
Vol.:(0123456789)

SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4

Research Article

Design of a flexible reconfigurable mobile robot localization system
using FPGA technology

Agnès Ghorbel1 · Nader Ben Amor1 · Mohamed Jallouli1

Received: 18 December 2019 / Accepted: 27 May 2020 / Published online: 7 June 2020
© Springer Nature Switzerland AG 2020

Abstract
Mobile robot activities have variable computational requirements according to various parameters related to the robotic
applications behaviour and the robot dynamic environment. This high variability puts many challenges for a complete
robot navigation system design. With their high flexibility, reconfigurable architectures are a suitable choice to design
such dynamic system. Mobile robot navigation steps (perception, localization, obstacle avoidance and path planning)
are extremely complex to be embedded in a complete navigation controller. In this paper, we presented a generic and
a flexible platform based on FPGA technology, for studying and prototyping complete unified robot navigation system.
We exploited the dynamic reconfiguration mechanism that allows modifying the navigation controller according to
different navigation algorithm requirements. We showed the effectiveness of this platform in the localization step. We
have a dynamic reconfigurable system that switches between three different localization techniques to satisfy energy/
surface ratio and exploit the released resources to implement other robot tasks.

Keywords Robotics · FPGA · Dynamic reconfiguration · Hybrid localization

1 Introduction

1.1 Context

Navigation in mobile robotics is a methodology allowing
the guidance of a Mobile Robot (MR) to perform, well and
securely, a task through an environment with obstacles.
The success of this task requires an adequate coordina-
tion between the four major blocks involved in naviga-
tion: perception, localization, path planning and obstacles
avoidance. The MR should possess an architecture able to
coordinate the on board navigation elements in order to
correctly achieve the different objectives specified in the
mission with efficiency whether in indoor or outdoor envi-
ronments. One efficient way of building a robotic platform
is to join pre-built robot parts, for example acquire a MR
with desired locomotion, pre-built sensors with specific

interface, robotics arms, cameras, etc. In this way, we can
build a complex custom robot. A complete navigation
system is still required. It has to be modular, scalable and
flexible. The different navigation steps have high computa-
tional requirements. They require hardware oriented archi-
tectures and flexible software oriented architectures, at
the same time. Reconfigurable architectures are therefore
an adequate solution. FPGAs are a good choice, because
they can implement a processor-based system or a micro-
controller-based system or a combination of both. Moreo-
ver they can implement complete embedded systems on
a chip, co-processors, custom user logic, communication
protocols or multi-processor systems.

 * Agnès Ghorbel, ghorbel.agnes@gmail.com | 1Computer and Embedded System Laboratory, Ecole Nationale d’Ingénieurs de Sfax,
Université de Sfax, Sfax, Tunisia.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-2960-4&domain=pdf
http://orcid.org/0000-0002-9626-3336

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4

1.2 Background

These days, intelligent mobile robots are expected to
perform more and more complex tasks in different appli-
cation areas. An enormous amount of research and many
studies have been conducted to focus on the navigation
problem, obstacle avoidance, wall following, and intel-
ligent parking. To attain the desired objectives, mobile
robots use different sensors types to collect environmen-
tal information and actuators set for their movement
and reaction. Accordingly, the choice of the electronic
components must be rigorous to accurately control the
wanted position and route, perform real time data pro-
cessing, and do multiple tasks.

The standard software based control platforms like
Digital Signal Processors (DSP), still the popular choice
to carry out robot control operations [1, 2]. DSP is a dedi-
cated microprocessor generally programmed in C lan-
guage to enhance performance. The major drawbacks
of such these architectures are: (a) puissant DSPs are
expensive and their related software applications may
not reflect the hardware performance; (b) sequential task
processing; (c) trouble to make changes in the hardware;
and (d) lack of design portability [3]. In addition to that,
the used techniques and the platforms are limited since
they don’t provide other services. Thus, it is better to
aim a SoC architecture with CPU and custom coproces-
sors that offers the ability to execute more applications.
Recently, wireless sensors are used in mobile robot navi-
gation to improve the effectiveness and the robustness
of robot localization [4].

The FPGA is getting particular attention from the
scientific community to address computational con-
straints. This implies that intensive computation should
be applied to the computer vision, image processing,
robotics systems, etc. FPGAs offer high performance
close to ASICs. However, unlike ASICs, FPGAs provide a
high degree of flexibility similar to a general purpose
computer. FPGA-based systems are faster than a pure
software approach in terms of computational power [5].
Thus, an infrastructure allowing for the exploitation of
the high performance capability of a hardware imple-
mentation with the benefits of an autonomous resource
management is a promising alternative to be used. Many
robotic applications are implemented on FPGAs. Most of
these FPGA implementations focus on a simple task of
the whole robotic system or use the FPGA for a specific
and particular application. In [6], an embedded fuzzy
controller on FPGA devices was described. The design
methodology and tool chain presented by the authors
were applied to achieve a control system for solving the
navigation tasks of an autonomous vehicle. The authors

in [7] describe a hardware architecture for implement-
ing a sequential approach of the Extended Kalman Fil-
ter which is suitable for mobile robotic tasks. In [8], the
authors proved the effectiveness of using the FPGA as
a coprocessor together with the dual core processor
to speed up neural calculations. In [9], the proposed
robot navigation is developed with modified approach
of depth first search algorithm for patrolling services. It
is implemented using FPGAs for successful navigation.
An FPGA will works as control unit, after sensing free
path it drives the robot as per algorithm. The authors
in [10] present the design and testing of a newly devel-
oped field programmable gate array (FPGA) board for
mobile robot research. The idea consists of interfacing
the FPGA to a 16-bit digital signal controller (dsPIC). It’s
used for exploiting position tracking of the used mobile
robot. The goal of authors in [11] is to bring MATLAB
and FPGA on to the same platform to develop image
processing algorithms for edge detection in order to
actuate the motion control of the robot in the envi-
ronment. As concluded by authors in [12], FPGA is an
ideal choice for implementation of visual navigation
for real time moving object tracking algorithms. In the
study proposed in [13], the design and control of an
FPGA based four-wheel drive mobile robot that detect-
ing obstacles and avoiding them were carried out. It is
seen that the mobile robot, which is controlled by FPGA,
quickly detects the obstacles and changes its direction
according to this obstacle. In [14], the authors present a
novel use of open-source FPGAs for educational robotics
using a new visual language for robot programming. The
objective of authors in the study [15] was to develop a
hybrid CS-fuzzy optimization technique for application
to evolutionary real-time fuzzy control omni-Mecanum-
wheeled autonomous vehicles. With the advantages of
FPGA, metaheuristic algorithm, and fuzzy theory, the
proposed CS-fuzzy control method outperforms the tra-
ditional fuzzy controllers. Many FPGA-based solutions
have been implemented in the field of robotics but in
our best knowledge, there is no prior work on FPGAs
for complete robotic navigation systems that includes
the afore mentioned four major conventional navigation
blocks.

The design and implementation of hardware efficient
solutions has been previously investigated for specific
robotic tasks. Thus, our work proposes a generic and flex-
ible platform based on the FPGA technology, to study and
design a complete robot navigation system with different
computational requirements. This platform can be used to
address the largely different computational requirements
of robot navigation applications. In fact, energy efficiency
was ensured through using an FPGA low complexity with
limited logic cells. Furthermore we resorted to the use

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4 Research Article

of the dynamic reconfiguration to embed all complex
mobile navigation activities on the robot. A little research
has been carried out in the area of partial reconfiguration
for mobile robots. To achieve an intelligent, task-based
reconfiguration, the authors in [16] introduced a novel
methodology for the computational hardware for MR
applications using FPGAs. Hardware/software co-design
and hardware reconfiguration were used to design fault-
tolerant and reliable robotic systems. The authors in [17]
propose an implementation for a highly customizable
FPGA-based vision processing module for mobile applica-
tions. The partial dynamic reconfiguration is used in image
processing tasks. If a specific processing task is finished, a
new hardware configuration can be loaded to optimize the
resource utilization on the fly. In [18], the authors focus on
the dynamic reconfiguration of the robot’s FPGA hardware
to locally perform image and video processing tasks. The
main aim of the work is to create a set of reconfigurable
hardware configurations for a color recognition module
supporting different application parameters. In [19], the
authors implemented a line follower robot for a white line
and a black one. The robot has to dynamically reconfigure
the FPGA during run-time while the robot senses black
line after white line or vice versa. However, there are no
prior works on FPGA reconfiguration in a robot localization
system. So, our approach is to propose a global modular
FPGA based system for robot navigation where the FPGA
is the robot’brain’ to manage complex tasks that other
embedded platforms cannot guarantee especially for
complex vision applications. We also exploit the dynamic
reconfiguration feature that allows modifying the naviga-
tion controller according to the requirements of the dif-
ferent navigation algorithms. A dynamic reconfiguration
can be used to enhance the FPGA resource utilization by
time-sharing the reconfigurable resources among differ-
ent designs and applications needs.

The remainder of this paper is divided into five sections.
Section 2 presents the complete robotic platform and its
components. In Sect. 3, we describe the localization tech-
niques used in robotics and detail each technique with
its appropriate design architecture. Section 4 presents
the remote control system and how it is achieved. Finally,
Sect. 5 displays the main conclusions of the paper.

2 Embedded robot navigation platform
overview

Our MR navigation includes different interrelated activi-
ties: perception, localization, obstacle detection and
remote tracking/control: (i) Perception consists in obtain-
ing and interpreting sensory information; (ii) localiza-
tion provides the strategy to estimate the robot position

within the spatial map; (iii) obstacle avoidance deals with
the strategy of detecting and avoiding obstacles (v) path
planning allows the control of the MR at real time. Figure 1
describes this complete platform.

The robot consists of:

• The MR Mini Khepera-II [20].
• The ML507 as the navigation controller: it integrates

an embedded PowerPC hard-core CPU cameras: One
is used to track the robot and participate in its locali-
zation and the other is mounted onto the robot itself
to detect obstacles during navigation with a clock fre-
quency up to 700 MHz, a Micro-Blaze soft-core CPU
with a clock frequency up to 125 MHz, different RAM
memories (256 MB DDR2, 1 MB SRAM), VGA input, DVI
output, RS-232, JTAG interface, Ethernet port and more
than 11,000 slices of reconfigurable logic.

• On-board sensors: odometers to measure the robot
relative pose and infra-red leds to detect obstacles.

• Surrounding cameras: One is used to track the robot
and participate in its localization and the other is
mounted onto the robot itself to detect obstacles dur-
ing navigation.

The Linux operating system (OS) was chosen to manage
the navigation controller. It would lead to increase proto-
typing convenience. Using Linux, an open, robust and well
documented OS, can provide a rich set of debugging and
additional support software like drivers and APIs, espe-
cially for network functionality. Network communication
management is so complicated without using the Eth-
ernet interface provided by the Embedded Linux. It also
provides rich possibilities to include libraries (like image
processing library: OpenCV) that can be cross compiled
under the PPC.

In this paper, we first showed the prototype results of
the navigation platform. The supported functionalities

Fig. 1 The proposed platform for robot navigation system

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4

of this prototype are: robot localization using ceiling
camera, distant web access and the support of dynamic
reconfiguration.

3 Localization concept

We exploit the dynamic reconfiguration benefit for the
localization step. In our robot, three localization methods
were applied: the relative, the absolute and the hybrid.
Table 1 presents a summary on localization techniques.

According to this table, the stand-alone sensor cannot
exceed certain physical limitations such as limited range
and field of vision. Consequently, combining information
from different sensors would expand the area around the
vehicle and improve the reliability of the entire localiza-
tion/navigation system in case of a sensor failure.

The proposed approach developed in this paper used
two different sensors. One is based on encoders to insure
relative pose using the robot kinematic model and fuzzy
controller to reach a target. The other is based on a cam-
era placed on the ceiling of the robot navigation environ-
ment to provide the absolute pose. The advantage of using
such an absolute system is to automatically generate the
robot initial coordinates and reduce the errors in encoders’
measures through retiming the visual control. We can also
note that the relative localization is quite simple while the
absolute one requires high computational power. Thus,
the proposed concept is to integrate the advantages of
a localization based on an odometer and a localization
based on camera data and make them complementary
which will enable the robot to accurately localize itself.
Both calculations are carried out on the FPGA as the robot
microcontroller does not deal with these tasks. Regard-
ing the camera, it’s linked to the FPGA via the VGA input
in the actual prototype. This solution is suggested owing

to the available ports of the ML507. A wireless camera is
the best alternative and there is no need for a high band-
width as a slow frame rate is enough to correct the robot
position. Each localization technique has both advantages
and drawbacks and should be applied in a specific circum-
stance. To allow a flexible robot localization/navigation,
the different techniques should be permanently alert for
use.

3.1 Relative localization

The experiments were performed on the MR with two
independent driving wheels which movements were con-
trolled by varying the speed of each wheel. The position
is obtained according to the robot internal mathematical
kinematic model. The treatment is carried out using a first
architecture noted as “archi loc rel” made up of the PPC
processor, one BRAM (a 128 Kb internal FPGA memory),
and an UART controller to ensure serial communication
with the robot. Figure 2 illustrates the “archi_loc_rel”.

Table 1 Summary of
localization techniques

Localization techniques Advantages Disadvantages

Relative Localization (Odometers,
Gyroscopes,…)

Easy to accomplish
Simple
Inexpensive [21]

Imprecision in measures
Accumulating errors [22]
Providing information only about

the internal state of system
Absolute Localization (Infrared sen-

sors, camera, laser, etc.)
Independence in position

estimates [23]
Minimizing error
More accurate view of the

robot in its environment
External robot informa-

tion

Dependence on the environment
Complex
Very slow
Greater likelihood of failure

Hybrid localization (data fusion) Reducing uncertainty [24]
Increasing the dimension-

ality of the measures
Improving resolution [24]
Reduction in time

Much calculation to perform a task
Short range of sensors
Filter divergence
Necessity to know initial pose

Fig. 2 The design architecture for relative localization

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4 Research Article

The FPGA resources occupation of “archi_loc_rel” is pre-
sented in Table 2. Less than 3% of the FPGA resources are
required. The measures based on the odometer modules
are erroneous, mainly when the robot must travel dis-
tances. This is due to the wheels’ slippage and drift prob-
lems. To address this problem, we opted to correct these
measures by external data coming from a camera placed
in the robot parallel plan.

3.2 Absolute localization

The absolute position is performed on the robot. It is
achieved by applying image processing algorithms to the
robot frames coming from a ceiling camera. The camera
acquisition and display module are managed by the Micro-
blaze processor while the absolute localization algorithms
are executed by the embedded PPC processor.

3.2.1 The camera acquisition module “cam”

The CAM module includes:

• The VGA input of the ML507 that must be connected
to a VGA source.

• The DVI output of the ML507 that must be connected
to a DVI/VGA compatible screen.

A ceiling camera with a resolution of 640 * 480 has been
used. Its S-video output is connected to the VGA input of
the ML507 using a video converter. The CAM architecture
is as shown in Fig. 3.

• The microblaze processor
• A MicroBlaze Debug Module (MDM).
• The VGA input IP block: this block consists of AD9980

analog interface that converts the incoming signal
from the ML507 VGA input into a YUV signal and of a
VFBC (Video Frame Buffer Controller) which allows the
user to read and write data.

• The XPS TFT IP block that sends the output signal to DVI
output connector of the ML507.

• A Multi-Port Memory Controller (MPMC) interface.

Table 3 summarizes the used capacity in the FPGA for
the CAM using Xilinx Platform Studio (XPS) tool.

From Table 3, we remark that about 45% of FPGA
slices were occupied. We have to manage the existent
resources between different designs needed by different
applications.

Table 2 Synthesis results of “archi_loc_rel“

Device Virtex-5 xc5vfx70t

Resource Total Usage Usage percent

Device utilization summary
Slice Registers 44.800 522 1
Slice LUTs 44.800 452 1
Number used as Logic 44.800 429 1
Number of occupied Slices 11.200 390 3
Total Memory used (KB) 5.328 1.152 21
Timing summary
Minimum period 2,5 ns
Maximum frequency 400 MHz

Fig. 3 The camera acquisition
architecture

Table 3 Synthesis results of camera acquisition module

Device Virtex-5 xc5vfx70t

Resource Total Usage Usage percent

Device utilization summary
Slice Registers 44.800 9.301 20
Slice LUTs 44.800 8.658 19
Number used as Logic 44.800 7.930 17
Number of occupied Slices 11.200 4.803 42
Total Memory used (KB) 5.328 1.782 33
Timing summary
Minimum period 8 ns
Maximum frequency 125 MHz

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4

3.2.2 The robot localization module “RLM”

To ensure a continuous robot navigation, we would rather
to execute the RLM on a PPC processor as it is more per-
formant than the MicroBlaze. The RLM is managed by the
Embedded Linux OS. It consists of a pipeline of image
processing steps. To facilitate the RLM implementation,
the OpenCV library was used. It was cross-compiled with
Linux for PPC.

The RLM processed the input robot images via a
straightforward pipeline to determine the location of the
circular shaped robot. We give here a summary of the tech-
nique. The whole technique is presented in [25]. Firstly, the
Cartesian coordinate system has to be set up using the
four landmarks. Secondly, the robot has to be detected
and finally its coordinates are computed. The robot detec-
tion consists in the identification of its circular shape in
the input frame. To reduce the RLM complexity, we used a
window embracing the robot (like the search window in
video compression application) and we searched for the
circular shaped robot instead of scanning the entire input
image. The window size is fixed to 70*70 pixels after sev-
eral tests on various robot speeds and motion orientations.
The 70*70 is the minimal window size to cover the robot
area and the maximal to treat the minimum pixels number.

The pipeline as shown in Fig. 4 consists of a grayscale
conversion (step 2). A Sobel filter (step 3), whose output
was further improved by a specified threshold value equal
to 63 (step 4). This value is calculated using an iterative
method. Afterwards, the image was smoothed by an erode
filter (step 5) and finally a Hough Transform (step 6) was
used to extract the circle corresponding to the robot.

The RLM execution time on the PPC (400 MHz, fixed
point) is 2.187 s. This time is not sufficient to ensure real
time navigation which has to be less than 0.48 s [26].

3.2.3 Reducing RLM processing time

Three techniques are used. The first technique is to raise
the PPC frequency from 400 MHz to 600 MHz (the maxi-
mum value authorized by ML507) using a PLL module.
We also add a floating point co-processor to the PPC as
many operations of the RLM are in a floating point format.
The second technique is based on the use of a hardware
accelerator to execute the computationally complex task
of the RLM in hardware (using FPGA logic blocks). To select
which RLM task is a candidate for a hardware implementa-
tion, we profile the RLM algorithm. Figure 5 shows the time
consumption rates.

Through profiling results, the edge detection function
consumes 60% of the total time since it comprises com-
plex operations like Eq. (1).

where Mag: The gradient magnitude, Eh the intensity
along horizontal directions, Ev the intensity along vertical
directions.

This function is implemented as a hardware accelera-
tor named “Acc-Block”. The “Acc_block” is coupled to the
embedded PowerPC processor via the APU (Auxiliary Pro-
cessor Unit) interface. The principal reason for using the
APU rather than connecting the hardware blocks to the
CPU through the PLB bus is the superior bandwidth and
lower latency between the PowerPC and the APU/FCM.

(1)|Mag| =
√

E2
h
+ E2

v

Fig. 4 The pipeline of image
processing [25]

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4 Research Article

An extra advantage is that the APU not dependent of the
CPU to peripheral interface and consequently does not
add a supplementary load to the PLB bus that the system
involves for fast peripheral access.This function is imple-
mented as a hardware accelerator called “Acc_Block”. The
“Acc_block” is coupled to the embedded PPC processor

via the APU (Auxiliary Processor Unit) interface. The main
reason for using the APU instead of connecting the hard-
ware blocks to the CPU through the PLB bus is its superior
bandwidth and faster communication with the PPC. An
additional advantage is that the APU is independent of the

Fig. 5 Profiling Results [25]

Table 4 Timing results for HW/SW implementation

Absolute localization algorithm Results

Image frame size 640 * 480
Purely implementation: 400 MHz (s) 2.187
Purely implementation: 600 MHz (s) 1.445
+ FPU (s) 0.081
+ FPU + Acc block (s) 0.053
Acceleration factor 41.26

Fig. 6 The design architecture
to obtained absolute localiza-
tion

Table 5 Synthesis results of the architecture

Device Virtex-5 xc5vfx70t

Resource Total Usage Usage
percent

Device utilization summary
Slice Registers 44.800 10.951 25
Slice LUTs 44.800 10.004 23
Number used as Logic 44.800 9.107 21
Number of occupied Slices 11.200 5.676 50
Total Memory used (KB) 5.328 2.610 48

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4

CPU to peripheral interface and therefore does not add an
extra load to the PLB bus, which is needed by the system
for a fast peripheral access.

The processing time of the algorithm executed on
the mixed architecture (PPC + “Acc_Block”) when all the
hardware enhancement techniques are used is about
0.053 s (see Table 4 for more details). The proposed HW/

SW architecture gives acceleration up to 42 × compared to
the pure SW implementation.

Figure 6 shows the architecture of the absolute locali-
zation system “archi_loc_abs”

The two processors share the external DDR memory
through the MPMC module interface using an exclusion
mechanism (XPS Mutex) to synchronize the access.

Tables 5 and 6 recapitulate the FPGA occupation and
power consumption.

Table 7 displays the FPGA slices occupation for “archi_
loc_rel” and “archi_loc_abs”.

3.3 Experiments

The purpose of the achieved experiment is to simultane-
ously locate the robot in real time using both encoders
and a camera. The results are presented in Figs. 7a, b and 8.

In Fig. 7a, the robot must follow a straight path for
a distance of 50 mm. While in Fig. 7b, it must follow a
straight path for a distance of 350 mm. Figure 7a shows
that for a short trajectory, the two position measurements
(odometer and camera) are very close. By cons, for a long

Table 6 Estimated Power and Energy of the system

Measures Purely SW
implementation

HW/SW imple-
mentation

Gain Factor

Power (W) 5.039 6.480 –
Energy/frame (j) 7.281 0.343 21.22

Table 7 FPGA slices occupation of both designs

FPGA slices occupation

Relative localization Absolute localization

3% 50%

Fig. 7 Robot localization using both encoders and camera

Fig. 8 Different robot real positions measured with a ruler

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4 Research Article

trajectory, the error in the position becomes larger. This is
the case of the experiment illustrated in Fig. 7b.

To quantify the errors of each method, we achieved
four real positioning robot measures (M1, M2, M3 and
M4) using a ruler as shown in Fig. 8. The real positioning
robot is determined by measuring, by the ruler, its center
position.

The results of this comparison are summarized in
Table 8. The obtained values proved that the real measures
are closer to those using a camera than those obtained
using encoders.

3.4 Hybrid localization

The absolute location is crucial to correct the robot path
measured by the odometer system. The hybrid localiza-
tion consists in combining the relative position with the
absolute one using a retiming point in order to correct the
encoders’ measures. The hardware architecture is the same
presented in Fig. 6. If we consider the last point calculated
by the camera at the finished journey as the retiming
point, as shown in Fig. 9, the navigation error will be too

high as it is proportional to the travelled distance. In Fig. 9,
the black curve represents the encoders’ trajectory to be
covered by the robot if there are no errors in encoders
(relative localization) whereas the blue curve represents
the robot real trajectory using camera measures (absolute
localization). The error in this figure is 35 mm deflection
along the x-axis and 40 mm deflection along the y-axis
when the robot tries to reach the target T defined by
 (xT = 300 mm, yT = 300 mm), so about 10% error.

To reduce the error between the two positions, we have
involved the absolute coordinates at each five frames and
applied the correction on these points. This method allows
speeding up the robot wheels velocity from 24 mm/s (the
robot speed when applying the absolute localization on
every frame) to 40 mm/s while reducing the navigation
error: to a 12 mm deflection along x-axis and 17 mm along
y-axis, i.e. about 6% error only.

The different localization techniques were firstly, inde-
pendently designed in the ML507. In Sect. 3.5, we detailed
how these three techniques can be used together in the
ML507 according to the robot evolution conditions.

3.5 Dynamic reconfiguration of the localization
system

3.5.1 The principle of the proposed approach

The dynamic reconfiguration can be used to enhance the
FPGA resource utilization by time-sharing the reconfig-
urable resources among the different designs or among
parts of a design. The internal FPGA architecture can be
dynamically reconfigured at runtime to load on the fly
when a new localization system is required. This mecha-
nism allows optimizing the configured surface and manag-
ing the FPGA resources between different robot applica-
tions. The dynamic reconfiguration is achieved while the
device is active: certain areas of the device can be recon-
figured while other areas are operational without being
affected by the reconfiguration.

When the hybrid localization technique is used, the rel-
ative localization is activated for four frames and the abso-
lute localization is activated in the 5th frame. For the next

Table 8 Performance
evaluating table

xR(mm)/yR(mm) Measures

M1 M2 M3 M4

xR yR xR yR xR yR xR yR

Methods
 Encoders 50 99 204.4 99.06 301.9 98.57 397.4 100.6
 Camera 50 99 198.1 103.8 305.6 110.2 421.9 124.9
 Ruler 50 100 200 104 306 115 424 125

Fig. 9 Robot localization using retiming point

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4

upcoming 4 frames, the relative localization is activated
once again using the dynamic reconfiguration. Figure 10
shows how the dynamic reconfiguration mechanism is
used in the hybrid localization technique.

In Fig. 10a, the “archi_loc_abs” is always active (50% of
FPGA resources are allocated) without the dynamic recon-
figuration. While, in Fig. 10b, during the relative localiza-
tion, only 3% of FPGA resources are allocated. 50% of the
FPGA resources are then liberated and used for other
modules.

3.5.2 The concept of the dynamic reconfiguration

The logic in the FPGA design is split into two different
types, static logic and reconfigurable logic. The white
area of the FPGA block in Fig. 11 depicts static logic which
does not change while the red portion represents recon-
figurable logic that has been designed explicitly by the
designer. This portion can be divided to many reconfigur-
able partitions. A series of modules are then assigned to

these reconfigurable partitions (known as Partial Reconfig-
urable Modules). These modules are thereafter converted
into partial bit files that can be, in run-time, switched in
and out of the FPGA to map the suitable application func-
tionalities into the associated partitions.

Figure 11 illustrates the key concepts for DPR model.
Our design invoked “archi_loc_rel” or “archi_loc_abs”

to be used respectively for relative localization and abso-
lute localization. Thus, two bitstreams are generated:
a full bitstream that contains the static region which is
designed by”archi_loc_rel” since the localization system
starts by determining the relative localization, and a par-
tial bitstream that contains the configuration of the partial
reconfiguration partition which is”archi_loc_abs” loaded
at every fifth frame.

To design reconfigurable systems, three approaches
are possible: externally using JTAG or RS-232 interface,
or internally using the auto-reconfiguration through the
Internal Configuration Access Port (ICAP). We choose
the auto-reconfiguration way which says that the FPGA

Fig. 10 The dynamic recon-
figuration mechanism of the
hybrid localization

Fig. 11 Partial Reconfigura-
tion FPGA showing static and
dynamic regions

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4 Research Article

reconfigures itself to accomplish the purpose, either
after predefined time length or in light of a status flag.

The ICAP module is used for the FPGA hardware
dynamic reconfiguration. Xilinx provides an implemen-
tation of a core called XPS HWICAP that provides the
interface necessary to transfer bitstreams files to and
from the devices’ configuration memory. An internal
on-chip Block RAM can be utilized to store the recently
read configuration data. The XPS HWICAP is connected
to the PPC processor through the PLB bus. The system is
connected to an external Flash memory (used to store
the partial bitstream to carry out the reconfiguration)
via a Flash controller that provides read/write access to
the external memory. The communication between the
static and dynamic regions is performed through inter-
faces called Bus Macros in Xilinx architectures.

Figure 12 shows the dynamic reconfiguration
architecture.

3.5.3 System operation flow

The DR process is described according to the following
steps:

• FPGA is programmed with initial configuration which
is”archi_loc_rel” at power-up and starts execution.

• For each fifth frame, the PPC requests the partial bit-
stream “archi_loc_abs” from the compact flash and
writes it in the PPC memory.

• PPC writes a word-by word to the configuration cache
of the HWICAP module.

• The HWICAP BRAM is tested to verify if it has been fully
charged.

• If Yes, the reconfiguration is carried out and all data
contained in the HWICAP BRAM are copied to the FPGA
through the internal BRAM memory.

• Checking if the FPGA reconfiguration has been done.

Figure 13 depicts the operation flow of the system.

3.5.4 Design flow

Figure 14 shows the methodology deployed in the imple-
mentation of dynamic reconfiguration strategy. The partial
reconfiguration process demands separate Netlist files for
the static (top level) design and for reconfigurable mod-
ules. Reconfigurable Modules are written in VHDL and are
synthesized to a Netlist file using Xilinx Synthesis Tech-
nology (XST) whilst the static system Netlist is resulted
from the MHS (Microprocessor Hardware Specification)
description file. The obtained Netlist files are exported to
PlanAhead tool that manages the details of creating and
building the reconfigurable system. In PlanAhead tool
the device region is partitioned into static and dynamic
regions. Full and partial bitstreams are generated for dif-
ferent configuration.

As we conceive developing a complete robot navigation
system with all its main activities, the required resources
for absolute localization will be used by the remote con-
trol system. As the FPGA must instantaneously send sen-
sors reading to the distant PC to control the robot in real
time, we can use, for now and to validate the approach,
this module when using relative localization. The remote
control system is based on Ethernet connection. All sen-
sors readings (images or values) are redirected and viewed
from a distant PC using a web page.

Fig. 12 The dynamic recon-
figuration computing system

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4

4 The monitoring system

During the MR navigation, all sensors readings can be redi-
rected and viewed from a distant PC (web client) using a
web page.

The images provided by the ceiling camera and that
fitted on the robot are available to the robot commander
browser. The distant PC can thus visualize and monitor the
robot in suspect places or if unpredictable obstacles are
detected. It can also define a potential target coordinates
and forward them to the installed web server on the FPGA.

The network image transfer is performed using the “out-
put http” plugin of MJPEG streamer. HTTP output plugin
or web server is the most important and the most used
among output plugins. It can transport images to a web
client navigator. The broadcast of the stream images via
HTTP is very simple to implement. It’s essentially to inform
the client (the PC in our case), using a particular content
type, that it will receive a series of files. As the client keeps
the connection open, the broadcasting system continues
to send images. Each new sent image replaces the pre-
vious image as soon as it is completely received. Clients
must treat the different images as they arrive to avoid
being crushed by the following images.

Figure 15 shows the HTTP header format.

The content type “multipart/x-mixed-replace” is the
technique of sending data in the server push mode and
streaming over HTTP. All parts of a mixed replace mes-
sages have the same semantic meaning, i.e., all have the
same MIME type (images in our case). Nevertheless, each
new sent image replaces the previous image as soon as
it is completely received. Clients must treat the different
images as they arrive to avoid being crushed by the fol-
lowing images.

This system connectivity is ensured through the Eth-
ernet port of the Ml507 FPGA. The internet connection is
used during the automatic mode to allow the user to track
the robot.

The HTTP plugin must:

• Wait for a client connection (FireFox, Opera, Safari…)
to serve robot images.

• Send the browser the headers that indicate the data
type it will receive (HTTP headers).

The TCP socket does not report anything until the data
is transferred otherwise it has to report the occurrence of
an error.

Fig. 13 The operation flow of
the system

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4 Research Article

5 Conclusion

The implementation of a complete navigation system
on a single board mounted on small autonomous robots
has become possible thanks to the advances in the FPGA
technology. The FPGA investigation is still not fully
exploited in robotic vision applications. In this paper,
we presented a flexible platform based on the FPGA
technology, for studying and conceiving complete uni-
fied robot navigation system. This platform can be easily
tuned to address the variable computing requirements
of the robot localization application. We have indepen-
dently implemented three localization techniques on the
FPGA: relative, absolute and hybrid and we have ben-
efited from the dynamic reconfiguration of the ML507
to change dynamically the localization system to satisfy

energy/surface ratio and exploit the released resources
to implement other robot tasks.

In ongoing works, we plan to study the complete FPGA
robot navigation system that addresses the other major
MR activities like obstacle avoidance and path planning.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Devi M, Kumar BA (2014) Accelerometer based direction
controlled wheelchair using gesture technology. Int J Sci

Fig. 14 Design Flow using
XILINX Development Environ-
ment

Fig. 15 HTTP header, content
type

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1183 | https://doi.org/10.1007/s42452-020-2960-4

Eng Technol 3(8): 1065–1070. https ://pdfs.seman ticsc holar
.org/1a04/f862f 2843b 67e1d 45c21 47f54 14466 824a9 c.pdf

 2. Jaiswar U, Repal S (2015) A review on real time breath process-
ing based embedded wheelchair for quadriplegic people. Int J
Innov Res Sci Eng Technol, pp 2319–8753. https ://www.seman
ticsc holar .org/paper /A-Revie w-on-Real-Time-Breat h-Proce ssing
-Based -for-Jaisw ar-Repal /37e19 0d591 5a5eb de77b 4d3f9 4002b
6d58f 3d496

 3. Dos Santos MPS, Ferreira JAF (2014) Novel intelligent real-time
position tracking system using fpga and fuzzy logic. ISA Trans
53(2):402-414. https ://www.scien cedir ect.com/scien ce/artic le/
abs/pii/S0019 05781 30014 68

 4. Dong X, Su B, Jiang R (2018) Indoor robot localization combining
feature clustering with wireless sensor network. EURASIP J Wirel
Commun Netw 1: 175. https ://link.sprin ger.com/artic le/10.1186/
s1363 8-018-1179-1

 5. Storaasli OO (2008) High-performance mixed-precision linear
solver for fpgas. IEEE Trans Comput 57(2). https ://ieeex plore
.ieee.org/docum ent/45317 32

 6. Sanchez-Solano S, Cabrera AJ, Baturone I, Moreno-Velo FJ, Brox
M (2007) Fpga implementation of embedded fuzzy controllers
for robotic applications. IEEE Trans Ind Electron 54(4): 1937–
1945. https ://ieeex plore .ieee.org/docum ent/42715 70

 7. Cruz S, Munoz DM, Conde M, Llanos CH, Borges GA (2013) Fpga
implementation of a sequential extended kalman filter algo-
rithm applied to mobile robotics localization problem. In: IEEE
Fourth Latin Am Symp Circ Syst, pp 1–4. https ://ieeex plore .ieee.
org/docum ent/65190 21

 8. Gugala K, Swietlicka A, Kolanowski K, Karon I, Majchrzycki M,
Rybarczyk A (2013) Neural controller implementation in embed-
ded system with use of fpga coprocessor. https ://otik.uk.zcu.cz/
handl e/11025 /11526

 9. Chinnaaiah M, Priyanka G, Vani GD, Jyoti MA, Vennela K (2016) A
new approach: an fpga based robot navigation for patrolling in
service environment. In: International conference on research
advances in integrated navigation systems (RAINS), pp 1–4.
https ://ieeex plore .ieee.org/docum ent/77644 22

 10. Naji B, Abdelmoula C, Abbes K, Masmoudi M (2017) Design
and test of a new development FPGA board for mobile robot
research. Turk J Electr Eng Comput Sci 25(2):1483–1494. http://
journ als.tubit ak.gov.tr/elekt rik/issue s/elk-17-25-2/elk-25-2-67-
1510-18.pdf

 11. Vennela K, Chinnaaiah M, Dubey S, Savithri S (2019) Implemen-
tation of mobile robot navigation mechanism using fpga: an
edge detection-based approach, pp 215–222. https ://link.sprin
ger.com/chapt er/10.1007/978-981-13-2324-9_21

 12. Magdum TD, P.C.B. (2017) Fpga based moving object tracking for
indoor robot navigation. IOSR J VLSI Signal Process 7(5): 12–22.
http://www.iosrj ourna ls.org/iosr-jvlsi /paper s/vol7-issue 5/Versi
on-1/B0705 01122 2.pdf

 13. Golen MB, Celik H, Yigit T (2018) Mobile robot control with FPGA.
In: International engineering and natural sciences conference
(IENSC 2018)

 14. Ordóñez Cerezo J, Castillo Morales E, Canas Plaza JM (2019) Con-
trol system in open-source FPGA for a self-balancing robot. Elec-
tronics 8(2):198

 15. Huang HC, Tao CW, Chuang CC, Xu JJ (2019) FPGA-based
mechatronic design and real-time fuzzy control with computa-
tional intelligence optimization for Omni-Mecanum-wheeled
autonomous vehicles. Electronics 8(11):13–28

 16. Commuri S, Tadigotla V, Sliger L (2007) Task-based hardware
reconfiguration in mobile robots using fpgas. J Intell Robot Syst
49(2): 111–134. https ://link.sprin ger.com/artic le/10.1007/s1084
6-007-9131-3

 17. Griessl R, Herbrechtsmeier S, Porrmann M, Ruckert U (2011) A
low-power vision processing platform for mobile robots. In:
Workshop on computer vision on low-power reconfigurable
architectures. https ://www.seman ticsc holar .org/paper /A-Low-
Power -Visio n-Proce ssing -Platf orm-for-Mobil e-Gries sl-Herbr
echts meier /c815b 2f006 aa28c 9fb75 a8673 d458c abb71 b6091

 18. Nava F, Sciuto D, Santambrogio MD, Herbrechtsmeier S, Por-
rmann M, Witkowski U, Rueckert U (2011) Applying dynamic
reconfiguration in the mobile robotics domain: A case study on
computer vision algorithms. ACM Trans Reconfigurable Technol
Syst 4(3): 29 https ://dl.acm.org/citat ion.cfm?id=20008 41

 19. Thakre MAK, Nagpur SDMP (2016) Reconfiguration of mobile
robot. Int J Electron Comput Sci Eng 1(2): 161–165. http://cites
eerx.ist.psu.edu/viewd oc/downl oad?doi=10.1.1.224.8747&rep
=rep1&type=pdf

 20. K-team, 2001
 21. Ogiso S, Kawagishi T, Mizutani K, Wakatsuki N, Zempo K (2015)

Self-localization method for mobile robot using acoustic bea-
cons. ROBOMECH J 2(1):12

 22. Kim A, Eustice RM (2015) Active visual slam for robotic area cov-
erage: theory and experiment. Int J Robot Res 34(4–5): 457–475.
https ://dl.acm.org/citat ion.cfm?id=27647 27

 23. Zhou JH, Lin HY (2011) A self-localization and path planning
technique for mobile robot navigation. In: 9th world congress
on intelligent control and automation WCICA, pp 694–699. https
://ieeex plore .ieee.org/abstr act/docum ent/59706 04

 24. Silva J, Lau N, Neves AJ (2011) Localization techniques for
autonomous mobile robots. Electronica e Telecomunicacones
5(2): 309-316. http://revis tas.ua.pt/index .php/revde ti/artic le/
view/2171

 25. Ghorbel A, Jallouli M, Ben Amor N, Amouri L (2013) An FPGA
based platform for real time robot localization. In: International
conference on individual and collective behaviors in robot-
ics (ICBR). IEEE, pp 56–61. https ://ieeex plore .ieee.org/docum
ent/67292 72

 26. Amouri-Jmaiel L (2012) Contribution la commande et au pilot-
age réactif de robots mobiles roues. PhD thesis, Orlans

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://pdfs.semanticscholar.org/1a04/f862f2843b67e1d45c2147f5414466824a9c.pdf
https://pdfs.semanticscholar.org/1a04/f862f2843b67e1d45c2147f5414466824a9c.pdf
https://www.semanticscholar.org/paper/A-Review-on-Real-Time-Breath-Processing-Based-for-Jaiswar-Repal/37e190d5915a5ebde77b4d3f94002b6d58f3d496
https://www.semanticscholar.org/paper/A-Review-on-Real-Time-Breath-Processing-Based-for-Jaiswar-Repal/37e190d5915a5ebde77b4d3f94002b6d58f3d496
https://www.semanticscholar.org/paper/A-Review-on-Real-Time-Breath-Processing-Based-for-Jaiswar-Repal/37e190d5915a5ebde77b4d3f94002b6d58f3d496
https://www.semanticscholar.org/paper/A-Review-on-Real-Time-Breath-Processing-Based-for-Jaiswar-Repal/37e190d5915a5ebde77b4d3f94002b6d58f3d496
https://www.sciencedirect.com/science/article/abs/pii/S0019057813001468
https://www.sciencedirect.com/science/article/abs/pii/S0019057813001468
https://link.springer.com/article/10.1186/s13638-018-1179-1
https://link.springer.com/article/10.1186/s13638-018-1179-1
https://ieeexplore.ieee.org/document/4531732
https://ieeexplore.ieee.org/document/4531732
https://ieeexplore.ieee.org/document/4271570
https://ieeexplore.ieee.org/document/6519021
https://ieeexplore.ieee.org/document/6519021
https://otik.uk.zcu.cz/handle/11025/11526
https://otik.uk.zcu.cz/handle/11025/11526
https://ieeexplore.ieee.org/document/7764422
http://journals.tubitak.gov.tr/elektrik/issues/elk-17-25-2/elk-25-2-67-1510-18.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-17-25-2/elk-25-2-67-1510-18.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-17-25-2/elk-25-2-67-1510-18.pdf
https://link.springer.com/chapter/10.1007/978-981-13-2324-9_21
https://link.springer.com/chapter/10.1007/978-981-13-2324-9_21
http://www.iosrjournals.org/iosr-jvlsi/papers/vol7-issue5/Version-1/B0705011222.pdf
http://www.iosrjournals.org/iosr-jvlsi/papers/vol7-issue5/Version-1/B0705011222.pdf
https://link.springer.com/article/10.1007/s10846-007-9131-3
https://link.springer.com/article/10.1007/s10846-007-9131-3
https://www.semanticscholar.org/paper/A-Low-Power-Vision-Processing-Platform-for-Mobile-Griessl-Herbrechtsmeier/c815b2f006aa28c9fb75a8673d458cabb71b6091
https://www.semanticscholar.org/paper/A-Low-Power-Vision-Processing-Platform-for-Mobile-Griessl-Herbrechtsmeier/c815b2f006aa28c9fb75a8673d458cabb71b6091
https://www.semanticscholar.org/paper/A-Low-Power-Vision-Processing-Platform-for-Mobile-Griessl-Herbrechtsmeier/c815b2f006aa28c9fb75a8673d458cabb71b6091
https://dl.acm.org/citation.cfm?id=2000841
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.224.8747&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.224.8747&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.224.8747&rep=rep1&type=pdf
https://dl.acm.org/citation.cfm?id=2764727
https://ieeexplore.ieee.org/abstract/document/5970604
https://ieeexplore.ieee.org/abstract/document/5970604
http://revistas.ua.pt/index.php/revdeti/article/view/2171
http://revistas.ua.pt/index.php/revdeti/article/view/2171
https://ieeexplore.ieee.org/document/6729272
https://ieeexplore.ieee.org/document/6729272

	Design of a flexible reconfigurable mobile robot localization system using FPGA technology
	Abstract
	1 Introduction
	1.1 Context
	1.2 Background

	2 Embedded robot navigation platform overview
	3 Localization concept
	3.1 Relative localization
	3.2 Absolute localization
	3.2.1 The camera acquisition module “cam”
	3.2.2 The robot localization module “RLM”
	3.2.3 Reducing RLM processing time

	3.3 Experiments
	3.4 Hybrid localization
	3.5 Dynamic reconfiguration of the localization system
	3.5.1 The principle of the proposed approach
	3.5.2 The concept of the dynamic reconfiguration
	3.5.3 System operation flow
	3.5.4 Design flow

	4 The monitoring system
	5 Conclusion
	References

