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Abstract
Silicon–air battery is an emerging energy storage device which possesses high theoretical energy density (8470 Wh kg−1). 
Silicon is the second most abundant material on earth. Besides, the discharge products of silicon–air battery are non-
toxic and environment-friendly. Pure silicon, nano-engineered silicon and doped silicon have been found potential 
candidate for anode. Meso-porous meso-cellular carbon having optimal pore size and imbibed with α-MnO2 nanowires 
catalyst is found the most promising cathode. Several technical, design and corrosion problems associated with Si–air 
battery system have to be resolved for its mass scale deployment. This review presents comprehensive information on 
Si–air battery technology.
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cyclic capabilities has become the most promising candi-
date for EV applications. However, its low storage capacity 
(100–200 Wh kg−1), safety issues and high cost has led to 
extensive research activities to find alternative energy stor-
age technology. Metal–air battery systems such as Li–air, 
Mg–air, Zn–air, Al–air and Si–air are highly promising for 
powering automobiles, industrial equipment, computers, 
electronic device, hearing aids and a large number of util-
ity items [1–8]. Apart from possessing high energy density 
(400–1700 Wh kg−1), metal–air batteries are compact, low 
cost, lighter and environment friendly [9–15]. The reason 

1  Introduction

Isaac Newton and Michael Faraday have given us the 
intellectual tools to wheel the battery of innovations 
for clean energy and efficient techno-development of 
global community. Extensive usage of energy coupled 
with global climate change has necessitated the growth 
of renewable energy production and storage systems. 
World-wide interest in electric vehicles (EVs) has focused 
on miniaturization of light weight rechargeable batter-
ies. Li-ion batteries with high energy efficiency and more 
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for high energy density possessed by metal–air batteries 
is its cathode which operates on oxygen present in the 
air during discharge, replacing costly chemicals used in 
present Li-ion batteries. Early work on metal–air batteries 
encountered the problems associated with the material 
at the air cathode surface, thermal management system 
along with various technical problems associated with 
anodes. Theoretical specific energy densities and open 
circuit voltages of metal–air battery systems are shown 
in Fig. 1. 

Lithium metal is considered to be the best candidate 
as anode material because of its high theoretical specific 
energy (3860 Ah kg−1), low density (0.59 g cm−3) and the 
lowest electrode potential (3.045 V vs. SCE). Si–air battery 

has comparable specific energy density (5360 Wh kg−1) 
with Li–air battery (5200 Wh kg−1). Also, silicon (28.2%) 
is more abundant in earth’s crust when compared with 
lithium (0.002%) and is also less expensive than lithium 
metal. The practical performances of some battery systems 
including metal air batteries have been represented in the 
form of Ragone plots [16] (Fig. 2). It may be noted from the 
Ragone plots that metal–air batteries deliver higher spe-
cific energy while Li–ion battery provides the best power 
capability. Also, Li–air and Si–air batteries provide specific 
energies of the same order but there is large difference in 
their specific power capabilities. Moreover, rechargeability 
of Si–air batteries is a challenging task.

Fig. 1   Comparison of theoreti-
cal specific energy densities 
and open circuit voltages 
(OCVs) of different metal–air 
batteries [10]

Li Al Na Mg Ca Zn Si
Oxygen mass included 5,200 4,300 1,677 2,789 2,990 1,090 5,360
Oxygen mass excluded 11,140 8,130 2,260 6,462 4,180 1,350 8,470
Theore�cal OCV 2.96 2.73 1.94 2.93 3.12 1.65 2.2
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Fig. 2   a Ragone plot [16] for the important batteries systems; b the comparison of different metal air battery systems. The typical logarith-
mic axes of Ragone plot a is changed to logarithmic y and linear x in b in order to represent the differences between the metal–air batteries
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Si–air battery research was initiated by Prof. Yair-Ein-Eli 
and team at the Technion–Israel Institute of Technology in 
2009 [17]. This novel type of primary battery had an ideal 
specific energy of E = 8470 Wh kg−1 and a long-term stable 
voltage of 1.0–1.2 V. It consisted of doped silicon wafers as 
fuel, an air cathode, and a specially synthesized ionic liquid 
(EMI·(HF)2·3F) as electrolyte.

2 � Silicon–air cell construction

Yair-Ein-Eli et al. [17] used a silicon single-crystal anode, 
air cathode and specially synthesized room temperature 
ionic liquid (EMI·(HF)2·3F) as electrolyte. Graphic represen-
tation of cell assembly is shown in Fig. 3. The cell is made 
up of three plastic plates. The first plate is made of multi-
ple pieces of silicon wafers of size 1 cm x1cm which were 
pressed into a viton O-ring. The exposed area of silicon 

wafers is 0.5 cm2. The second sheet consists of circular 
sheets of graphitic air electrodes having 0.5 cm2 exposed 
area. The third sheet is employed to make an outer circle 
periphery which is used to make electrical contact. High 
grade copper wires are used for making terminal contacts. 
Si wafer anodes were pre-treated before cell construction; 
the treatment involved immersion of Si-wafers in HF solu-
tion (1HF:5H2O) for 10 s to remove surface oxide layer fol-
lowed by cleaning with de-ionized (DI) water and finally 
drying in a nitrogen stream. The anode-separator-cathode 
is sandwiched and 0.5 ml of the ionic liquid was added to 
complete the cell assembly. For adequate wetting of all 
the components, the cell assembly is maintained at OCV 
for 4 h during which no current was drawn from the cell 
assembly. The cell was later used to draw current to initiate 
the discharge process.

3 � Anode for Si–air battery

3.1 � Silicon wafers

Doped silicon wafers are widely used as anode material 
for Si–air batteries. Silicon <100> crystals, both moderately 
doped (n-type) and profoundly doped (n++-type), are held 
with a screwed back stainless steel contact plate electro-
plated with thin layer of gold [18]. The corrosion rates for 
various types of silicon material as anode is shown in Fig. 4.

Silicon corrosion rates and polarization voltammograms 
form a basis for anode selection. On one hand, p++ silicon 
has lower corrosion rates and better cell voltage at high 
currents whereas on the other hand, n++ silicon has higher 
OCV and better cell voltages at low currents. Even though 
n++doped Si exhibited greater corrosion rates, it has been 
a subject of interest due to its greater cell voltage at low 
values of current.Fig. 3   Silicon–air cell assembly [17]

Fig. 4   Silicon electrode corro-
sion rates in EMI.(HF)2.3F [19]
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3.2 � Nanostructured silicon

Nanostructured silicon/arrays of silicon nanowires or 
nanorods have been used as anode material in lithium-
ion batteries to overcome cracking and pulverization 
[20, 21]. A robust electrical contact is maintained when 
silicon nanowires are used as anode material since each 
nanowire is directly connected to the current collecting 
substrate. Mingyuan Ge et al. [22] reported that porous 
silicon nanowires synthesized by direct etching of boron-
doped silicon wafers possesses high porosity and electron 
conductivity. As anode material, these nanowires exhibit 
high structure stability, higher electrochemical perfor-
mance and long cycle life. Even after 250 cycles, the capac-
ity remains stable above 2000, 1600, and 1100 mAh g−1 at 
current rates of 2, 4, and 18 A g−1 respectively. Zhong et al. 
[23] used nanostructured silicon as the anode material in 
the design of Si–air battery with alkaline electrolyte. Nano-
engineered silicon anodes have been found to increase 
the reversible charge capacity and longer cycle life for 
new generation batteries. The surface of the silicon wafer 
is reformed by metal-assisted electro less etching method 
to facilitate formation of micro-porous layer on the sili-
con wafers [24–27]. The native oxide layer is removed by 
immersing the clean silicon pieces into a buffered oxide 
etching (BOE) agent.

3.3 � Doped silicon

Silicon doped with Arsenic(As), Antimony(Sb) and Boron(B) 
with different orientations, i.e. <100> and <111> , was used 
as anode by Durmus et al. [28, 29]. The following six types 
of silicon anodes were used.

	 i.	 As-doped [Crystal family type <100>] (Resistivity: 
0.001–0.007 Ω cm)

	 ii.	 As-doped [Crystal family type <111>] (Resistivity: 
0.001–0.010 Ω cm)

	 iii.	 Sb-doped [Crystal family type <100>] (Resistivity: 
0.007–0.020 Ω cm)

	 iv.	 Sb-doped [Crystal family type <111>] (Resistivity: 
0.022–0.028 Ω cm)

	 v.	 B-doped [Crystal family type <100>] (Resistivity: 
0.001–0.005 Ω cm)

	 vi.	 B-doped [Crystal family type <111>] (Resistivity: 
0.002–0.016 Ω cm)

Two stage surface treatment of the doped wafer is car-
ried out with argon/oxygen plasma to remove organic 
contaminants. The native oxide layers are removed from 
the wafer surfaces with the help of argon/sulfur hexafluor-
ide plasma. The cell assembly is fabricated and kept for 4 h 

in a climate chamber which is maintained at 25 °C and 50% 
relative humidity. During this period no current is drawn 
and the silicon–air cells are held at their open-circuit volt-
age (OCV) before carrying out discharge process.

The 3D images1 (Fig. 5) revealed that the surface char-
acteristics of <100> vs. <111> oriented Si anodes vary 
significantly at low discharge currents. With both, arse-
nic-doped and antimony-doped Si anodes having orienta-
tion <100>, homogeneous 3D images are observed while 
with <111> oriented Si anode, 3D images consists of poly-
gons. When cells are discharged at 0.1 mA cm−2 for 20 h, it 
is observed that the surface characteristics for correspond-
ing orientation at mesoscale are almost similar for As- and 
Sb-doped Si anodes. 3D images of B-doped (p-type) and 
B-doped (n-type) Si anodes, under similar conditions of 
discharge, exhibited large differences in their surface 
characteristics. B-doped Si anodes with <100> orientation 
presented a homogeneous surface with a few individual 
small pores, while <111> oriented anodes showed a grain 
like structure.

Thus, the surface characteristics of B-doped Si anodes 
differ significantly from As- and Sb- doped Si anodes, 
indicating possibly two types of discharge mechanism at 
the anode surfaces. The studies on different anodes for 
Si–air batteries recommend that n++ doped Si anode may 
be a better choice for higher cell voltage and low current 
applications while nano-engineered Si anode can be used 
in applications where higher charge capacity and longer 
cycle life is needed predominantly.

4 � Cathode for Si–air battery

4.1 � Air cathode

Air cathode composition and structure play an important 
role in Si–air battery performance. Porous carbon imbibed 
with a catalyst, and a polymer binder is used as the air 
cathode. The specific capacity of an air electrode depends 
on several factors. Cheng et al. [30] and Xiao et al. [31] 
studied the effect of surface areas of different graphitic 
materials on specific capacity of the battery and it was 
found to be proportional to the surface area. Yang et al. 
[32] investigated the effect of pore size on specific capac-
ity of Si–air cell and reported that air cathode with meso-
porous meso-cellular carbon foam have higher specific 
capacity. Instead of too large or too small, optimum pore 
size is recommended. The thickness of the air cathode also 

1  High resolution 3D images of silicon wafers may be taken using 
a confocal laser scanning microscope (OLS4100, Olympus Corp., 
Japan), having magnification (Optical and Digital) in the ranges 
from 108× to 17,280× which can resolve up to 10 nm in size in the z 
direction and 120 nm in the x–y plane.
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plays an important role. Zhang et al. [33] found that the 
cells with thicker electrodes have lower specific capac-
ity, which is endorsed to slow oxygen diffusion through 
thicker air cathodes.

Beattie et  al. [34] reported that specific capacity of 
the cells is inversely proportional to the amount of car-
bon loaded in the cathode. Another factor that affects 
the electrochemical performance of an air electrode is 
oxygen diffusion through the air electrode, which can be 
facilitated by increasing oxygen pressure. Read et al. [35], 
Yang and Xia [36] and Tran et al. [37] reported that the 
specific capacity linearly increases with the oxygen pres-
sure. The porosities, wettability and electrical contact of 
electrodes are determined by the ratio of carbon, catalyst, 
and polymer, which ultimately affects the electrochemical 
performance of Si–air cells.

4.2 � Catalysts for air cathode

4.2.1 � Noble metals

Noble metals such as platinum and Pt-based alloys have 
been used as oxygen reduction reaction electro catalysts 

for many decades. The nanoparticles of PtAu exhibited 
high stability and exemplary catalytic activity for carbon 
air cathodes of fuel cells and battery systems. Several 
studies [38–41] reported that ORR properties of Pt-based 
catalysts can be further improved by changing the size 
of the particles to nano scale and changing the surface 
characteristics of Pt-based nanostructures. When alloyed 
with other noble or transition metals, the performance of 
Pt based catalysts can be improved along with a reduction 
in cost [42–47].

4.2.2 � Carbonaceous materials

Graphene and carbonaceous materials have been pre-
ferred as electro catalysts for air cathode of Si–air battery 
systems. These have found application as metal free cata-
lyst or catalyst support because of their superior proper-
ties which include low cost, widespread availability, low 
electrical resistivity, very big surface areas and noble sta-
bility under severe conditions [48–64]. However, it has 
been reported that the electrochemical performance of 
these types of electro catalysts is highly dependent on 
their structure, morphology, pore size, and wall thickness. 

Fig. 5   3D images of As-doped 
Si electrode with <100> orien-
tation. a optical microscopy 
image from the surface; b 
green square in a as imaged 
by AFM; c a line scan of green 
square position, as indicated in 
b; d 3D reconstruction of b 
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Appropriate pre-treatment of the surface of carbonaceous 
materials improves its functionality and enhance the dura-
bility of ORR catalysts.

4.2.3 � Transition‑metal oxides

High spin transition-metal complexes having spinels and 
perovskites morphology represents another class of cath-
ode electro catalysts, highly useful in Si–air battery system 
[65–67]. These have shown excellent stability in alkaline 
medium whereas the stability in acidic electrolyte is rela-
tively poor. Oxides of titanium as co-catalysts have further 
enhanced the activity of noble metals and its alloys with 
non-precious metals. Chen et al. [68] examined titanium 
nitrides and reported that these are highly efficient cath-
ode electro catalysts. Transition metal carbides act as 
promising supports to promote the stability and activity 
of Pt- based ORR electro catalysts [69, 70]. The variable 
valence of transition metals such as Mn, Co, Fe and Ni gives 
rise to multiple structures to the oxides [71]. Mn-based 
oxides have been extensively studied as electro catalysts 
for air-electrodes. Electrochemically active manganese 
oxides such as MnO2, Mn2O3, Mn3O4, and Mn5O8 exhibits 
high catalytic activity [72–75].

4.2.4 � Inorganic–organic composites

The integration of organic matrix with nano-sized metal 
constitutes inorganic–organic composites. It is another 
class of materials that are used as noble metal-free electro 
catalysts for oxygen electrochemistry [76–84]. The non-
precious Ni/Fe metals easily form composite with polyoxo-
metalate (POM) and o-Anisidine (oA) and have exhibited 
high catalytic activity and stability towards oxygen evolu-
tion reaction (OER). A competition between metal cation 
takes place to make complex with composite. Nanostruc-
tured NixFey(OH)2 powders, coated onto various substrate 
with the aid of polymeric binders, have shown high cata-
lytic activity in alkaline electrolytes. Such composites can 
be prepared by pyrolysis of metal, nitrogen and carbon 
as these is not stable in strong acidic or alkali media. The 
catalytic activities of these composites depend on several 
parameters which include the metal, the precursors, the 
substrate and the synthesis method [85]. Nano engineered 
metal composites with heterocyclic conjugated polymers 
(polyaniline, polypyrrole and poly(3,4-ethylenedioxithio-
phene) have also been used as electro catalysts [78, 86, 
87]. These composites have advantage over other types of 
catalysts as the incorporation of metal ions in matrices cre-
ates large number of active sites [86]. Further, the bridges 
between matrix and metal promote physical and electri-
cal contact [87]. Inorganic–organic composites such as 

FeCo-EDA catalysts have shown outstanding ORR activity 
in alkaline electrolytes and exhibits nearly 3 times higher 
mass activity than commercial Pt/C catalyst [88].

4.2.5 � Hetero‑atom doped carbons

Heteroatom (N & S) doped carbon nano-materials [89–92] 
are the most promising ORR catalyst as it markedly reduces 
the cost and increase the efficiency of metal–air battery 
systems/fuel cells. Vertically aligned nitrogen-doped car-
bon nanotube (VA-NCNT) arrays can act as a metal-free 
electrode to catalyze a 4e− ORR process with a three times 
higher electro catalytic activity and better long-term sta-
bility than commercially available Pt/C electrodes in an 
alkaline cell [89]. These carbon-based metal-free ORR 
catalysts are also free from the CO poisoning and metha-
nol crossover effects. Choi et al. [93, 94] synthesized nitro-
gen and sulfur-doped carbons and studied their electro 
catalytic activity towards oxygen reduction reactions 
(ORR). The carbon catalyst synthesized from cysteine 
and dual-doped with nitrogen and sulfur, exhibited the 
highest onset potential (0.55 V vs. Ag/AgCl) and electro-
chemical activity in acidic media, − 0.2 mA (at 0.2 V vs. Ag/
AgCl), which is about 43% of that of commercial Pt/C (40 
wt%). From XPS studies they showed that in the carbon 
catalyst, sulfur was doped as sulfate or sulfonate. It was 
concluded that not only nitrogen doping but also sulfur 
doping of carbon  improve its electro catalytic activity 
towards ORR. Zhang et al. [95, 96]. synthesized graphene-
based B/N co-doped carbon nano sheets (G-CBP). It was 
argued that high surface area, unique 2D sheet nanostruc-
ture, and high heteroatom-doping contents (5.4% B and 
5.3% N) of G-CBP results into an excellent electrochemi-
cal performance for the oxygen reduction reaction under 
alkaline conditions (0.1 M KOH).

4.3 � Oxygen reduction reaction (ORR) in air 
electrode

Polytetrafluoroethylene (PTFE) with activated carbon black 
(0.45–0.5 g cm−2 loaded) is used as air cathode [17]. The 
mixture is encapsulated onto a nickel 200 mesh under 
high pressure and manganese dioxide is added as cath-
ode catalyst. The reduction of oxygen occurring at the air 
electrode is said to proceed either as 4 electrons or 2 elec-
trons as shown:

(1)O2 + 4e− ⇋ 2O2−

(2)O2 + 2e− ⇋ O2−
2
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The scanning electron microscopy (SEM) micrographs 
of air cathode revealed that activated carbon on cathode is 
covered with sedimentation during the battery discharge.

Peter Jakes et al. [18] studied the role of manganese 
oxide (MnO2), which acts as an oxygen- reduction reaction 
(ORR) catalyst on Si–air battery performance. The chemical 
state of Mn ions in the MnO2 catalysts was examined by XP 
and EPR spectroscopy. It was inferred from the results that 
during the discharge process, MnO2 also undergo changes 
during an electrochemical reaction when the electrolyte 
has fluoride ions, commonly present in the RTIL.

The formation of non-ORR catalyst MnF2 results in the 
loss of available catalytic sites and also lowers the ionic 
conductivity of the electrolyte. The change of MnO2 to 
MnF2 greatly affects the Si–air battery performance by 
limiting the discharge capacity and inhibiting the cell dis-
charge of Si–air battery. The electrochemical changes at air 
cathode are quite complex and complete understanding 
will require extensive studies with different catalyst and 
electrode/electrolyte systems. However, studies on new 
catalyst and new ionic solvent may lead to a suitable sys-
tem to better understand the phenomenon.

5 � Electrolytes for Si–air battery

5.1 � Room temperature ionic liquid (RTIL)

A room temperature ionic liquid (RTIL), EMI.(HF)2·3F is the 
most common type of electrolyte used in a Si–air battery. 
The EMI.(HF)2·3F is synthesised by a reaction of 1-ethyl-
3-methylimidazolium chloride and hydrogen fluoride by 
Hagiwara et al. [97]. The electrolyte has low viscosity and 
high conductivity amongst all RTILs with 100 mS cm−1, 
besides chemical stability in air and high tolerance at 
extreme relative humidity conditions [98, 99]. The sche-
matic of first experimental Si–Air Battery that utilised RTIL 
as the electrolyte is shown in Fig. 6.

Potentiodynamic polarization studies of the RTIL-silicon 
wafer couples (anodic half-cell) and of the IL–air electrode 
(cathodic half-cell) is used to evaluate EMI.(HF)2.3F as a 
viable candidate for electrolyte in a Si–air battery is shown 
in Fig. 7.

The half-cell reactions, crystallization reaction and over-
all reaction when two anions of RTIL contribute to the oxi-
dation of silicon at anode and reduction at air cathode are:

(3)
MnO2 + 8(HF)3F + 2e− ⇋ MnF2 + 10(HF)2F + 2H2O

(4)Anode: Si + 12(HF)2F
−
⇋ 8(HF)3F

−SiF4 + 4e−

5.1.1 � Effect of water in the RTIL

Cohn et al. [100] examined the effect of addition of water 
in the RTIL electrolyte. It has been concluded that dis-
charge performance of Si–air battery system is greatly 
obstructed since during cell discharge, the SiO2 precipi-
tates on air cathode’s porous carbon. The precipitation 
of SiO2 layer at a certain point of cell discharge prevents 
diffusion of oxygen which results into a short supply of 
oxygen at the electrolyte–electrode interface of air cath-
ode. This results into lowering in discharge capacities of 
cathode than expected theoretically. Since water plays 
an important role in the formation of SiO2, it was argued 
that the formation of SiO2 may shift towards separator or 
anode by adding water into the electrolyte. If reaction is 
shifted to take place at the bulk electrolyte rather than at 
the electrolyte–electrode interface, an alternative location 
for the SiO2 formation can be introduced causing suffoca-
tion to the air–cathode. This is due to the loss of available 
catalytic sites on the porous surface of the air cathode for 
oxygen reduction.

The Si–air cells under study are discharged at a constant 
current density of 0.3 mAh cm−2 and the cut-off potential 
of 0.5 V. Variation in water content in the electrolyte did 
not have any affect in open circuit potential (OCP) for the 
Si–air cell. The dependence of discharge capacity of the 
Si–air cell is studied as a function of water content of RTIL 
at a fixed discharge current of 0.3 mAh cm−2. Initially, the 
discharge capacity increases with water content, reach-
ing a maximum value of 72.5 mAh cm−2 at 15 vol% of 
water. On increasing water content beyond 15%, a sharp 
decrease (up to 40%) is observed in the cell discharge 
capacity up to 80% water content. Beyond 80% water con-
tent of RTIL, the cell could be operated as it did not display 
any discharge. From these results, it has been concluded 
that addition of water in RTIL may be having two opposing 
effect. One, it facilitates the formation of SiO2 in the bulk 
electrolyte and not at the air electrode due to which poros-
ity of air electrode remains more or less intact. Second, the 
activity of RTIL in the electrolyte decreases on increasing 
the content of water resulting into loss of its distinctive 
properties of facilitating cathode reaction. With increment 
in the percentage of water in the electrolyte, the fraction 
of RTIL in the mixture decreases, and therefore, the unique 
properties of the RTIL are reduced.

(5)Cathode: O2 + 12(HF)3F
− + 4e− ⇋ 16 (HF)2F

− + 2H2

(6)
Crystallization: SiF4 + 2H2O + 4(HF)2F

−
⇋ SiO2 + 4(HF)3F

−

(7)Overall Cell Reaction: Si + O2 ⇋ SiO2
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5.1.2 � Gel polymer electrolytes

Gel polymer electrolytes (GPEs) are formed by integrating 
a liquid electrolyte into a polymer matrix. Although GPEs 
are in solid state but the conduction in them is similar to a 
liquid electrolyte. The use of a gel electrolyte as a moisture 
barrier eliminates the need to handle liquid electrolyte and 
simplifies technical issues in cell architecture. Shape flex-
ibility, mechanical stability, high safety and a modest loss 
in ionic conductivity during discharge process have made 

GPEs come into focus as electrolytes. They are commonly 
used in a variety of applications including Li-Ion batteries, 
solar cells and chemical sensors [101–104].

Yair-Ein-Eli et al. [105] explored the possibility of uti-
lizing a composite polymer electrolyte in Si–air bat-
tery system. The gelled polymer electrolyte was derived 
using specially synthesized EMI.(HF)2.3F ionic liquid and 
2-hydroxyethyl methacrylate (HEMA) as the matrix. The 
combination of the RTIL and polymer composites are also 
studied extensively by Tsuda et al. [106].

Fig. 6   Schematic diagram of a 
silicon–air battery [28, 29]; b A 
refill-type Si–air cell [28, 29]
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When the battery using GPE of 50–70 mol% ionic liq-
uid is discharged at a current density of 0.1 mA cm−2 in 
an ambient atmosphere, it’s operating potential increases 
with increasing percentage of RTIL. It is observed that 
at 50 mol% RTIL, it is 0.4 V; at 60 mol% it is 0.5 V and 
at 70  mol% it is 0.6 V (discharge current was fixed at 
0.1 mA cm−2). When compared with discharge potentials 
of the cells using pure RTIL, the operating potential of 
GPEs is ~ 0.5 V lower. It has been argued that difference in 
ionic conductivity of the GPEs is responsible for this vari-
ation in operating potential. For instance, it is observed 
that the ionic conductivity of 60 mol% RTIL is 23 mS cm−1 
which is lower than the ionic conductivity of pure RTIL 
(100 mS cm−1).

Gelled electrolytes comprising of 40–70 mol% of EMI.
(HF)2·3F RTIL and HEMA polymer are found to be free 
standing and mechanically stable. These GPE can also be 
well integrated with both Si anode and air cathode. The 
cell comprising of these electrolytes exhibited a long dis-
charge time of 850 h at 0.1 mA cm−2 operative discharge 
current density. However, these cells have lower cell volt-
age when compared with the cells using pure RTIL, and 
it has been attributed to higher ionic conductivity of the 
later. Thus, use of GPEs as electrolyte in Si–air battery is 
feasible for low power devices.

5.1.3 � Corrosion analysis of silicon anode with RTIL 
electrolyte

Jakobi et al. [28, 29] studied corrosion mass losses of As-, 
Sb-, and B-doped Si anodes at different discharge rates 
and varying discharge time (up to 20 h) (Fig. 8). It was con-
cluded that the electrochemical etching increases surface 
area significantly along with formation of oxide over layer. 
The corrosion mass of all types of Si anodes increases with 
the increase in current density. The electrochemical etch-
ing is capable of producing a strong non-porous Si elec-
trode incorporating thick porous layers and tiny pores.

Such Si anodes shall be favoured in alkaline Si–air bat-
teries due to their enriched discharge behaviour in com-
parison to flat Si anodes. Further these high surface area 
nonporous Si anodes in room temperature ionic liquids 
are capable of minimizing strong passivation and self-dis-
charge of Si anodes, enhancing its extended utilization, 
resulting into development of Si–air batteries having sta-
ble voltage profile. The increase in corrosion mass loss for 
current densities (up to 0.3 mA cm−2) is found to be linear 
for n-type Si anodes. The corrosion mass is significantly 
lower for n-type Si anodes with <111> orientation when 
compared with <100> orientation. Similar trend is found 
in the As- and Sb-doped Si anodes as well as in p-type Si 

Fig. 7   Polarization voltam-
mograms [19] recorded with 
RTIL [EMI·(HF)2·3F] at 5 mV s−1 
for various electrodes: silicon 
single-crystal anodes and air 
cathodes
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anodes to n-type Si anodes. At higher current densities, 
the corrosion rate is significantly high. Discharge poten-
tials for various dopants at varying current densities are 
found as detailed below.

(a)	 For low current densities: As100> As111≈ Sb100> Sb111 ≫ 
B100> B111

(b)	 For high current densities: As100> As111 ≫ Sb100> B100
> B111> Sb111

Fig. 8   Influence of dopant type and orientation of silicon anodes 
on corrosion of Si–air cells for a <100> oriented As-doped Si anode; 
b <111> oriented As-doped Si anode; c <100> oriented Sb-doped 

Si anode; d <111> oriented Sb-doped Si anode; e <100> oriented 
B-doped Si anode; f <111> oriented B-doped Si anode. Durmus 
et al. [28, 29]
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The anode efficiency, which is dependent on corrosion 
of an anode, is an essential factor for screening of materials 
for Si–air batteries. Anode efficiency cannot be 100%; it is 
a factor that is dependent on the corrosion of the doped 
anode in the electrolyte. Anode mass conversion efficiency 
of differently doped Si-anodes for varying current densi-
ties are analysed and ranked as: Anodic mass conversion 
efficiency rankings: B100 ≈ B111 ≈ As111 > Sb111 ≫ Sb100 ≈ As100

On the basis of these findings, it has been concluded 
that <111> oriented As-doped silicon is the first-rate choice 
as the anode in Si–air batteries, employing EMI·(HF)2·3F as 
the electrolyte.

5.1.4 � Mechanism of discharge termination in silicon–air 
batteries

The cell impedance during the discharge process of a 
Si–Air battery employing RTIL electrolyte has also been 
investigated [107]. Electrochemical Impedance Spectros-
copy (EIS) is utilized to study the generation and develop-
ment of Si anode and air cathode interfaces in the battery 
during storage and operation. The effect of exchanging 
the anode and cathode during discharge and at the end of 
the discharge is also studied. In order to determine which 
electrode is contributing to the cell impedance as the most 
dominant source, it is needed to obtain and analyse the 
impedance spectra of each electrode. The study of anode 
impedance exhibited two well-defined semicircles which 
correspond to high frequency and low frequency regions. 
The high frequency zone is attributed to space charge layer 
capacitance and a charge transfer resistance whereas the 
low frequency zone is attributed to the formation of thin 
oxide layer on the sub-micron pores during anodic reac-
tion that adds to resistance and capacitance of the cells 
[108, 109]. Since the total impedance at the air cathode is 
considerably lower than the impedance at the anode, it 
can be neglected. Therefore, the overall cell impedance is 
originated from the silicon anode impedance.

The role of silicon in the potential drop of the battery 
during discharge is identified by employing a three-elec-
trode configuration to the Si–air system. The initial drop 
of the air cathode is larger than the Si anode which can be 
attributed to dissolved oxygen in the electrolyte that is 
easily accessible and is consumed in the beginning of the 
operation but once more and more oxygen is consumed, 
the over potential of the air cathode increases and the 
voltage of the air cathode remains unmodified at 0.4 V. On 
the other hand, the over potential of the Si anode behaves 
differently. The over potential at electrodes increases with 
continuous discharge of the battery. The voltage profile of 
Si–air battery mimics the anode profile which clearly con-
firms the assumption that Si anode is the dominant elec-
trode which controls and defines the discharge behaviour 

of a Si–air system. Hence, the capacity of the battery is 
limited by the Si anode rather than the air cathode.

The importance of the Si-anode with respect to dis-
charge of Si–air battery is investigated by replacing the 
anode electrode during the discharge as well as at the end 
of the discharge. When the anode is replaced during the 
middle of the discharge, there is no effect on the discharge 
voltage. However, the discharge capacity almost doubles 
at the end of the operation of the second silicon anode. 
With each changing period, the capacity decreases to such 
an extent that after the fifth replacement, the increase in 
the discharge capacity is negligible as compared to pre-
vious exchanges. The reason why the fifth replacement 
does not give a significant increase on discharge capacity 
is because of the degradation of the air cathode and the 
electrolyte during the discharge process.

5.2 � Alkaline electrolyte

A primary Si–Air battery employing nanostructured silicon 
as anode material with an alkaline solution based electro-
lyte was investigated by Zhong et al. [23]. Typical galvano-
static discharge of the cell exhibited that the cell can be 
used to draw current at 0.05 mA cm−2 over a period of 30 h 
at an operating potential of 1.2 V. In contrast, in a control 
experiment using an unmodified silicon wafer, the cell is 
completely discharged in less than 10 min at a potential of 
1.1 V i.e. the potential quickly drops to zero. The electrode 
reactions are:

The main benefit of employing an alkaline solution is 
its ability to dissolve Si(OH)4. The surface can be covered 
by silicon oxide if the dissolution rate of Si(OH)4 is not 
fast enough. The formation of a porous surface structure 
increases the dissolution rate of Si(OH)4 in the KOH elec-
trolyte. This facilitates the effective removal of the oxide 
and reactivates the Si-surface. On the other hand, the 

(8)Anode: Si + 4OH−
⇋ Si(OH)4 + 4e−Eo = 1.69 V

(9)Cathode: O2 + 2H2O + 4e− ⇋ 4OH−Eo = 0.40 V

Table 1   Specific capacities of silicon–air batteries

Discharge current 
density (ma cm−2)

KOH concen-
tration (M)

Mass of 
silicon (mg)

Specific 
capacity 
(mAh g−1)

0.05 6 2.26 154.8
0.05 2 1.63 214.7
0.05 0.6 0.49 715.7
0.1 0.6 0.58 1206.0
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unmodified silicon surface become passive very quickly 
and results in a very short discharge time.

Various concentrations of the alkaline solution as elec-
trolyte are studied. It is reported that the self-discharge 
rate is highly dependent on the electrolyte composition. 
It is observed that anodic dissolution potential is directly 
proportional to KOH concentrations (Table 1).

5.2.1 � Corrosion analysis of silicon anode with alkaline 
electrolyte

Durmus et al. [110] studied the corrosion of As-doped 
(0.001–0.007 µcm) crystalline Si wafers in 0.5–12 M KOH 
solution. It is concluded that the chemical corrosion of 
Si is a surface reaction limited process. While in 0.3–5 M 
KOH, anisotropic etching leads to very rough surfaces 
and pyramidal hillocks, smoother surfaces at > 5 M KOH is 
attributed to polishing process. Hence, the anodic oxida-
tion of As-doped Si does not depend on strength of KOH. 
Durmus et al. proposed that the electron transfer is the 
rate determining step of corrosion of As-doped Si using 
galvanostatic discharge data. They further suggested that 
the focus on the corrosion inhibition will help in improv-
ing the shelf-life and discharge performance of the pri-
mary Si–air batteries. It can be concluded that weak KOH 
enhances the shelf life while strong KOH will ensure con-
tinuous discharge at high current densities. The effect of 
KOH concentration on the corrosion rates of As-doped Si 
anodes can be understood by considering the following 
reaction mechanism:

At 15 °C, Si undergoes corrosion @ 0.66 µm h−1, which 
increases to 1.46 µm h−1 at 25 °C. Further increase in tem-
perature showed exponential increase of the corrosion 
rates, observed to be 13.62 µm h−1 at 60 °C. This behaviour 
is in accordance with Arrhenius equation which states that 
etching rate increases with temperature.

The variation of KOH changes the relative concentra-
tion of OH− and H2O in the solutions, which results in a 
change in their activities. In case of hydroxide ions, the 
activity increases almost linearly beginning from 1 M of 
KOH whereas KOH activity decreases [111–113].

6 � Conclusion and outlook

This mini review is an effort to summarise recent develop-
ments of Si-anode, air cathode, different electrolytes and 
their effect on the discharge mechanisms and working 
potentials in a Si–air battery system. Despite the intense 
research, there is still much scope for further advancement 

(10)Si + 2OH−
+ 2H2O ⇋ SiO2(OH)

2−
2

+ 2H2

of this novel type of Si–air technology. Prospective direc-
tions for future research in Silicon–air batteries could focus 
on the following:

1.	 Pure silicon wafers are the most common material 
for Si anode but the drawback is their high corrosion 
rates. It is required to find a Si anode that is capable 
to sustain its capacity over hundreds of discharge 
and charge cycles. Therefore, nano-structured silicon 
and doped silicon can be used to improve the perfor-
mance of the Si anode. Structural modifications such 
as electro deposition or chemical modification by the 
means of additives has proven to be an ideal solution 
to find such an anode material. The additives must be 
effective in small quantities since a large amount of 
additive can reduce the overall capacity of the silicon 
material. More studies are needed to properly under-
stand the charge and discharge mechanisms for the 
optimisation of the discharge time. A more effective 
methodology is needed to find solution for corrosion 
or passivation in Si–air battery.

2.	 The air cathode is an essential part of any type of 
metal–air battery but its kinetics of the oxygen reduc-
tion reaction hinders its performance. Therefore, elec-
tro catalysts play an important role in the cathode. 
Noble metals such as Pt and Pt-alloy based catalysts 
have been extensively used as electro catalysts in air 
electrode. To further reduce the cost, different type 
of catalysts such as high spin transition metal com-
plexes and inorganic–organic composites can be used 
as a highly efficient alternative. It has been observed 
that the specific capacity of an air electrode depends 
on various factors. Thus, a suitable choice for an air 
electrode would be to choose a very thin and highly 
porous graphite nano-sheet with optimal pore size 
which is impregnated with an appropriate electro 
catalyst. Further development of low cost catalysts 
with improved activity and durability is necessary to 
improve the sluggish kinetics of air electrode. One 
such example of an electro catalyst could be inexpen-
sive bi-functional catalysts which is active to both oxy-
gen evolution reaction and oxygen reduction reaction.

3.	 New highly stable electrolyte technologies that allow 
long-lasting operation of Si–air batteries are required 
for further advancement. At present, Ionic liquids are 
the most promising electrolytes for Si–Air batteries. 
Thermally and mechanically stable gel polymer elec-
trolyte appears to be a viable candidate as electrolyte 
for future research. Solidification of the electrolyte 
system is important to maintain the safe operation & 
easy handling of the battery and structural integrity 
under various deformations. It is also highly important 
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to study the properties at the electrode–electrolyte 
interface of the battery.

4.	 Simulations are needed in order to provide an optimal 
design of Si–air batteries in terms of structural design 
of anode and cathode, as well as dispersion of electro-
lyte, electro catalyst, current collector and depolarizers 
in order to provide a corrosion-free contact between 
the electrodes and electrolyte. Moreover, the under-
standing of silicon dendritic growth in Si–air batteries 
is still in its infancy. Although there are many chal-
lenges faced, it is worth applying efforts to develop 
Si–air batteries for next-generation energy storage 
technology.
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