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Abstract
In this study, an event-driven control strategy is developed to counter the spoofing attacks in wireless sensor networks 
which is considered as a control strategy in stochastic system. We have also devised the corresponding spoofing-proof 
event-driven transmission mechanism. For this, first, an event-driven state estimator for the underlying stochastic system 
is designed. Then, using the stochastic stability theory, the event-triggered state estimator gain is derived by means of 
the stochastic Laypunov function, so that the corresponding state estimation mean square error is compensated. The 
estimator’s output error is used to suppress the related spoofing attack. The devised event-driven transmission strategy 
applies some approximate quadratic performance indicators to ensure a measured balance between estimation error, 
data communication rate and sensor battery life time. Finally, numerical examples are presented to verify the validity 
of the theoretical results.
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1  Introduction

Wireless sensor network (WSN) comprises a collection of 
sensor nodes employed to monitor and record the status 
of the physical environment and organize the gathered 
data at a central location. The research on wireless sensor 
networks has made a great progress in recent years, where 
many solutions have been proposed to address various 
problems arose these architectures. One of the main con-
cerns of wireless multimedia sensor networks (WMSNs) is 
the huge data size causing the higher energy consump-
tion in transmission. The high energy consumption is a 
critical problem for lifetime of network includes sensor 
nodes with limited battery [1]. In [2], presents a deep 
learning based distributed data mining (DDM) model to 
achieve energy efficiency and optimal load balancing at 
the fusion centre of WSN. Peng et al. [3] consider a linear 
all-transmission scenario where the intermediate clusters 

act not only as forwarding clusters but also transmitting 
clusters. Database applications in wireless sensor networks 
very often demand data collection from sensor nodes of 
specific target regions. Design and development of spatial 
query expressions and energy-efficient query processing 
strategy are important issues for sensor network database 
systems [4, 5]. In a wireless sensor network (WSN), the 
usage of resources is usually highly related to the execu-
tion of tasks which consume a certain amount of comput-
ing and communication bandwidth [6]. Consumed life 
time monitoring of a structure during operation is a topic 
of increasing interest [7, 8]. Localization technology is cru-
cial in wireless sensor networks (WSN) by forming the basis 
of various WSN applications. With the advancements of 
WSN, WSN attacks for node localization have increasingly 
become an important security issue [9]. Location based 
access in wireless sensor networks (WSN) are vulnerable 
to location spoofing attacks [10]. However, sensor nodes 
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are equipped with limited-capacity batteries due to their 
small form factor requirements. This necessitates frequent 
battery replenishments, i.e., maintenance tasks to be 
performed, which becomes impractical for some cases/
deployment areas. As a corollary of this issue, event-driven 
transmission mechanisms have recently attracted a great 
deal of attention from both the control and the communi-
cation network communities due to reduces the number 
of transmissions so the overall power consumption of the 
network, which significantly prolongs the network lifetime 
[11–13].

Meanwhile, a communication channel is shared 
between the various physical devices in the network. Due 
to the high openness of these shared networks, there is no 
security guarantee for the data transmission between the 
varied sensors, especially in networks where some data is 
transmitted in plaintext, and the problem is particularly 
serious. In this environment, the attackers can easily inter-
fere to the information flow in the network and thereby 
destroy the control system. In recent years, such behav-
iors have received significant attention by, whereby con-
siderable contribution has been made by the researchers 
[14]. It should be noted that the attackers with deceptive 
behavior are the most dangerous as they often inject the 
wrong data to destroy the control system. For example, 
in [15], an algorithm has been proposed to protect the 
system against such erroneous data transmission behav-
ior, and its main research has been supplemented in [16]. 
The datasets in [17] are produced to evaluate the ability of 
intrusion detection systems to detect attacks that emulate 
normal non-periodical messages, at differing attack occur-
rence rates. In [18], author develop a spoofing process 
equation (SPE) that can be used to calculate the tracking 
point of the delay lock loop (DLL) at regular chip intervals 
for the entire spoofing process. Paper [19] presents a new 
approach to estimate the true position of an unmanned 
aerial vehicle (UAV) in the conditions of spoofing attacks 
on global positioning system (GPS) receivers. It is proposed 
the position/velocity-fusion-based integration system in 
Ref. [20], it can detect both MEAC and LOA attacks with 
high probability using the IMU error compensations. Paper 
[21] primarily details the step-by-step implementation of a 
low-cost GPS spoofing and high-level spoofing data collec-
tion apparatus to model a simplistic spoofing attack that 
could be implemented with limited resources. At the same 
time, when the system is in a spoofed attack condition, 
the node tend to generate high-frequency transmitting 
signals, thereby consuming a large amount of power and 
reducing the node’s life time. To our knowledge, a corre-
sponding security control strategy has not been proposed 
in the current literature, especially under the event-driven 
transmission scenarios.

This paper studies the event-driven control strategy 
to counter spoofing attacks. To devise an event-driven 
transmission control strategy aiming at detecting the 
anomalous events caused by spoofing attacks, the state 
estimator gain triggered by the event is derived by means 
of a stochastic Laypunov function using stochastic stabil-
ity theory. Thus, the corresponding state estimation mean 
square erroris compensated and the corresponding spoof-
ing attack is suppressed using the output error of the 
estimator. The corresponding event-driven transmission 
strategy is designed with the aid of approximate second-
ary performance indicators.

The main contributions of this paper include the 
following:

1.	 A new scheme is proposed to detect fraudulent node 
behavior in wireless sensor networks, including spoof-
ing attacks and processes by estimating and measur-
ing the stochastic system state under attack condi-
tions.

2.	 Taking advantages of the stochastic mean square sta-
bility theory, the corresponding sufficient conditions 
are derived for the upper bound of the exponential 
mean square estimation error as k → ∞ , using which 
the stability of the designed estimator is proved. 
Additionally, the optimal estimator gain to suppress 
the corresponding spoofing attack is obtained via the 
linear estimator inequality.

3.	 An event-driven transmission strategy is proposed 
using some quadratic approximate system perfor-
mance indexes. The purpose is to make a measured 
balance between estimation error, data communica-
tion rate and sensor battery life. In order to verify the 
effectiveness of the estimator-based event-driven 
attack prevention mechanism, a target tracking appli-
cation is modeled.

2 � Problem statement

In Fig. 1, the state estimation based on the measurement 
process by a battery-powered sensor is shown. A remote 
estimator receives measurements over the wireless chan-
nel, and it can observe current sensor measurements as 
well as current estimates. When an event is triggered, the 
current sensor measurement is sent to the remote esti-
mator. Since there is a correlation between the spoofing 
attack measurements and the estimation error, the stand-
ard Kalman filter will no longer be applicable. Hence, the 
event-driven estimation mechanism is applied to reduce 
the data transmission of the sensor nodes, thereby achiev-
ing both energies saving and bandwidth reduction.
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Figure 2 shows that the lithium battery powered con-
troller can detect the tracked object and the remote actua-
tor can obtain the control information over the wireless 
channel.

Symbols: N  and R are collection of natural and real 
numbers, respectively. Rm×n denotes a real value matrix 
of m × n , and Rn is the abbreviation for Rn×1 . Rn×n

+
 and Rn×n

++
 

is the positive semidefinite matrix and positive definite 
matrix of n × n . When X ∈ Rn×n

+
 , we simply write X ≥ 0 

or X > 0 . For X ∈ R
m×n , XT denotes the transpose of X, 

E[⋅] denotes the mathematical expectation, and ‖⋅‖ is the 
Euclidean norm.

The process dynamics and sensor measurement equa-
tions are assumed to be as in the following:

In the equation, xk ∈ Rn is the system state, yk ∈ Rm is 
the system output, uc,k ∈ Rn is the control input, c is the 
control entity, k → ∞ is time, and dk ∈ R

n is the spoof-
ing attack input. It is assumed that the random variable {
wk

}
 stands for spoofing attack behavior with zero mean 

and variance of Qw . When xk needs to be transmitted to 
the remote controller, the event-driven algorithm decides 
whether to send it to the executor. It is assumed that the 
matrix A1 , D1 , D2 and C are known. We consider �k as a 

(1)
xk+1 = A1xk + uc,k + D1dk + wk

yk = Cxk + D2dk

decision variable: when �k = 1 , it indicates that uc,k is sent; 
and when �k = 0 , it means uc,k is not sent. Therefore, only 
when �k = 1 , the actuator will know the true value of uc,k . 
Besides, we assume that the spoofing attack size and at 
the same time, the energy are both bounded: ‖‖dk‖‖ ≤ d̄ , ∑∞

k=0
dT
k
dk ≤ �.

When the network does not have node protection 
measures, spoofing attacks may occur. The mathematical 
model for such attack is considered as follows:

where uk is the event-driven controller, �k is unknown 
but bounded signals that satisfy the ‖‖�k‖‖ ≤ � , the 𝜀 > 0 
is known, and can be estimated by security requirements.

In actual applications, the behavior of an attacker is 
often unpredictable due to the nonlinearity of the physi-
cal device construction, bandwidth constraints and signal 
quantization, and physical constraints and randomness. 
The effects of such constructs should be added to the 
attack model. Doing so, the actual uc,k obtained by the 
actuator is as follows:

where the matrix �  satisfying 𝛤
−
≤ 𝛤 ≤ 𝛤  , where �

−
 and 𝛤  

are respectively its upper and lower bounds, which satisfy 
the following nonlinear relations

where 𝛤 ≜ 𝛤 − 𝛤
−
> 0 . In addition, �k is a random variable 

obeying the Bernoulli distribution, where its probability 
satisfies

where �k has nothing to do with random variable 
{
wk

}
 , �k.

Next, the event-driven controller form [7] is given as 
follow:

Then the closed-loop system xk satisfies the following

(2)ua,k = uk + �k

(3)uc,k = uk + �k�ua,k

(4)

{
𝛤ua,k = 𝛤

−
ua,k + 𝜙k

𝜙T
k

(
𝜙k − 𝛤ua,k

)
≤ 0

(5)
Prob

{
�k = 1

}
= �

Prob
{
�k = 0

}
= �1 = 1 − �

(6)uk =

{
BKxkBKxk �k = 1

0 �k = 0

(7)

xk+1 = A1xk + �kuc,k + D1dk + wk

= A1xk + �k

((
1 − �k�−

)
uk + �k�− �k + �k�k

)
+ D1dk + wk

=

(
A1 + �k

(
1 − �k�−

)
BK

)
xk + �k

(
�k�− �k + �k�k

)
+ D1dk + wk

Fig. 1   The event-triggered state estimator driving the plan of sen-
sor

Fig. 2   Transmission scheme with external attacks
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Lemma 1  (Lemma 1 [8]) Define V
(
ek
)
 as a Lyapunov func-

tion. If there exist �1 ≥ 0 , 𝜀2 > 0 , 𝜀3 > 0 and 0 < 𝜀4 ≤ 1 , then

and

Then the mean ek square is bounded. As shown in

Next, defining T ∈ N as the time domain, and select-
ing J as a cost function, we get

where the b
(
ek
)
= eT

k
Hek + ��k , the system weight H > 0 

and the communication weight 𝜃 > 0.
The cost given by Formula (11) is called the approxi-

mate quadratic performance index [9]. Design in 
accordance with the secondary form defined by H and 
through setting the number of �k = 1 transmitting times. 
The main tool used to determine the upper bound is 
given by the following lemma.

Lemma 2  (Theorem  1 [10]) Suppose there is a Markov 
sequence that satisfies the state space X  . Suppose that: 
f ∶ X → R , b ∶ X → R . Definition: 

If there is c ∈ R which satisfies

then it can be concluded that

It can be seen that the corresponding sufficient con-
ditions can make the system to reach a state of bounded 
exponential mean square error in k → ∞ , which proves 

(8)�2
‖‖ek‖‖2 ≤ V

(
ek
)
≤ �3

‖‖ek‖‖2

(9)E
{
V
(
ek+1

||ek
)}

− V
(
ek
)
≤ �1 − �4V

(
ek
)

(10)E
{‖‖ek‖‖2

}
≤

�3

�2

‖‖e0‖‖2
(
1 − �4

)k
+

�1

�2�4

k∑
i=1

(
1 − �4

)k

(11)J = lim sup
T→∞

1

T

T−1∑
k=0

E
(
b
(
ek
))

(12)J = lim sup
T→∞

1

T

T−1∑
k=0

E
(
b
(
xk
))

(13)m(x) ≥ c x ∈ X ,

(14)J ≤ sup
�∈X

(
b(�) + E

(
m
(
xk+1

)||xk = �
)
−m(�)

)

the stability of the designed estimator. The event-driven 
mechanism is applied in the remote state estimation to 
reduce the data transmission of the sensor nodes and to 
ensure the performance of the remote state estimation 
simultaneously, thereby achieving the purpose of both 
energies saving and bandwidth reduction.

3 � Design of event‑driven controller

Here, the �k = 1 controller gain K  is derived by Lemma 1 to 
make the state xk mean square convergence and suppress 
the effect of dk.

Theorem 1  If �k = 1 is given a positive number �1 , P > 0 is 
assumed to be a symmetric matrix, and the following linear 
inequality is satisfied

then, the mean square of the state xk is bounded when 
dk = 0 . In addition, when dk ≠ 0 , under the initial condition 
of 0, the output satisfies: ‖‖yk‖‖ ≤ �1

‖‖dk‖‖ + � + trace
(
QwP

)
.

The Controller Gain K = RX−1.

Proof  To satisfy the condition (8) of Lemma 1, we select the 
following Lyapunov function

where P > 0 is a symmetric matrix. When dk = 0 , by sub-
stituting formula (7) into the above formula

(15)

𝛺 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−X 0 0 XTCTD2

∗ −I 0 0

∗ ∗ −I 0

∗ ∗ ∗ −𝛾2
1
I + DT

2
D2

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

XTAT
1
+ RTBTST −RTBT𝛤

−

T XTCT

𝛼𝛤
−

T 𝛤
−

T 0

I I 0

DT
1

0 0

X 0 0

∗ 𝛼−1
2
X 0

∗ ∗ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

V
(
xk
)
= xT

k
Pxk ,



Vol.:(0123456789)

SN Applied Sciences (2020) 2:1066 | https://doi.org/10.1007/s42452-020-2854-5	 Research Article

where the S = 1 − ��
−

 , the �k =
[
xT
k
�T
k
�T
k

]T
 in order to 

satisfy the condition of Lemma 9, if 𝛺 < 0 , the above for-
mula can be simplified as

(16)

ΔVk = E
{(

V
k+1

||xk ,… , x0

)}
− Vk

(
xk
)
= xT

k

((
A1 + SBK

)T
P
(
A1 + SBK

)
− P

)
xk

+ 𝛼2𝜀T
k
𝛤
−

T P𝛤
−
𝜀k + 𝛼2𝜙T

k
P𝜙k

+ 2𝛼xT
k

(
A1 +

(
1 − 𝛼𝛤

−

)
BK

)T

P𝛤
−
𝜀k

+ 2𝛼xT
k

(
A1 +

(
1 − 𝛼𝛤

−

)
BK

)T

P𝜙k + 𝛼2𝜀T
k
𝛤
−

T P𝜙k

+ 𝛼2K
TBT𝛤

−

T P𝛤
−
BK + 𝛼2𝜀

T
k
𝛤
−

T P𝛤
−
𝜀k + 𝛼2𝜙

T
k
P𝜙k

+ 2𝛼2K
TBT𝛤

−

T P𝛤
−
𝜀k + 2𝛼2K

TBT𝛤
−

T P𝜙k

+ 2𝛼2𝜀
T
k
𝛤
−

T P𝜙k + trace
(
QwP

)

≤ xT
k

((
A1 + SBK

)T
P
(
A1 + SBK

)
− P

)
xk

+ 𝛼2𝜀T
k

(
𝛤
−

T P𝛤
−
− I

)
𝜀k + 𝛼2𝜙T

k
(P − I)𝜙k

+ 2𝛼xT
k

(
A1 +

(
1 − 𝛼𝛤

−

)
BK

)T

P𝜙k

+ 𝛼2𝜀T
k
𝛤
−

T P𝜙k

+ 𝛼2x
T
k
KTBT𝛤

−

T P𝛤
−
BKxk + 𝛼2𝜀

T
k
𝛤
−

T P𝛤
−
𝜀k

+ 𝛼2𝜙
T
k
P𝜙k

+ 2𝛼2x
T
k
KTBT𝛤

−

T P𝛤
−
𝜀k + 2𝛼2x

T
k
KTBT𝛤

−

T P𝜙k

+ 2𝛼2𝜀
T
k
𝛤
−

T P𝜙k

+ 2𝛼xT
k

(
A1 +

(
1 − 𝛼𝛤

−

)
BK

)T

P𝛤
−
𝜀k − 𝜙T

k
𝛤Kxk

+ 𝜙T
k
𝛤𝜀k + 𝜀 + trace

(
QwP

)

= 𝜂T
k
𝛺𝜂k + 𝜀 + trace

(
QwP

)

(17)

E
{(

V
k+1

||xk ,… , x0

)}
− Vk

(
xk
)
= 𝜂T

k
𝛺𝜂k + 𝜀 + trace

(
QwP

)

≤ −𝜆min(−𝛺)𝜂T
k
𝜂k + 𝜀 + trace

(
QwP

)

< −𝜎11x
T
k
xk + 𝜀 + trace

(
QwP

)
.

where the 0 < 𝜎11 < min
{
𝜆min(−𝛺), 𝜆max(P)

}
 , �min(⋅) 

and �max(⋅) refer to minimum and maximum eigenvalues 
of the matrix, respectively.

By using Lemma 1 and Inequality (15), the above for-

mula can be summarized as

(18)
E
{‖‖xk‖‖2

}
≤

�max(P)

�min(P)
‖‖x0‖‖2

(
1 − �11

)k
+

� + trace
(
QwP

)
�min(P)�11

k∑
i=1

(
1 − �11

)k

≤
�max(P)

�min(P)
‖‖x0‖‖2

(
1 − �11

)k
+

� + trace
(
QwP

)
�min(P)�11

.
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Therefore, it is verified that when dk = 0 and �k = 1 , xk 
is mean-square bounded.

Next, assuming dk ≠ 0 we reformulate ΔVk as

Introducing performance index H∞ to suppress the 
effect of unknown inputs dk , we get

Under the initial conditions of 0, J1 is substituted in ΔVk , 
as

If 𝛺 < 0 , then the following inequality can be obtained

Therefore, we can conclude the following

With Schur complement, we can get the following 
matrix inequality constraints

By multiplying both end sides of diag
{
P−1, I

}
:

(19)

ΔVk ≤ xT
k

((
A1 + SBK

)T
P
(
A1 + SBK

)
− P

)
xk

+ 𝛼2𝜀T
k

(
𝛤
−

T P𝛤
−
− I

)
𝜀k + 𝛼2𝜙T

k
(P − I)𝜙k

+ 2𝛼xT
k

(
A1 +

(
1 − 𝛼𝛤

−

)
BK

)T

P𝜙k + 𝛼2𝜀T
k
𝛤
−

T P𝜙k

+ 𝛼2x
T

k
KT BT𝛤

−

T P𝛤
−
BKxk + 𝛼2𝜀

T

k
𝛤
−

T P𝛤
−
𝜀k + 𝛼2𝜙

T

k
P𝜙k

+ 2𝛼2x
T

k
KT BT𝛤

−

T P𝛤
−
𝜀k + 2𝛼2x

T

k
KT BT𝛤

−

T P𝜙k + 2𝛼2𝜀
T

k
𝛤
−

T P𝜙k

+ 2𝛼xT
k

(
A1 +

(
1 − 𝛼𝛤

−

)
BK

)T

P𝛤
−
𝜀k − 𝜙T

k
𝛤Kxk + 𝜙T

k
𝛤𝜀k

+ dT
k
DT

1
PD1dk + 2xT

k

(
A1 +

(
1 − 𝛼𝛤

−

)
BK

)T

PD1dk + trace
(
QwP

)

+ 2𝛼𝜀T
k
𝛤
−

T PD1dk + 2𝛼𝜙T

k
PD1dk

(20)J1 = E

{
∞∑
k=0

yT
k
yk

}
− �2

1
E

{
∞∑
k=0

dT
k
dk

}

(21)J1 ≤ E

{
∞∑
k=0

((
xT
k
dT
k

)
�

(
xk
dk

))}
+ �

(22)E

{
∞∑
k=0

yT
k
yk

}
− �2

1
E

{
∞∑
k=0

dT
k
dk

}
≤ �

(23)‖‖yk‖‖ ≤ �1
‖‖dk‖‖ + �

(24)

𝛺 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−P + CTC 0 0 CTD2 AT
1
+ KTBTST −KTBT𝛤

−

T

∗ −I 0 0 𝛼𝛤
−

T 𝛤
−

T

∗ ∗ −I 0 I I

∗ ∗ ∗ −𝛾2
1
I + DT

2
D2 DT

1
0

∗ ∗ ∗ ∗ P−1 0

∗ ∗ ∗ ∗ ∗ 𝛼−1
2
P−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0

Again using Schur to complement

where the X = P−1 , the R = KX .
The proof is completed.

The method described so far uses the linear matrix 
inequality to obtain the corresponding estimator gain 
values, thus achieving high accuracy in suppressing the 
corresponding spoofing attack.

4 � Design of event‑driven strategy

In this section, we derive the event-driven transmission 
strategy by using Lemma 2 to prove the upper bound of 
the approximate quadratic performance.

(25)

𝛺 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P−1 +
�
P−1

�T
CTCP−1 0 0

∗ −I 0

∗ ∗ −I

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

�
P−1

�T
CTD

2
A
T

1
+
�
P−1

�T
KT BT ST −

�
P−1

�T
KT BT𝛤

−

T

0 𝛼𝛤
−

T 𝛤
−

T

0 I I

−𝛾2
1
I + D

T

2
D
2
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2
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⎤
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< 0

(26)

𝛺 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−X 0 0 XTCTD2

∗ −I 0 0
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∗ ∗ ∗ −𝛾2
1
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2
D2
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Theorem 2  Given H > 0 as the system weight, 𝜃 > 0 as com-
munication weight. Suppose M > 0 is a symmetric matrix. If:

and meet the following event-driven conditions

(27)

𝛬 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−M + H 0 0 0 AT
1
+ KTBTSTMT −KTBT𝛤

−

TMT

∗ −I 0 0 𝛼𝛤
−

TMT 𝛤
−

TMT

∗ ∗ −I 0 MT MT

∗ ∗ ∗ −d̄2I DT
1
MT 0

∗ ∗ ∗ ∗ −M 0

∗ ∗ ∗ ∗ ∗ −𝛼−1
2
M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(28)

𝛾k =

{
0 if 𝜗T

(
AT
1
MA1 − 𝛹 TM𝛹

)
𝜗 ≤ 𝜃 + trace

(
MQw

)
1 otherwise

where the � = A1 + SBK  , the 𝜃 = 𝜀 + d̄ + 𝜃 , then the approx-
imate quadratic performance function satisfies

Proof  Choose a function m
(
xk
)
= xT

k
Mxk . It is easy to see 

that there is an upper bound, m
(
xk+1

)
 can be calculated 

by (7)

Then the following formula can be obtained as

Define the function g:

Substituting the above formula, we get:

(29)J ≤ sup
𝜗∈Rn

g(𝜗) ≤ trace
(
MQw

)
+ 𝜃
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⎪⎪⎨⎪⎪⎩
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+��
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�
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�
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E
�
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�
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�
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Fig. 3   The evolution of the state × 1
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In order to derive Lemma 2, we need to calculate the 
upper bound. First, when �k = 1 , we get

where the 𝜗̃k =
[
𝜗T
k
𝜀T
k
𝜙T
k
dT
k

]T
 . Considering 𝛬 < 0 , we 

get

Next, when �k = 0 , g(�) is rewritten as follows

(34)g(𝜗) ≤ 𝜗̃T𝛬𝜗̃ + trace(MQw) + 𝜀 + 𝜃 + d̄

(35)g(𝜗) ≤ trace
(
MQw

)
+ 𝜀 + 𝜃 + d̄

Since �k = 0 , the event-driven mechanism becomes

where by � = A1 + SBK  we can infer

If the assumption (16) can be established, the following 
conclusions can be drawn

(36)g(�) − trace
(
MQw

)
= �T

(
AT
1
MA1 −M + H

)
�

(37)𝜗T
(
AT
1
MA1 − 𝛹 TM𝛹

)
𝜗 ≤ 𝜃 + trace

(
MQw

)
+ 𝜀 + d̄

(38)
g(𝜗) − trace

(
MQw

)
= 𝜗T

(
AT
1
MA1 −M + H

)
𝜗 < 𝜃 + d̄ + 𝜀

(39)J ≤ sup
𝜗∈Rn

g(𝜗) ≤ trace
(
MQw

)
+ 𝜃

Fig. 4   The evolution of the state × 2

Fig. 5   Event-triggered transmission mode

Fig. 6   The limit of the Javg

Fig. 7   Compared with the Javg of Kalman filter
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where the 𝜃 = 𝜀 + d̄ + 𝜃.
The proof is completed.� □

This section proposes a corresponding event-driven 
transmission strategy based on quadratic approximate 
system performance indicators. The event-driven trans-
mission strategy is obtained by balancing the remote esti-
mation error and the energy consumption of the sensors. 
This is performed by deriving an upper bound for a class 
of performance indicators, which provides a good balance 
between estimation error, data communication rate, and 
sensor battery life.

5 � Simulation

System (1) has the following parametric form:

This example has been discussed in [11, 12]. In addition, 
suppose the �

−
= 0.2 , the 𝛤 = 1.2 , the d̄ = 𝜌 = 𝜀 = 0.15 , the 

�1 = 0.7 , the variance Qw =

[
0.12 0

0 0.17

]
 for spoofing 

attack wk , and spoofing attack dk = 0.013e−0.5k.
Solving the corresponding LMI in Theorems 1 and 2 

through the LMI toolbox of MATLAB:

Furthermore, the error weighted value, the transmis-
sion weighted value and the event-driven gain are cal-
culated by Theorem 2, where we get

In order to simplify the simulation complexity, the 
average approximate quadratic performance index is 
given in this paper:

The system simulations are implemented in MATLAB 
environment. Each scenario is repeated 50 times starting 
in the initial zero state and performs a periodical control 
according to the standard procedures. Figures 3 and 4 
show the periodic state, event-driven transmission and 
spoofing attacks. It can be seen from these figures that 
the difference between the event-driven transmission 

A1 =

[
0 1

−2 −3

]
, B =

[
0

1

]
, D1 = D2 =

[
0.115

0.12

]
, C =

[
1 0

0 1

]

P =

[
1.0128 0

0 2.9180

]
, K =

[
2.0000 2.9554

]

H =

[
3 2

2 1

]
, � = 11, M ≈

[
0.8761 0

0 0.834

]
.

Javg =
1

T

T−1∑
k=0

((
xk − x̂k

)T
H
(
xk − x̂k

)
+ 𝜆𝛾k

)

mechanism under the spoofing attack, and the periodic 
transmission under the ordinary event-driven strategy 
is small, that is, the system performance is not greatly 
affected by the attack.

The corresponding event-driven transmission mode 
is plotted in Fig. 5, reflecting the actual transmission 
of data throughout the process. During the entire pro-
cess, the sensor node sends 28 rounds of data, which is 
reduced to 22 rounds by the event-driven mechanism. 
That is to say, the resource usage is reduced by about 
35% relative to the periodic transmission mechanism.

Under this performance indicator, by changing the trans-
mission weight value � , the upper performance limit of the 
estimator is shown in Fig. 6. Figure 7 shows the results of 
comparison with the standard Kalman estimator. It can be 
seen that the performance of the standard Kalman filter is 
similar to the estimator we designed, which further proves 
that the transmission strategy of this paper can well balance 
the estimated performance and communication rate com-
pared to periodic transmission.

6 � Conclusion

In this paper, an event-driven state estimator for a sto-
chastic wireless sensor system under spoofing attacks 
is designed. Since the spoofing attack affects the state 
at time k + 1 in the state model, a spoofing attack is 
defined as a process spoofing attack at time k and a 
measurement spoofing attack at time k + 1 . First of all, 
the quadratic Lyapunov function is chosen, and using 
the results of the stochastic Lyapunov stability theory, 
the homotopic boundedness of the error dynamics 
equation is derived. Second, considering the case where 
the spoofing attack is not zero, and using the classic H∞ 
performance indicator, the impact of spoofing attacks is 
suppressed. Furthermore, the corresponding estimator 
gain is derived by means of linear matrix inequalities, 
thereby ensuring the stability of the mean square error 
when there are no spoofing attacks; while in the case 
of deceitful attacks, the performance indicators based 
on the mean square output error are used to resist the 
impact of spoofing attacks. Subsequently, an event-
driven sensor transmission mechanism is derived to 
determine when to transmit the data by a sensor.
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