis boundaries. The changes of imperviousness 
were computed with respect to the first year of the analy-
sis (Eq. 2). This helped to assess the impact of urbanization 
in increasing the impervious surface in the study area.

where ΔPIAi : percentage change of imperviousness; PIAi: 
imperviousness in respective years; PIA1995: impervious-
ness in the baseline year (1995).

2.4.3 � Evaluation of spatio‑temporal changes of runoff 
depth

Evaluation of the temporal variations of the runoff depth 
due to the impacts of LULC changes involves computation 
of runoff and percentage change with respect to a base-
line/reference year. Rainfall-runoff was estimated using the 
method of soil conservation service curve number (SCS-
CN). It is simple and stable conceptual technique for direct 
runoff depth estimation based on rainfall depth [51]. SCS-
CN is well-established method, having been commonly 
used for examining the relationship between different 
land uses and runoff in water resources management 
and planning [13, 27, 41, 59]. SCS-CN method provides an 
adequate result with a minimum information that makes 
it more useful for ungauged watershed [10, 37]. The value 
of CN reflects the impact of land cover on the runoff yield 
ranging from 0 (100% infiltration) to 100 (0% infiltration). 
Evapotranspiration losses are insignificant in the storm 
event [11].

(2)ΔPIAi =
PIAi − PIA1995

PIA1995

∗ 100

Runoff can be easily obtained using three important 
properties of the watershed: soil permeability, land use 
and antecedent soil water conditions [3, 11]. Initially, the 
soil types in the study area were converted to hydrologic 
soil group (HSG). The CN for each LULC class is deter-
mined and found to be 72, 91, 93 and 50 for agriculture, 
bare land, urban and vegetation, respectively.

The analysis is conducted at the city and sub-catch-
ment levels, and the study watersheds encompass dif-
ferent LULC class alongside different spatial extent. To 
determine a single curve number for respective analysis 
boundaries for runoff estimation using SCS-CN method, 
the catchments were spatially intersected with LULC 
maps and the area of each class in each catchment was 
computed. Then, the weighted CN for respective water-
sheds was computed using Eq. 3.

The 5 days’ (July 14–18, 2000) rainfall magnitude is 
found to be 137 mm. Based on Subramanya [51] rec-
ommendation, wet antecedent moisture condition was 
selected. Based on this, Eqs. 4 and 5 were applied for 
converting the average antecedent moisture condition 
into wet condition and for computing the potential max-
imum soil retention, respectively. Using daily rainfall, the 
accumulated runoff depth in respective areas was com-
puted using Eq. 6.

where Q: accumulated direct runoff depth (mm); P: accu-
mulated rainfall (mm); S: potential maximum retention 
(mm).

Using the computed runoff depth for respective years, 
the temporal variations of the runoff depth due to the 
impacts of LULC changes were assessed through runoff 
depth change ratio. By taking the runoff depth of the 
first year (1995) as a baseline, the percentage changes 
in runoff for 2000, 2005, 2010, 2015 and 2019 were com-
puted using Eq. 1. This helped to determine the tempo-
ral variations in storm runoff depth attributable to the 
changes in LULC of the study area with respect to that 
of the baseline year.

(3)CNwII =

∑n

i=1
CNiai

∑n

i=1
ai

(4)CNIII =
CVwII

0.427 + 0.00573CNII

(5)S =
25, 400

CNw

− 254

(6)Q =
(P − 0.2S)

2

(P + 0.8S)
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where ΔQi Percentage change of runoff depth; Qi is runoff 
depth in respective years, Q1995 is runoff depth in the refer-
ence year (1995).

2.4.4 � Regression analysis

Regression analysis was carried out to explore the relation-
ship between the spatio-temporal changes of PIA and run-
off. It is the common method to investigate the relation-
ship between a quantitative outcome and a quantitative 
explanatory variable [46].

The validity of the model assumptions was determined 
by examining the structure of the residuals and the data 
pattern through graphs. Examination of residual plots is 
a simple and effective method for validation of standard 
assumptions in regression analysis [9]. In this context, the 
normality assumption was validated using a normal prob-
ability plot of standardized residuals which is a plot of the 
ordered standardized residuals against the normal scores. 
Under normality assumptions, this plot should resemble a 
(nearly) straight line with an intercept of zero and a slope 
of one, and they are equal to mean and standard devia-
tion of the standardized residuals, respectively. In addition, 
scatter plots of the standardized residual against PIA and 
fitted values were used to validate the linearity assump-
tion. Under the standard assumptions, the standardized 
residuals are uncorrelated with the explanatory variable 
and with fitted values. The random scatter of points of 
these plots explains the validity of linearity assumption.

The strength of the linear relationship between the run-
off variations and the PIA was determined using the value 
of Pearson’s correlation coefficient (r). It is a dimension-
less quantity that commonly used to compare the linear 
relationships between pairs of variables in different units. 
Accordingly, the non-zero value of the correlation coef-
ficient indicates the variables are correlated. Further, the 
positive and negative values indicate direct and indirect 
relationship, respectively. Moreover, like Bulti and Assefa 
[6] the strength of the correlation was described using 
the absolute value of correlation coefficient: very weak 
(|r| < 0.19), weak (|r| < 0.39), moderate (|r| < 0.59), strong 
(|r| < 0.79), very strong (|r| < 1).

Statistical significance testing was also conducted 
to offer an objective measure in the decision about the 
validity of the generalization, and it was determined 
using a p value statistic. In this case, the null hypothesis 
states that there is no significant relationship between 
the changes in PIA and runoff. In theory, the p-value is a 
continuous measure of evidence [24], yet in this study, 

(7)ΔQi =
Qi − Q1995

Q1995

∗ 100
the term “significant” refers to the 95% confidence level 
(p < 0.05); it is standard in statistical practice in most of 
the Engineering researches.

3 � Results

3.1 � Dynamics of land use/land cover

Figure 3a–f demonstrates the LULC maps of Adama city 
for 1995, 2000, 2005, 2010, 2015 and 2019. Overall clas-
sification accuracies are 89%, 91%, 93%, 91%, 92% and 
90% for the year 1995, 2000, 2005, 2010, 2015 and 2019, 
respectively. The values of Kappa statistics for classified 
images are greater than 0.8, indicating strong agreement 
between the classified LULC classes and the reference 
data, hence the maps satisfied accuracy criteria for LULC 
change detection analysis.

The information summarized in Table  4 shows the 
spatial extents, percentage changes over time as well as 
the annual average growth of the four LULC classes (agri-
culture, barren land, urban and vegetation) in Adama 
city between 1995 and 2019. Besides Fig. 4 demonstrates 
the spatio-temporal variations of the proportions of each 
class occurred over the span of 24 years.

Overall, the results show the extensive LULC changes 
in Adama city over the study period. Agricultural land 
was dominant class at the beginning of the study period, 
but declined with the continuous increase of urban land 
area. The rate of annual urban expansion greater by far, 
from the rest land use classes.

The coverage of agricultural land was slightly less 
than 50% of the total area at the beginning of the study 
timeframe. In the following 10  years, it moderately 
decreased to about 44% before it dramatically dropped 
to nearly 10% in the final year. By contrast, the propor-
tion of urban class was 5% in 1995, this figure rose to 
just over 30% in 2019, showing an increase of more than 
five folds of its initial spatial share. It showed nearly 22% 
of average annual expansion across the study period. 
Temporally, the rate of urban land expansion was com-
paratively low in the first 15 years between 1995 and 
2010, which showed nearly 8% increase, then it peaked 
about 32% of the total area in the last year.

On the other hand, vegetation class showed a remark-
able increase in spatial cover between 2010 and 2015 
has also contributed to the increase of its share of the 
study area from 11 to 18% in the first and last years of 
the study period, respectively. With nearly equal propor-
tion, the areal share of the barren land increased during 
the study timeframe.
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3.2 � Spatio‑temporal changes of runoff depth

The weighted curve number determined for average 
antecedent moisture condition computed using Eq. 3 is 
summarized in Table 5. By converting these values to wet 
moisture condition, the runoff depth of each watershed 
at different times is computed. The results summarized in 
Table 6 and depicted in Fig. 5 demonstrate that the daily 
accumulated runoff depth in the city and its sub-water-
sheds from 1995 to 2019, with a more detailed look at the 
trend of change in runoff depth.

Overall, the results indicate the continued increase in run-
off depth for the three analysis boundaries during the last 
24-year. This rising trend is occurring across all the selected 
years for the analysis. In all the cases, the accumulated daily 
runoff depth of the Awash watershed is greater. In addi-
tion, during study timeframe, the runoff depth is increased 

in all areas, except for the Awash watershed that slightly 
decreased in 2005.

The maximum increased runoff depth is related to Mer-
mersa sub-watershed with 12.9%, whereas the Awash sub-
watershed showed 6.9% change. The runoff depth in Awash 
watershed starts at about 72.9 mm and steadily increased to 
74.8 mm before it fell to 73.4 mm in 2005. Then it goes up to 
reach 77.9 mm at the final year. At city scale, the runoff depth 
starts at slightly less 70 mm in 1995, this figure is increased 
to reach over 76 mm in the final year, indicating about 9.5% 
increase in the span of 24-years.

3.3 � Relation between the changes of PIA and runoff 
depth

In this study, the degree to which the temporal variations 
in runoff depth can be explained by the changes of PIA is 

Fig. 3   Land use/land cover maps of the study area from 1995 to 2019
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examined through the regression analysis using the com-
puted results (Table 7) of both variables computed using 
Eqs. 2 and 7. All percent changes at respective years are 
calculated with respect 1995. In all the cases, a dataset of 
6 observations is used. The scatter plots overlaid with the 
best-fit line depicted in Fig. 6 illustrates the relationship 
between the percentage changes of runoff depth and that 
of PIA from 1995 to 2019.

The results reveal that the observed percent change 
of runoff depth is directly related to the changes of PIA 
in both scales. Further, Pearson correlation coefficient 
appears a very strong correlation between the two vari-
ables. Moreover, the significance test of the relationship 
between the two variables resulted in the p-value smaller 
than 0.05, suggests rejecting the null hypothesis. Based 
on this evidence it can be underlined that the observed 
linear relation between the percentage variation of runoff 
depth and the PIA is highly significant. Further, the value 
of the coefficient of determination indicates that 86.9%, 
75.0% and 85.6% variation in the data are accounted by 
the models for the city, Awash watershed and Mermersa 
watershed, respectively. With this variability, from the 
estimated model equations, the slope of regression lines 
shows that the unit percentage change of PIA in the city, 
Awash and Mermersa watersheds results the percent 
changes of runoff depth equal to 0.015, 0.01 and 0.023, 
respectively.

4 � Discussion

This study aimed at analyzing the impacts of urbanization 
on hydrology of Adama city at different spatial scales. By 
taking the importance of short-term changes into account, 
LULC maps were prepared at the interval of 5 years using 
landsat images, and the spatio-temporal transformations 
of LULC were assessed. Surface runoff at respective years Ta
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was computed using the SCS-CN method, and the impacts 
of LULC changes on hydrologic attributes of the city were 
examined. The relation between urbanization and change 
in the runoff was explored through regression analysis 
using the datasets of temporal changes of IAR and runoff 
depth.

The study reveals extensive LULC changes during the 
study timeframe, particularly the extent of built-up land 
has expanded more than five times, indicating averagely 
the city undergone 22% urban expansion annually from 
1995 to 2019. A built-up expansion rate of 7.9% during the 
study period, which is slightly less than the growth rate of 
the city’s population reported by Bulti and Assefa [6]. On 

the other hand, the result is greater than the findings of 
Sinha et al. [49]. The disparity could be due to incorpora-
tion of transportation (gravel roads and railway) in urban 
classes in the case of the present study.

The study also indicates that the observed alterations 
of LULC in the study area resulted in an increase in runoff 
depth in the city by 9.5% over the study timeframe. This 
figure is less than the result of the study [5] reported for 
the impacts of LULC change in Addis Ababa city over the 
period of 10 years, and it is greater than that of Billi et al. 
[4] noted in Dire Dawa town over 21 years. This disparity 
could be underpinned by local conditions, which can be 
associated with socioeconomic, level of urbanization, level 
of spatial planning and environmental variability. At the 
watershed level, while an increase of 12.9% in Mermersa, 
a 6.9% increase in Awash is found. Along with other (e.g., 
[11], the findings of this study indicate that the impacts 
of LULC changes on runoff can be influenced by spatial 
scale of the analysis. In addition, while urban land con-
tinuously increased across the study period, the runoff in 
Awash watershed decreased from 2000 to 2005. The oppo-
site effect shows that the alterations in other LULC classes 
appears to counterbalance the impacts of urbanization in 
storm runoff.

The significant linear relationship between the spatio-
temporal variations of runoff and imperviousness ratio 
is another important finding of this study. The result is 
slightly different from other studies Sanyal et al. [45] and 

Table 5   Summary of the result 
of weighted curve number for 
average antecedent condition

Spatial boundary 1995 2000 2005 2010 2015 2019

Awash watershed 79.7 81.1 80.1 82.5 82.5 83.4
City boundary 77.4 79.0 79.2 80.6 81.0 82.3
Mermersa watershed 74.6 76.5 78.1 78.3 79.3 80.9

Table 6   Daily accumulated 
runoff depth in the city and its 
watersheds from 1995 to 2019 
(units are in millimeter)

Spatial boundary 1995 2000 2005 2010 2015 2019 Change of 
runoff depth 
(1995–2019)

mm %

Awash watershed 72.9 74.8 73.4 76.7 76.6 77.9 5.0 6.9
Mermersa watershed 66.0 68.5 70.8 71.1 72.4 74.5 8.5 12.9
City boundary 69.8 72.0 72.2 74.2 74.7 76.4 6.6 9.5
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Fig. 5   Daily runoff depth in Adama city and its sub-watersheds 
from 1995 to 2019

Table 7   Percentage change 
of PIA (ΔPIA) and runoff 
administration Adama city 
adminstration and its sub-
watersheds from 2000 to 2019 
with respect to the baseline 
year (1995)

Spatial boundary 2000 2005 2010 2015 2019

ΔPIA ΔQ ΔPIA ΔQ ΔPIA ΔQ ΔPIA ΔQ ΔPIA ΔQ

City boundary 53.3 3.2 102.2 3.6 170.8 6.3 373.6 7.1 522.1 9.6
Awash watershed 55.9 2.7 104.0 0.8 182.3 5.3 421.9 5.2 585.8 7.0
Mermersa watershed 51.5 3.9 100.9 7.2 162.4 7.7 338.1 9.8 475.3 12.9
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Chen et al. [11] in which the deviation from a linear rela-
tionship between urban expansion and runoff variation is 
reported for some of the analyzed watersheds pertaining 
to northern China. The result of this study is referred to 
Adama city and its watersheds.

This study would increases understanding of the cumu-
lative impact of urbanization in the hydrologic regime 
of the city and can be viewed as a springboard for all 
stakeholders. By limiting the extents of future impervi-
ous surfaces that can be converted from the remaining 
available land through new expansion, urban renewal 
and infill developments, the impacts of urbanization can 

be arguably managed to show sustainability of the city’s 
development. It spotlights the potential of impervious-
ness ratio to be used as an alternate pragmatic planning 
tool for controlling the hydrologic influences attributable 
to urbanization and could be integrated to storm water 
management regulations.

5 � Conclusions

The quantitative evidence obtained in this study revealed 
that Adama city has undergone an excessive LULC change 
over the last 24 years (1995–2019) with significant effects 
on hydrological attributes, which pressed an alarm for 
increasing flood hazards. During the study period, the 
urban built-up land area has been expanded by 22% annu-
ally. The overall impacts of these changes on hydrologic 
regime were increased runoff depth significantly. The 
magnitude of runoff in the city was increased by 9.5%, 
while 12.9% and 6.9% increase are found in the case of 
Awash and Mermersa watersheds. Opposite effect of LULC 
changes on runoff is also obtained in the Awash watershed 
from 2000 to 2005. Moreover, the increases magnitude of 
runoff is linearly related to the spatio-temporal changes 
of imperviousness ratio, indicating an impervious sur-
face-based land use regulation is required to guide future 
developments.

The findings in the study would provide valuable infor-
mation related to the impacts of urbanization on runoff 
characteristics and can be helpful for decision makers 
and planners to scientifically develop sustainable land 
use plan in the study catchment. However, the results 
should be viewed as an initial step for understanding of 
the hydrologic influences attributable to urbanization and 
further studies are required in several fronts. The impacts 
of urbanization are assessed using the variations of accu-
mulated runoff depth corresponding to variations in the 
volume of water yield. However, the impacts on other fac-
tors (e.g., Flow rate) and their combined effect on flooding 
needs further investigations. On the other, urbanization 
is undeniably an ongoing global trend, and decreasing 
the extent of imperviousness may not be always realistic. 
Hence, it is essential to investigate the possible ways to 
use the impervious surface in flood hazard management.
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