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Abstract
Mobile robot activities have variable computational requirements according to various parameters related to the robotic 
applications behaviour and the robot dynamic environment. This high variability puts many challenges for a complete 
robot navigation system design. With their high flexibility, reconfigurable architectures are a suitable choice to design 
such dynamic system. Mobile robot navigation steps (perception, localization, obstacle avoidance and path planning) 
are extremely complex to be embedded in a complete navigation controller. In this paper, we presented a generic and 
a flexible platform based on FPGA technology, for studying and prototyping complete unified robot navigation system. 
We exploited the dynamic reconfiguration mechanism that allows modifying the navigation controller according to 
different navigation algorithm requirements. We showed the effectiveness of this platform in the localization step. We 
have a dynamic reconfigurable system that switches between three different localization techniques to satisfy energy/
surface ratio and exploit the released resources to implement other robot tasks.

Keywords Robotics · FPGA · Dynamic reconfiguration · Hybrid localization

1 Introduction

1.1  Context

Navigation in mobile robotics is a methodology allowing 
the guidance of a Mobile Robot (MR) to perform, well and 
securely, a task through an environment with obstacles. 
The success of this task requires an adequate coordina-
tion between the four major blocks involved in naviga-
tion: perception, localization, path planning and obstacles 
avoidance. The MR should possess an architecture able to 
coordinate the on board navigation elements in order to 
correctly achieve the different objectives specified in the 
mission with efficiency whether in indoor or outdoor envi-
ronments. One efficient way of building a robotic platform 
is to join pre-built robot parts, for example acquire a MR 
with desired locomotion, pre-built sensors with specific 

interface, robotics arms, cameras, etc. In this way, we can 
build a complex custom robot. A complete navigation 
system is still required. It has to be modular, scalable and 
flexible. The different navigation steps have high computa-
tional requirements. They require hardware oriented archi-
tectures and flexible software oriented architectures, at 
the same time. Reconfigurable architectures are therefore 
an adequate solution. FPGAs are a good choice, because 
they can implement a processor-based system or a micro-
controller-based system or a combination of both. Moreo-
ver they can implement complete embedded systems on 
a chip, co-processors, custom user logic, communication 
protocols or multi-processor systems.
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1.2  Background

These days, intelligent mobile robots are expected to 
perform more and more complex tasks in different appli-
cation areas. An enormous amount of research and many 
studies have been conducted to focus on the navigation 
problem, obstacle avoidance, wall following, and intel-
ligent parking. To attain the desired objectives, mobile 
robots use different sensors types to collect environmen-
tal information and actuators set for their movement 
and reaction. Accordingly, the choice of the electronic 
components must be rigorous to accurately control the 
wanted position and route, perform real time data pro-
cessing, and do multiple tasks.

The standard software based control platforms like 
Digital Signal Processors (DSP), still the popular choice 
to carry out robot control operations [1, 2]. DSP is a dedi-
cated microprocessor generally programmed in C lan-
guage to enhance performance. The major drawbacks 
of such these architectures are: (a) puissant DSPs are 
expensive and their related software applications may 
not reflect the hardware performance; (b) sequential task 
processing; (c) trouble to make changes in the hardware; 
and (d) lack of design portability [3]. In addition to that, 
the used techniques and the platforms are limited since 
they don’t provide other services. Thus, it is better to 
aim a SoC architecture with CPU and custom coproces-
sors that offers the ability to execute more applications. 
Recently, wireless sensors are used in mobile robot navi-
gation to improve the effectiveness and the robustness 
of robot localization [4].

The FPGA is getting particular attention from the 
scientific community to address computational con-
straints. This implies that intensive computation should 
be applied to the computer vision, image processing, 
robotics systems, etc. FPGAs offer high performance 
close to ASICs. However, unlike ASICs, FPGAs provide a 
high degree of flexibility similar to a general purpose 
computer. FPGA-based systems are faster than a pure 
software approach in terms of computational power [5]. 
Thus, an infrastructure allowing for the exploitation of 
the high performance capability of a hardware imple-
mentation with the benefits of an autonomous resource 
management is a promising alternative to be used. Many 
robotic applications are implemented on FPGAs. Most of 
these FPGA implementations focus on a simple task of 
the whole robotic system or use the FPGA for a specific 
and particular application. In [6], an embedded fuzzy 
controller on FPGA devices was described. The design 
methodology and tool chain presented by the authors 
were applied to achieve a control system for solving the 
navigation tasks of an autonomous vehicle. The authors 

in [7] describe a hardware architecture for implement-
ing a sequential approach of the Extended Kalman Fil-
ter which is suitable for mobile robotic tasks. In [8], the 
authors proved the effectiveness of using the FPGA as 
a coprocessor together with the dual core processor 
to speed up neural calculations. In [9], the proposed 
robot navigation is developed with modified approach 
of depth first search algorithm for patrolling services. It 
is implemented using FPGAs for successful navigation. 
An FPGA will works as control unit, after sensing free 
path it drives the robot as per algorithm. The authors 
in [10] present the design and testing of a newly devel-
oped field programmable gate array (FPGA) board for 
mobile robot research. The idea consists of interfacing 
the FPGA to a 16-bit digital signal controller (dsPIC). It’s 
used for exploiting position tracking of the used mobile 
robot. The goal of authors in [11] is to bring MATLAB 
and FPGA on to the same platform to develop image 
processing algorithms for edge detection in order to 
actuate the motion control of the robot in the envi-
ronment. As concluded by authors in [12], FPGA is an 
ideal choice for implementation of visual navigation 
for real time moving object tracking algorithms. In the 
study proposed in [13], the design and control of an 
FPGA based four-wheel drive mobile robot that detect-
ing obstacles and avoiding them were carried out. It is 
seen that the mobile robot, which is controlled by FPGA, 
quickly detects the obstacles and changes its direction 
according to this obstacle. In [14], the authors present a 
novel use of open-source FPGAs for educational robotics 
using a new visual language for robot programming. The 
objective of authors in the study [15] was to develop a 
hybrid CS-fuzzy optimization technique for application 
to evolutionary real-time fuzzy control omni-Mecanum-
wheeled autonomous vehicles. With the advantages of 
FPGA, metaheuristic algorithm, and fuzzy theory, the 
proposed CS-fuzzy control method outperforms the tra-
ditional fuzzy controllers. Many FPGA-based solutions 
have been implemented in the field of robotics but in 
our best knowledge, there is no prior work on FPGAs 
for complete robotic navigation systems that includes 
the afore mentioned four major conventional navigation 
blocks.

The design and implementation of hardware efficient 
solutions has been previously investigated for specific 
robotic tasks. Thus, our work proposes a generic and flex-
ible platform based on the FPGA technology, to study and 
design a complete robot navigation system with different 
computational requirements. This platform can be used to 
address the largely different computational requirements 
of robot navigation applications. In fact, energy efficiency 
was ensured through using an FPGA low complexity with 
limited logic cells. Furthermore we resorted to the use 
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of the dynamic reconfiguration to embed all complex 
mobile navigation activities on the robot. A little research 
has been carried out in the area of partial reconfiguration 
for mobile robots. To achieve an intelligent, task-based 
reconfiguration, the authors in [16] introduced a novel 
methodology for the computational hardware for MR 
applications using FPGAs. Hardware/software co-design 
and hardware reconfiguration were used to design fault-
tolerant and reliable robotic systems. The authors in [17] 
propose an implementation for a highly customizable 
FPGA-based vision processing module for mobile applica-
tions. The partial dynamic reconfiguration is used in image 
processing tasks. If a specific processing task is finished, a 
new hardware configuration can be loaded to optimize the 
resource utilization on the fly. In [18], the authors focus on 
the dynamic reconfiguration of the robot’s FPGA hardware 
to locally perform image and video processing tasks. The 
main aim of the work is to create a set of reconfigurable 
hardware configurations for a color recognition module 
supporting different application parameters. In [19], the 
authors implemented a line follower robot for a white line 
and a black one. The robot has to dynamically reconfigure 
the FPGA during run-time while the robot senses black 
line after white line or vice versa. However, there are no 
prior works on FPGA reconfiguration in a robot localization 
system. So, our approach is to propose a global modular 
FPGA based system for robot navigation where the FPGA 
is the robot’brain’ to manage complex tasks that other 
embedded platforms cannot guarantee especially for 
complex vision applications. We also exploit the dynamic 
reconfiguration feature that allows modifying the naviga-
tion controller according to the requirements of the dif-
ferent navigation algorithms. A dynamic reconfiguration 
can be used to enhance the FPGA resource utilization by 
time-sharing the reconfigurable resources among differ-
ent designs and applications needs.

The remainder of this paper is divided into five sections. 
Section 2 presents the complete robotic platform and its 
components. In Sect. 3, we describe the localization tech-
niques used in robotics and detail each technique with 
its appropriate design architecture. Section 4 presents 
the remote control system and how it is achieved. Finally, 
Sect. 5 displays the main conclusions of the paper.

2  Embedded robot navigation platform 
overview

Our MR navigation includes different interrelated activi-
ties: perception, localization, obstacle detection and 
remote tracking/control: (i) Perception consists in obtain-
ing and interpreting sensory information; (ii) localiza-
tion provides the strategy to estimate the robot position 

within the spatial map; (iii) obstacle avoidance deals with 
the strategy of detecting and avoiding obstacles (v) path 
planning allows the control of the MR at real time. Figure 1 
describes this complete platform.

The robot consists of:

• The MR Mini Khepera-II [20].
• The ML507 as the navigation controller: it integrates 

an embedded PowerPC hard-core CPU cameras: One 
is used to track the robot and participate in its locali-
zation and the other is mounted onto the robot itself 
to detect obstacles during navigation with a clock fre-
quency up to 700 MHz, a Micro-Blaze soft-core CPU 
with a clock frequency up to 125 MHz, different RAM 
memories (256 MB DDR2, 1 MB SRAM), VGA input, DVI 
output, RS-232, JTAG interface, Ethernet port and more 
than 11,000 slices of reconfigurable logic.

• On-board sensors: odometers to measure the robot 
relative pose and infra-red leds to detect obstacles.

• Surrounding cameras: One is used to track the robot 
and participate in its localization and the other is 
mounted onto the robot itself to detect obstacles dur-
ing navigation.

The Linux operating system (OS) was chosen to manage 
the navigation controller. It would lead to increase proto-
typing convenience. Using Linux, an open, robust and well 
documented OS, can provide a rich set of debugging and 
additional support software like drivers and APIs, espe-
cially for network functionality. Network communication 
management is so complicated without using the Eth-
ernet interface provided by the Embedded Linux. It also 
provides rich possibilities to include libraries (like image 
processing library: OpenCV) that can be cross compiled 
under the PPC.

In this paper, we first showed the prototype results of 
the navigation platform. The supported functionalities 

Fig. 1  The proposed platform for robot navigation system
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of this prototype are: robot localization using ceiling 
camera, distant web access and the support of dynamic 
reconfiguration.

3  Localization concept

We exploit the dynamic reconfiguration benefit for the 
localization step. In our robot, three localization methods 
were applied: the relative, the absolute and the hybrid. 
Table 1 presents a summary on localization techniques.

According to this table, the stand-alone sensor cannot 
exceed certain physical limitations such as limited range 
and field of vision. Consequently, combining information 
from different sensors would expand the area around the 
vehicle and improve the reliability of the entire localiza-
tion/navigation system in case of a sensor failure.

The proposed approach developed in this paper used 
two different sensors. One is based on encoders to insure 
relative pose using the robot kinematic model and fuzzy 
controller to reach a target. The other is based on a cam-
era placed on the ceiling of the robot navigation environ-
ment to provide the absolute pose. The advantage of using 
such an absolute system is to automatically generate the 
robot initial coordinates and reduce the errors in encoders’ 
measures through retiming the visual control. We can also 
note that the relative localization is quite simple while the 
absolute one requires high computational power. Thus, 
the proposed concept is to integrate the advantages of 
a localization based on an odometer and a localization 
based on camera data and make them complementary 
which will enable the robot to accurately localize itself. 
Both calculations are carried out on the FPGA as the robot 
microcontroller does not deal with these tasks. Regard-
ing the camera, it’s linked to the FPGA via the VGA input 
in the actual prototype. This solution is suggested owing 

to the available ports of the ML507. A wireless camera is 
the best alternative and there is no need for a high band-
width as a slow frame rate is enough to correct the robot 
position. Each localization technique has both advantages 
and drawbacks and should be applied in a specific circum-
stance. To allow a flexible robot localization/navigation, 
the different techniques should be permanently alert for 
use.

3.1  Relative localization

The experiments were performed on the MR with two 
independent driving wheels which movements were con-
trolled by varying the speed of each wheel. The position 
is obtained according to the robot internal mathematical 
kinematic model. The treatment is carried out using a first 
architecture noted as “archi loc rel” made up of the PPC 
processor, one BRAM (a 128 Kb internal FPGA memory), 
and an UART controller to ensure serial communication 
with the robot. Figure 2 illustrates the “archi_loc_rel”.

Table 1  Summary of 
localization techniques

Localization techniques Advantages Disadvantages

Relative Localization (Odometers, 
Gyroscopes,…)

Easy to accomplish
Simple
Inexpensive [21]

Imprecision in measures
Accumulating errors [22]
Providing information only about 

the internal state of system
Absolute Localization (Infrared sen-

sors, camera, laser, etc.)
Independence in position 

estimates [23]
Minimizing error
More accurate view of the 

robot in its environment
External robot informa-

tion

Dependence on the environment
Complex
Very slow
Greater likelihood of failure

Hybrid localization (data fusion) Reducing uncertainty [24]
Increasing the dimension-

ality of the measures
Improving resolution [24]
Reduction in time

Much calculation to perform a task
Short range of sensors
Filter divergence
Necessity to know initial pose

Fig. 2  The design architecture for relative localization
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The FPGA resources occupation of “archi_loc_rel” is pre-
sented in Table 2. Less than 3% of the FPGA resources are 
required. The measures based on the odometer modules 
are erroneous, mainly when the robot must travel dis-
tances. This is due to the wheels’ slippage and drift prob-
lems. To address this problem, we opted to correct these 
measures by external data coming from a camera placed 
in the robot parallel plan.

3.2  Absolute localization

The absolute position is performed on the robot. It is 
achieved by applying image processing algorithms to the 
robot frames coming from a ceiling camera. The camera 
acquisition and display module are managed by the Micro-
blaze processor while the absolute localization algorithms 
are executed by the embedded PPC processor.

3.2.1  The camera acquisition module “cam”

The CAM module includes:

• The VGA input of the ML507 that must be connected 
to a VGA source.

• The DVI output of the ML507 that must be connected 
to a DVI/VGA compatible screen.

A ceiling camera with a resolution of 640 * 480 has been 
used. Its S-video output is connected to the VGA input of 
the ML507 using a video converter. The CAM architecture 
is as shown in Fig. 3.

• The microblaze processor
• A MicroBlaze Debug Module (MDM).
• The VGA input IP block: this block consists of AD9980 

analog interface that converts the incoming signal 
from the ML507 VGA input into a YUV signal and of a 
VFBC (Video Frame Buffer Controller) which allows the 
user to read and write data.

• The XPS TFT IP block that sends the output signal to DVI 
output connector of the ML507.

• A Multi-Port Memory Controller (MPMC) interface.

Table 3 summarizes the used capacity in the FPGA for 
the CAM using Xilinx Platform Studio (XPS) tool.

From Table  3, we remark that about 45% of FPGA 
slices were occupied. We have to manage the existent 
resources between different designs needed by different 
applications.

Table 2  Synthesis results of “archi_loc_rel“

Device Virtex-5 xc5vfx70t

Resource Total Usage Usage percent

Device utilization summary
Slice Registers 44.800 522 1
Slice LUTs 44.800 452 1
Number used as Logic 44.800 429 1
Number of occupied Slices 11.200 390 3
Total Memory used (KB) 5.328 1.152 21
Timing summary
Minimum period 2,5 ns
Maximum frequency 400 MHz

Fig. 3  The camera acquisition 
architecture

Table 3  Synthesis results of camera acquisition module

Device Virtex-5 xc5vfx70t

Resource Total Usage Usage percent

Device utilization summary
Slice Registers 44.800 9.301 20
Slice LUTs 44.800 8.658 19
Number used as Logic 44.800 7.930 17
Number of occupied Slices 11.200 4.803 42
Total Memory used (KB) 5.328 1.782 33
Timing summary
Minimum period 8 ns
Maximum frequency 125 MHz
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3.2.2  The robot localization module “RLM”

To ensure a continuous robot navigation, we would rather 
to execute the RLM on a PPC processor as it is more per-
formant than the MicroBlaze. The RLM is managed by the 
Embedded Linux OS. It consists of a pipeline of image 
processing steps. To facilitate the RLM implementation, 
the OpenCV library was used. It was cross-compiled with 
Linux for PPC.

The RLM processed the input robot images via a 
straightforward pipeline to determine the location of the 
circular shaped robot. We give here a summary of the tech-
nique. The whole technique is presented in [25]. Firstly, the 
Cartesian coordinate system has to be set up using the 
four landmarks. Secondly, the robot has to be detected 
and finally its coordinates are computed. The robot detec-
tion consists in the identification of its circular shape in 
the input frame. To reduce the RLM complexity, we used a 
window embracing the robot (like the search window in 
video compression application) and we searched for the 
circular shaped robot instead of scanning the entire input 
image. The window size is fixed to 70*70 pixels after sev-
eral tests on various robot speeds and motion orientations. 
The 70*70 is the minimal window size to cover the robot 
area and the maximal to treat the minimum pixels number.

The pipeline as shown in Fig. 4 consists of a grayscale 
conversion (step 2). A Sobel filter (step 3), whose output 
was further improved by a specified threshold value equal 
to 63 (step 4). This value is calculated using an iterative 
method. Afterwards, the image was smoothed by an erode 
filter (step 5) and finally a Hough Transform (step 6) was 
used to extract the circle corresponding to the robot.

The RLM execution time on the PPC (400 MHz, fixed 
point) is 2.187 s. This time is not sufficient to ensure real 
time navigation which has to be less than 0.48 s [26].

3.2.3  Reducing RLM processing time

Three techniques are used. The first technique is to raise 
the PPC frequency from 400 MHz to 600 MHz (the maxi-
mum value authorized by ML507) using a PLL module. 
We also add a floating point co-processor to the PPC as 
many operations of the RLM are in a floating point format. 
The second technique is based on the use of a hardware 
accelerator to execute the computationally complex task 
of the RLM in hardware (using FPGA logic blocks). To select 
which RLM task is a candidate for a hardware implementa-
tion, we profile the RLM algorithm. Figure 5 shows the time 
consumption rates.

Through profiling results, the edge detection function 
consumes 60% of the total time since it comprises com-
plex operations like Eq. (1).

where Mag: The gradient magnitude,  Eh the intensity 
along horizontal directions,  Ev the intensity along vertical 
directions.

This function is implemented as a hardware accelera-
tor named “Acc-Block”. The “Acc_block” is coupled to the 
embedded PowerPC processor via the APU (Auxiliary Pro-
cessor Unit) interface. The principal reason for using the 
APU rather than connecting the hardware blocks to the 
CPU through the PLB bus is the superior bandwidth and 
lower latency between the PowerPC and the APU/FCM. 

(1)|Mag| =
√

E2
h
+ E2

v

Fig. 4  The pipeline of image 
processing [25]
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An extra advantage is that the APU not dependent of the 
CPU to peripheral interface and consequently does not 
add a supplementary load to the PLB bus that the system 
involves for fast peripheral access.This function is imple-
mented as a hardware accelerator called “Acc_Block”. The 
“Acc_block” is coupled to the embedded PPC processor 

via the APU (Auxiliary Processor Unit) interface. The main 
reason for using the APU instead of connecting the hard-
ware blocks to the CPU through the PLB bus is its superior 
bandwidth and faster communication with the PPC. An 
additional advantage is that the APU is independent of the 

Fig. 5  Profiling Results [25]

Table 4  Timing results for HW/SW implementation

Absolute localization algorithm Results

Image frame size 640 * 480
Purely implementation: 400 MHz (s) 2.187
Purely implementation: 600 MHz (s) 1.445
+ FPU (s) 0.081
+ FPU + Acc block (s) 0.053
Acceleration factor 41.26

Fig. 6  The design architecture 
to obtained absolute localiza-
tion

Table 5  Synthesis results of the architecture

Device Virtex-5 xc5vfx70t

Resource Total Usage Usage 
percent

Device utilization summary
Slice Registers 44.800 10.951 25
Slice LUTs 44.800 10.004 23
Number used as Logic 44.800 9.107 21
Number of occupied Slices 11.200 5.676 50
Total Memory used (KB) 5.328 2.610 48
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CPU to peripheral interface and therefore does not add an 
extra load to the PLB bus, which is needed by the system 
for a fast peripheral access.

The processing time of the algorithm executed on 
the mixed architecture (PPC + “Acc_Block”) when all the 
hardware enhancement techniques are used is about 
0.053 s (see Table 4 for more details). The proposed HW/

SW architecture gives acceleration up to 42 × compared to 
the pure SW implementation.

Figure 6 shows the architecture of the absolute locali-
zation system “archi_loc_abs”

The two processors share the external DDR memory 
through the MPMC module interface using an exclusion 
mechanism (XPS Mutex) to synchronize the access.

Tables 5 and 6 recapitulate the FPGA occupation and 
power consumption.

Table 7 displays the FPGA slices occupation for “archi_
loc_rel” and “archi_loc_abs”.

3.3  Experiments

The purpose of the achieved experiment is to simultane-
ously locate the robot in real time using both encoders 
and a camera. The results are presented in Figs. 7a, b and 8.

In Fig. 7a, the robot must follow a straight path for 
a distance of 50 mm. While in Fig. 7b, it must follow a 
straight path for a distance of 350 mm. Figure 7a shows 
that for a short trajectory, the two position measurements 
(odometer and camera) are very close. By cons, for a long 

Table 6  Estimated Power and Energy of the system

Measures Purely SW 
implementation

HW/SW imple-
mentation

Gain Factor

Power (W) 5.039 6.480 –
Energy/frame (j) 7.281 0.343 21.22

Table 7  FPGA slices occupation of both designs

FPGA slices occupation

Relative localization Absolute localization

3% 50%

Fig. 7  Robot localization using both encoders and camera

Fig. 8  Different robot real positions measured with a ruler
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trajectory, the error in the position becomes larger. This is 
the case of the experiment illustrated in Fig. 7b.

To quantify the errors of each method, we achieved 
four real positioning robot measures (M1, M2, M3 and 
M4) using a ruler as shown in Fig. 8. The real positioning 
robot is determined by measuring, by the ruler, its center 
position.

The results of this comparison are summarized in 
Table 8. The obtained values proved that the real measures 
are closer to those using a camera than those obtained 
using encoders.

3.4  Hybrid localization

The absolute location is crucial to correct the robot path 
measured by the odometer system. The hybrid localiza-
tion consists in combining the relative position with the 
absolute one using a retiming point in order to correct the 
encoders’ measures. The hardware architecture is the same 
presented in Fig. 6. If we consider the last point calculated 
by the camera at the finished journey as the retiming 
point, as shown in Fig. 9, the navigation error will be too 

high as it is proportional to the travelled distance. In Fig. 9, 
the black curve represents the encoders’ trajectory to be 
covered by the robot if there are no errors in encoders 
(relative localization) whereas the blue curve represents 
the robot real trajectory using camera measures (absolute 
localization). The error in this figure is 35 mm deflection 
along the x-axis and 40 mm deflection along the y-axis 
when the robot tries to reach the target T defined by 
 (xT = 300 mm,  yT = 300 mm), so about 10% error.

To reduce the error between the two positions, we have 
involved the absolute coordinates at each five frames and 
applied the correction on these points. This method allows 
speeding up the robot wheels velocity from 24 mm/s (the 
robot speed when applying the absolute localization on 
every frame) to 40 mm/s while reducing the navigation 
error: to a 12 mm deflection along x-axis and 17 mm along 
y-axis, i.e. about 6% error only.

The different localization techniques were firstly, inde-
pendently designed in the ML507. In Sect. 3.5, we detailed 
how these three techniques can be used together in the 
ML507 according to the robot evolution conditions.

3.5  Dynamic reconfiguration of the localization 
system

3.5.1  The principle of the proposed approach

The dynamic reconfiguration can be used to enhance the 
FPGA resource utilization by time-sharing the reconfig-
urable resources among the different designs or among 
parts of a design. The internal FPGA architecture can be 
dynamically reconfigured at runtime to load on the fly 
when a new localization system is required. This mecha-
nism allows optimizing the configured surface and manag-
ing the FPGA resources between different robot applica-
tions. The dynamic reconfiguration is achieved while the 
device is active: certain areas of the device can be recon-
figured while other areas are operational without being 
affected by the reconfiguration.

When the hybrid localization technique is used, the rel-
ative localization is activated for four frames and the abso-
lute localization is activated in the 5th frame. For the next 

Table 8  Performance 
evaluating table

xR(mm)/yR(mm) Measures

M1 M2 M3 M4

xR yR xR yR xR yR xR yR

Methods
 Encoders 50 99 204.4 99.06 301.9 98.57 397.4 100.6
 Camera 50 99 198.1 103.8 305.6 110.2 421.9 124.9
 Ruler 50 100 200 104 306 115 424 125

Fig. 9  Robot localization using retiming point
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upcoming 4 frames, the relative localization is activated 
once again using the dynamic reconfiguration. Figure 10 
shows how the dynamic reconfiguration mechanism is 
used in the hybrid localization technique.

In Fig. 10a, the “archi_loc_abs” is always active (50% of 
FPGA resources are allocated) without the dynamic recon-
figuration. While, in Fig. 10b, during the relative localiza-
tion, only 3% of FPGA resources are allocated. 50% of the 
FPGA resources are then liberated and used for other 
modules.

3.5.2  The concept of the dynamic reconfiguration

The logic in the FPGA design is split into two different 
types, static logic and reconfigurable logic. The white 
area of the FPGA block in Fig. 11 depicts static logic which 
does not change while the red portion represents recon-
figurable logic that has been designed explicitly by the 
designer. This portion can be divided to many reconfigur-
able partitions. A series of modules are then assigned to 

these reconfigurable partitions (known as Partial Reconfig-
urable Modules). These modules are thereafter converted 
into partial bit files that can be, in run-time, switched in 
and out of the FPGA to map the suitable application func-
tionalities into the associated partitions.

Figure 11 illustrates the key concepts for DPR model.
Our design invoked “archi_loc_rel” or “archi_loc_abs” 

to be used respectively for relative localization and abso-
lute localization. Thus, two bitstreams are generated: 
a full bitstream that contains the static region which is 
designed by”archi_loc_rel” since the localization system 
starts by determining the relative localization, and a par-
tial bitstream that contains the configuration of the partial 
reconfiguration partition which is”archi_loc_abs” loaded 
at every fifth frame.

To design reconfigurable systems, three approaches 
are possible: externally using JTAG or RS-232 interface, 
or internally using the auto-reconfiguration through the 
Internal Configuration Access Port (ICAP). We choose 
the auto-reconfiguration way which says that the FPGA 

Fig. 10  The dynamic recon-
figuration mechanism of the 
hybrid localization

Fig. 11  Partial Reconfigura-
tion FPGA showing static and 
dynamic regions
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reconfigures itself to accomplish the purpose, either 
after predefined time length or in light of a status flag.

The ICAP module is used for the FPGA hardware 
dynamic reconfiguration. Xilinx provides an implemen-
tation of a core called XPS HWICAP that provides the 
interface necessary to transfer bitstreams files to and 
from the devices’ configuration memory. An internal 
on-chip Block RAM can be utilized to store the recently 
read configuration data. The XPS HWICAP is connected 
to the PPC processor through the PLB bus. The system is 
connected to an external Flash memory (used to store 
the partial bitstream to carry out the reconfiguration) 
via a Flash controller that provides read/write access to 
the external memory. The communication between the 
static and dynamic regions is performed through inter-
faces called Bus Macros in Xilinx architectures.

Figure  12 shows the dynamic reconfiguration 
architecture.

3.5.3  System operation flow

The DR process is described according to the following 
steps:

• FPGA is programmed with initial configuration which 
is”archi_loc_rel” at power-up and starts execution.

• For each fifth frame, the PPC requests the partial bit-
stream “archi_loc_abs” from the compact flash and 
writes it in the PPC memory.

• PPC writes a word-by word to the configuration cache 
of the HWICAP module.

• The HWICAP BRAM is tested to verify if it has been fully 
charged.

• If Yes, the reconfiguration is carried out and all data 
contained in the HWICAP BRAM are copied to the FPGA 
through the internal BRAM memory.

• Checking if the FPGA reconfiguration has been done.

Figure 13 depicts the operation flow of the system.

3.5.4  Design flow

Figure 14 shows the methodology deployed in the imple-
mentation of dynamic reconfiguration strategy. The partial 
reconfiguration process demands separate Netlist files for 
the static (top level) design and for reconfigurable mod-
ules. Reconfigurable Modules are written in VHDL and are 
synthesized to a Netlist file using Xilinx Synthesis Tech-
nology (XST) whilst the static system Netlist is resulted 
from the MHS (Microprocessor Hardware Specification) 
description file. The obtained Netlist files are exported to 
PlanAhead tool that manages the details of creating and 
building the reconfigurable system. In PlanAhead tool 
the device region is partitioned into static and dynamic 
regions. Full and partial bitstreams are generated for dif-
ferent configuration.

As we conceive developing a complete robot navigation 
system with all its main activities, the required resources 
for absolute localization will be used by the remote con-
trol system. As the FPGA must instantaneously send sen-
sors reading to the distant PC to control the robot in real 
time, we can use, for now and to validate the approach, 
this module when using relative localization. The remote 
control system is based on Ethernet connection. All sen-
sors readings (images or values) are redirected and viewed 
from a distant PC using a web page.

Fig. 12  The dynamic recon-
figuration computing system
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4  The monitoring system

During the MR navigation, all sensors readings can be redi-
rected and viewed from a distant PC (web client) using a 
web page.

The images provided by the ceiling camera and that 
fitted on the robot are available to the robot commander 
browser. The distant PC can thus visualize and monitor the 
robot in suspect places or if unpredictable obstacles are 
detected. It can also define a potential target coordinates 
and forward them to the installed web server on the FPGA.

The network image transfer is performed using the “out-
put http” plugin of MJPEG streamer. HTTP output plugin 
or web server is the most important and the most used 
among output plugins. It can transport images to a web 
client navigator. The broadcast of the stream images via 
HTTP is very simple to implement. It’s essentially to inform 
the client (the PC in our case), using a particular content 
type, that it will receive a series of files. As the client keeps 
the connection open, the broadcasting system continues 
to send images. Each new sent image replaces the pre-
vious image as soon as it is completely received. Clients 
must treat the different images as they arrive to avoid 
being crushed by the following images.

Figure 15 shows the HTTP header format.

The content type “multipart/x-mixed-replace” is the 
technique of sending data in the server push mode and 
streaming over HTTP. All parts of a mixed replace mes-
sages have the same semantic meaning, i.e., all have the 
same MIME type (images in our case). Nevertheless, each 
new sent image replaces the previous image as soon as 
it is completely received. Clients must treat the different 
images as they arrive to avoid being crushed by the fol-
lowing images.

This system connectivity is ensured through the Eth-
ernet port of the Ml507 FPGA. The internet connection is 
used during the automatic mode to allow the user to track 
the robot.

The HTTP plugin must:

• Wait for a client connection (FireFox, Opera, Safari…) 
to serve robot images.

• Send the browser the headers that indicate the data 
type it will receive (HTTP headers).

The TCP socket does not report anything until the data 
is transferred otherwise it has to report the occurrence of 
an error.

Fig. 13  The operation flow of 
the system
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5  Conclusion

The implementation of a complete navigation system 
on a single board mounted on small autonomous robots 
has become possible thanks to the advances in the FPGA 
technology. The FPGA investigation is still not fully 
exploited in robotic vision applications. In this paper, 
we presented a flexible platform based on the FPGA 
technology, for studying and conceiving complete uni-
fied robot navigation system. This platform can be easily 
tuned to address the variable computing requirements 
of the robot localization application. We have indepen-
dently implemented three localization techniques on the 
FPGA: relative, absolute and hybrid and we have ben-
efited from the dynamic reconfiguration of the ML507 
to change dynamically the localization system to satisfy 

energy/surface ratio and exploit the released resources 
to implement other robot tasks.

In ongoing works, we plan to study the complete FPGA 
robot navigation system that addresses the other major 
MR activities like obstacle avoidance and path planning.
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