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Abstract
Multiclass decomposition algorithms are the means by which binary classification algorithms like support vector machine 
are used for multiclass classification problems. The popular multiclass decomposition algorithms like one against one 
(OAO), one against all (OAA), etc., perform the decomposition in a naive manner. This paper presents a novel heuristic-
based decomposition algorithm that takes the Hausdorff distance between two classes to decide the decomposition. 
During the decomposition, rules are made to ensure a balanced binary search tree structure. To model the uncertainty 
and class noise present in the data, an unsupervised outlier detection technique has been used so that only possible 
non-outliers take part in the decomposition process. The presented algorithm has been evaluated and compared against 
OAO and OAA methods across 6 datasets. While evaluating the decomposition algorithms, fuzzy support vector machine 
has been used to model the class noise during each binary classification. The comparison shows that presented method 
not only provides comparable performance, but also in all cases, can classify the test samples with fewer average number 
of support vectors, thus leading to faster test performance. The paper further observes that the proposed approach can 
provide statistically better performance when the decomposition structure is learned only using the possible non-outliers, 
as compared to the scenario where the decomposition structure is learned using all samples.

Keywords Classification · Support vector machine · Multi-class classification · Decomposition approaches · Hausdorff 
distance · Class noise

1 Introduction

Binary classifiers have a very special place in the history 
of classification problems. The first classifiers were promi-
nently binary classifiers, e.g., linear discriminant analysis. 
The classifiers having maximum ability to exhibit low vari-
ance are also binary classifiers, e.g., SVM and MVP classi-
fiers [29, 34]. When we look back in history, many of the 
classifiers were first designed for binary classification and 
later extended to multiclass classification [7, 14]. Primar-
ily, there have been two ways by which binary classifi-
ers are made capable of solving multiclass classification 

problems: (1) extend the learning algorithm to a multiclass 
version and (2) decompose the multiclass problem into 
binary sub-problems. The first method can lead to compu-
tationally costly algorithms [14] or sometimes may also be 
impractical to formulate. The second method, on the other 
hand, is easy to implement, and it provides the facility of 
parallel processing, where the binary sub-problems could 
be independently solved using different processors. This 
paper shall focus on the second class of methods.

Lorena et al. [20] present an excellent literature survey 
on decomposition algorithms. Decomposition algorithms 
involve two steps: (1) dividing the multiclass problem into 
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binary sub-problems and (2) combining the results of the 
binary classifiers to assign a class to the sample. Allwein 
et al. [1] proposed a code-matrix framework, represented 
by code-matrix � for obtaining insights on how multiclass 
problems are/could be decomposed to sub-problems. 
Consider a multiclass classification problem having k 
classes, which is decomposed to l binary sub-problems. 
The columns define the labeling that the k classes (groups 
of data samples) assume while training individual binary 
classifiers. Thus, � has the dimensions of k × l . Element mi,j 
gives the expected value of jth classifier w.r.t. ith class and 
may assume the values of −1, 0,+1 . ‘ +1 ’ indicates positive 
label, ‘ −1 ’ indicates negative label, and ‘0’ indicates non-
participation from class i. Figure 1 shows a sample code 
matrix. One can observe that given a value of k, the codes 
for individual classes can be either made with lot of redun-
dancy or can be made compact, i.e., with little redundancy. 
The most compact decomposition possible for a multiclass 
classification problem of k classes would be l = log2(k).

The most popular of all decomposition methods is one 
against one (OAO) and one against all (OAA). Sometimes 
these methods are also referred to as one versus one (OVO) 
and one versus all (OVA), respectively. OAO decomposes 
the multiclass classification problem to a situation where 
a binary classifier is trained to classify each possible pair of 
individual classes. Therefore, the number of binary classi-
fiers trained would equal k(k−1)

2
 , where k is the number of 

classes. Final assignment of class is typically done by tak-
ing a majority vote across decisions taken by the individual 
classifiers. OAA, on the other hand, solves the problem by 
training a binary classifier for each class versus all remain-
ing classes together, leading to a total of k classifiers. The 
individual classifiers then classify the test samples with a 
probability describing the belongingness of the sample to 
the individual classifier. Final assignment of class is typi-
cally done by finding the class assigned maximum prob-
ability. A major disadvantage of both OAO and OAA is the 
presence of shadow region [18], which is a region where 
final class assignment may turn out to be a tie. Another 
disadvantage of OAA approach is that each of the binary 
classifiers (in most cases) is trained on class imbalanced 
data. Accordingly, class imbalance methods are prefer-
ably employed while training each of the classifiers. Fig-
ure 2a–d presents the code matrix and illustrations for 
OAO and OAA, respectively.

Dietterich et al. [9] proposed the use of error-correcting 
output codes (ECOC). The idea behind ECOC is to have 
more number of classifiers so that some redundancy is 
created. This redundancy provides the facility to correct 
errors. Allwein et al. [1] pointed out that although the 
codes generated by the ECOC decomposition have good 
error-correcting properties, many of the binary sub-prob-
lems generated can be difficult to learn. For this reason, 
case studies showed that simpler decompositions like OAA 
and OAO often provide comparable and sometimes supe-
rior results as compared to ECOC. Further, ECOC is compu-
tationally not efficient as well [22, 24].

Another popular set of strategies are hierarchical strate-
gies [27]. Hierarchical strategies develop a graph-like struc-
ture for the binary classifiers, and they can be further cat-
egorized as: (1) acyclic graphs and (2) directed binary trees. 
A key differentiating factor among the two categories is 
that each node (binary classifier) in the acyclic graphs is 
trained to classify data of 2 classes only, whereas a node 
for the directed binary tree is trained to classify two groups 
of data wherein each group may have samples from more 
than one classes.

Examples of acyclic graph decomposition methods are 
decision directed acyclic graph (DDAG) [23] and adaptive 
directed acyclic graph [15]. The disadvantages of DDAG 
as pointed by Kijsirikul et. al. [15] are as follows: (a) Results 
are dependent on the sequence of binary classifiers, and 
(b) there is a possibility of shadow region being present. 
Another deficiency of DDAG is that the number of classi-
fiers evaluated is independent of the true class’s position 
in the graph. For example, if correct class is already present 
in root node, it would still be evaluated with k − 1 binary 
classifiers before obtaining the output. This increases the 
probability of error due to the buildup of cumulative error. 
To understand cumulative error here, consider a situation 

Fig. 1  Code-matrix framework to describe multiclass decomposi-
tion algorithms
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where each binary node/classifier has an error rate of � ; 
the cumulative error rate for DDAG would then equal 
(1 − �)k−1 . Cumulative error therefore can become critical 
for data having large number of classes.

In the case of directed binary tree decomposition meth-
ods, the number of classifiers evaluated for test samples 
can range from log2 k to a maximum of k − 1 binary classi-
fiers [5, 16, 19, 31, 33, 35]. Clustering methods have been 
popularly used for creating the directed binary tree [16, 
33, 35]. Lorena et al. [19] used minimum spanning tree for 
making the tree/graph. Some drawbacks of these earlier 
methods [16, 19, 33, 35] are: (1) Earlier methods could 
often lead us to having an imbalanced binary tree decom-
position, and the main advantage of achieving low cumu-
lative error and quick execution of test cases could be lost, 
(2) measures used for partitioning of classes could fail in 
simple cases, e.g., classes made up of concentric circles.

It is understood that a directed binary tree decompo-
sition which leads to a balanced binary tree-like struc-
ture, would require only log2 k classifiers for test sample 
evaluation, and such a decomposition would have the 
least amount of redundancy in the code matrix. This 
paper extends our recently introduced decomposition 
algorithm (introduced in conference paper [31]), which 
brings out a balanced binary tree decomposition of 
classes. For partitioning of the classes, Hausdorff dis-
tance (HD) is used to identify the classes which are most 
separable from each other. As these two most separa-
ble classes form two partitions, remaining classes are 
assigned to each partition based on their affinity to the 

partition w.r.t. their Hausdorff distances. Special consid-
erations ensure that a balanced binary tree-like structure 
is formed, which theoretically gives least redundant code 
matrix.

The novelty of this paper includes the consideration for 
class noise. Since class noise (outliers) can pose a major 
challenge during decomposition and binary classification, 
two checks have been performed: (1) when effect of pos-
sible outliers is reduced during the decomposition process 
and (2) when possible outliers are appropriately modeled 
while training of binary classifiers. For the first check, a 
clustering-based approach has been used, and for the 
second check, fuzzy support vector machine (FSVM) [17] 
has been used. Elaborate experimentation on 6 datasets 
shows that proposed method achieves comparable clas-
sification performance with OAO and OAA. Further, the 
proposed method was shown to achieve the mentioned 
classification performance with least number of nonzero 
support vectors (SVs) during testing, which translates to 
faster test performance. It was further seen that reducing 
the effect of possible outliers led to improvements in clas-
sification performance on both accounts, namely in the 
decomposition process, as well as in the individual binary 
classification.

The paper further proceeds as follows: Section  2 
explains the Hausdorff metric, and Sect. 3 describes the 
proposed decomposition algorithm. Section 4 mentions 
the performed experimentation, results achieved and con-
clusions derived from the same. Section 5 ends the paper 
with Conclusions.

Fig. 2  Illustration: a code 
matrix for OAO, b illustration 
for OAO, c code matrix for OAA, 
d illustration for OAA
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2  Hausdorff distance

Hausdorff distance is a popular measure to find out how 
close two non-empty sets of a metric space are to each 
other [13, 25, 30]. Distance between two sets can be pic-
tured as distance between a representative point from 
each set. It is important here that the two sets between 
whom Hausdorff distance is to be computed, be non-
empty sets. Closed and bounded properties of the space 
are very essential as it allows one to take limits. In the 
absence of such restrictions, it cannot be insured that 
limit exists and if it exists, it will be finite. The restriction 
also allow us to have d(A, B) = 0 for non-empty sets A and 
B, when A = B , which is a necessary criteria for a metric 
space to be defined.

There exist two mathematical definitions for Haus-
dorff distance [13]. The first definition mentions that two 
sets are said to be close when every point of either set 
is close to some point in the other set. Given a compact 
metric space S, consider X to be the space of non-empty 
closed subsets of S. Hausdorff metric is defined on pairs 
of elements in X whose expression is given in Eq. 1. In the 
definitions below, dH(.) denotes the function computing 
the Hausdorff distance.

The second definition which is graphically more appealing 
is defined as follows: Given A ∈ X  , let its �-expansion be 
defined as the union of all �-open spheroids around points 
in A and denoted as E�(A) . Hausdorff distance between 
the two sets is defined as the smallest � that allows the 
expansion of one set to cover the other and vice versa [25]. 
The expression is given in (2), and its illustration is shown 
in Fig. 3.

2.1  Distance between a non‑empty set and a point

We present here two popular metrics to measure dis-
tance between a non-empty set and a point. Consider a 
metric space S with metric d. Let e and A be, respectively, 
a point and a non-empty closed subset of S. The defini-
tion for the first metric would be by computing the Haus-
dorff distance between A and the non-empty set having 
a single point e. The definition is mentioned below and 
shall be referred here as HDpt distance.

(1)dH(A, B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}

(2)
E𝜖(A) = ∪x∈AB(x, 𝜖)

dH(A, B) = inf
{
𝜖 > 0| E𝜖(A) ⊃ B and E𝜖(B) ⊃ A

}

The second metric is defined as the greatest lower bound 
of distances from points a in A to point e. This measure 
which we shall refer here as pt-set distance is more popular 
than HDpt due to its greater relevance to physical reality. In 
the definition below, dP(.) denotes the function computing 
the pt-set distance.

3  Proposed method

The proposed method for decomposition is presented 
below in Algorithm 1. The primary concept behind the 
method is to find the classes that are most distant from 
each other and then segregate other classes into two 
groups based on their proximity to each of these two 
classes. This process is recursively repeated to bring out 
a binary tree-like structure during the decomposition 
process. Considering that it is very likely that each of the 
classes comprises of more than one training sample, met-
rics which can measure distance between two non-empty 
sets, could be useful for our decomposition algorithm.

Some popular options for this objective are: (1) Jac-
card distance, (2) Earth mover’s distance after estimating 
probability distributions for each of the two non-empty 
sets and (3) the Hausdorff distance. Jaccard distance has 
a limitation that when the two sets are mutually exclusive, 
no matter how far or close the two sets be, the Jaccard dis-
tance would always be 1. This limits the ability to compare 
distance between more than 2 mutually exclusive non-
empty sets. The second option of finding Earth mover’s 

(3)
dH({e},A) = max

{
inf
a∈A

d(e, a), sup
a∈A

d(e, a)

}

= sup
a∈A

d(e, a)

(4)dP(e,A) = inf{d(e, a) ∶ a ∈ A}

Fig. 3  Illustration to depict: a first definition of Hausdorff distance, 
b second definition of Hausdorff distance
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distance after estimating probability distributions can be 
a very computationally expensive procedure, as estimating 
probability distributions is not an easy task. On consider-
ing these options, the easy to compute Hausdorff distance 
appeared to be the most suitable metric here. 

Algorithm 1: Decomposition algorithm using Hausdorff Metric

Step 1: Compute the Hausdorff distance between each pair of 
classes. Given k classes, we shall have k(k−1)

2
 pairs of 

classes between which the Hausdorff distance must be 
found.

Step 2: Make two empty sets of classes, namely left_node and 
right_node (the way we have in Binary Search Trees). 
Find the pair of classes which are most distant from each 
other w.r.t. Hausdorff distance. From this pair, assign one 
class to left_node and the other to right_node.

Step 3: Now based on the Hausdorff distances already found 
between different class pairs, check the class, i.e., closest 
to either left node or right node and then assign it to the 
closer node.

Step 4: Step 3 is repeated until the left node or the right node has 
half of the total number of classes present in previous 
node. In case, the previous node has an odd number of 
classes, half will be rounded off to the higher integer 
value. The remaining classes are automatically assigned 
to the node which has fewer number of classes.

Step 5: Once all the classes have been divided (equally) into left 
node and right node, we recursively perform the Steps 
2-4, to further divide each of these nodes. This recursive 
operation continues until the leaf nodes have only one 
class in them.

Following the proposed method gives a balanced 
binary tree-like structure. To make a multiclass decision 
making system, a binary classifier needs to be generated 
for all the nodes except for the leaf nodes, such that classes 
in the left node and classes in the right node are maxi-
mally separated. A pictorial presentation of how classes 
are divided into binary tree structure is shown in Fig. 4a, 
and the effective code matrix for number of classes k = 4 
is shown in Fig. 4b.

During testing, starting from the root node which has 
all classes, decision of binary classifier at each node will 
direct us to the next node. This operation continues until 
a leaf node is reached, which provides the determined/
predicted class. An important point to be noted is that a 
case of shadow region, i.e., ambiguity during final class 
assignment, does not exist with proposed approach.

3.1  Identifying the possible outliers

Outliers are defined as samples which appear to have 
been generated from a distribution other than what they 
are denoted to. Hausdorff distance suffers from a limita-
tion that the distance between two non-empty sets can 
be seriously affected by outliers present in both classes. 

For example, consider a situation where most samples of 
the two classes are close to each other, except for a sin-
gle outlier which is very far from all samples of the other 
class; Hausdorff distance in such a case would be much 
larger than when it is computed in the absence of that 
outlier. Keeping such situations in mind, we now explore 
the proposed decomposition algorithm after identifying 
the possible outliers.

In the absence of prior knowledge, the procedure of 
identifying possible outliers would be entirely unsuper-
vised. Most existing outlier identification methods [4, 21] 
need some form of training data containing non-outliers 
(for unsupervised methods) or both non-outliers and outli-
ers (for semi-supervised methods). For this reason, when 
prior knowledge is absent, possible outliers are identified 
based on a common notion here. The notion used in this 
paper is that after performing clustering procedures, the 
samples which do not show strong belongingness to any 
of the clusters can be seen as possible outliers. For segre-
gating the training samples that are possibly non-outliers 
and outliers, density-based clustering methods, namely 
DBSCAN [11] and OPTICS-OF [3], have been tested for use 
here. The reasons for using density-based clustering meth-
ods are as follows:

• noise objects can be identified even within broken 
structures and irregular shaped structures.

• prior knowledge of the number of clusters is not 
required.

• simple and fast to implement.

Tests on various toy datasets showed that DBSCAN is much 
more effective than OPTICS-OF, in identifying the possi-
ble outliers. Therefore, only DBSCAN approach was used 
for our possible outlier identification strategy. References 

Fig. 4  a Partitioning into two groups of classes, b code matrix of 
proposed approach
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[26, 30] provides justification on how performing DBSCAN-
based outlier identification on input feature space, and 
later performing classification in kernel space (which is 
used by classifiers like support vector machine), is effective 
in improving the classification performance. Accordingly, 
the procedure to identify possible outliers gets its primary 
ideas from [30].

Introduced by Ester et al. [11], DBSCAN is a density-
based clustering method, which is designed with a notion 
that clusters should be formed at locations where samples 
are more densely connected than other locations. The den-
sity of a sample is defined as the number of samples k in its 
� neighborhood, i.e., within its radius of � . DBSCAN intro-
duces the following concepts for explaining the algorithm. 
A point or an object is denoted as a “core point” when the 
density in its � neighborhood is above a defined threshold, 
� . “Border points” are those objects whose density within 
the � neighborhood is less than � , and which have at least 
one core point in each of their � neighborhood. Objects/
points which neither fall into the category of core points 
nor that of border points, are considered to be “noise 
objects/points.”

The algorithm starts with a random sample, which 
is allowed to expand as a cluster, only when it is a core 
point. A point or cluster expands its cluster by absorbing 
the untouched points in its � neighborhood. This expan-
sion ends when there are no more core points or border 
points to absorb in their � neighborhood. The same pro-
cess is repeated with a random untouched core point, to 
form a new cluster group. This process continues until all 
the core points are either exhausted or are absorbed by 
the existing clusters, after which the clustering process is 
stopped. The noise points which remain unabsorbed can 
be treated as possible outliers. Figure 5 shows a plot of 
cluster formation.

Before using DBSCAN to identify the possible outliers, 
it is required to decide the values for parameters k and � . 
Let out_ratio be defined as the ratio of number of noise 
objects (as found after running DBSCAN) to the total num-
ber of samples in the class, as shown in Eq. 5. Let max_or 
be a user-defined parameter that limits the maximum 
allowed out_ratio . As would be seen later, defining max_or 
would limit the number of possible outliers allowed. The 
algorithm begins by initializing k = n + 1 , a common heu-
ristic where n is the number of features or dimensions in 
the space. � is initialized to 0.03 times the largest diameter 
of the ellipsoid that can encompass all the samples of the 
class, diam_lar as given in Eq. 6. In Eq. 6, max_vec refers 
to the vector having maximum value of each feature and 
min_vec refers to the vector having the minimum of each 
feature value among all samples of the class.

The algorithm proposed to identify possible outliers pro-
ceeds as follows: DBSCAN is first run with these initial 
parameter values and out_ratio is found. If the out_ratio 
found is above the estimate, then DBSCAN is rerun on the 
same class with modified parameters. k is remained fixed, 
and � is revised to a new value equal to incr_fac times 
the previous � , i.e., �new = incr_fac × �old . This process is 
repeated until out_ratio falls just below max_or . By the 
end of this procedure, two groups, namely in_class which 
refers to the set of samples that are considered to be part 
of the class and out_class which refers to the set of possible 
outlier samples, are formed.

The objective of defining new variables, namely 
out_ratio and max_or , was to substitute the decision of 

(5)out_ratio =
no. of samples that are probablyoutliers

total number of data samples

(6)diam_lar = ‖max_vec −min_vec‖

Fig. 5  a DBSCAN run on class 1 of a toy dataset, b DBSCAN run on class 1 and class 2 of a toy dataset
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defining value for k, � , with max_or , which is intuitively 
more easier. The user is asked to give an estimate for 
max_or , based on prior knowledge, i.e., by having an idea 
of how noisy the dataset is. In case there is no prior knowl-
edge about the dataset, max_or can be varied between 0 
and 1 in small steps and value giving best performance 
could be selected. The second option would obviously be 
a time-consuming process.

3.2  When possible outliers do not take part 
in the decomposition algorithm

The effectiveness and sufficiency of the above outlier 
detection strategy are checked on a toy problem, as shown 
in Fig. 6. The data of the toy problem were randomly gen-
erated between a band of concentric circles of radius 7 to 
10 for class 1, and radius 0 to 2 for class 2, with center at 
(0, 0). It was also made sure that 10% of the samples from 
both classes were outliers. The problem is non-separable 
and would need nonlinear classification with kernel clas-
sifiers. As shown in Fig. 6b, the above-mentioned out-
lier detection technique is able to correctly identify the 
out_class and in_class groups of both classes, with user 
given max_or of 0.15.

In our experiments, in addition to the proposed decom-
position method, we tried a variant where only possible 
non-outliers are considered while computing the Haus-
dorff distance between the individual classes. The idea 
behind the variant is that when outliers are absent dur-
ing the computation of Hausdorff distance, their effect on 
the proposed binary tree decomposition would be signifi-
cantly reduced, which is desirable. Once the decomposi-
tion of the multi-class problem to multiple binary class 
problems is complete, all samples (including the possible 
outliers) would take part during training of the binary clas-
sifiers. In other words, outliers’ effect is reduced only dur-
ing the decomposition procedure, and not during training 
of the binary classifiers.

3.3  Accounting possible outliers within binary 
classification

In the previous two subsections, we worked on ways on how 
to reduce the effect of possible outliers during the multiclass 
decomposition procedure. In this subsection, methods to 
appropriately reduce the effect of possible outliers during 
the binary classification, would be worked upon.

FSVM is a significant improvement over C-SVM which 
allows one to model possible outliers. FSVM allows one to 
assign fuzzy membership values (MVs) to each data sam-
ple. Such facility provides greater flexibility in accounting 
the data samples differently, w.r.t. their individual perceived 
importance. FSVM with appropriate fuzzy membership func-
tions (MFs) has repeatedly shown that it can perform statisti-
cally better than regular C-SVM [2, 30]. For our experiments, 
we shall use four of the MFs introduced in our earlier paper 
[30], namely �hd_lin , �hd_exp , �ptset_lin and �ptset_exp.

For assigning MVs, the MFs perform the procedure of 
outlier detection as mentioned in Sect. 3.1, to divide the 
data into two groups, namely the in_class group and the 
out_class group. Further, Hausdorff distance between the 
in_class groups of the two classes, and pt-set and HDpt 
between possible outliers and their in_class group are com-
puted as shown below:

In Eqs.  7–9, dHclass12 refers to the Hausdorff distance 
between in_class subset of class1 and in_class subset of 
class2. dHclassAi refers to the HDpt (as derived in Eq. 3) 
between the in_class subset of class A and ith sample, 
where A is the class label of the sample. dPclassAi refers 

(7)dHclass12 = dH(in_class1, in_class2)

(8)dHclassAi = dH(ithsample, in_classA)

(9)dPclassAi = dP(ithsample, in_classA)

Fig. 6  Visually depicting the 
effectiveness of proposed 
methodology : a nonlinear and 
non-separable classification 
problem, b possible outliers 
and non-outliers identified 
using proposed strategy with 
DBSCAN
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to the pt-set distance (as mentioned in Eq. 4) between 
in_class subset of class A and ith sample.

MFs are defined separately for each class of the binary 
classification problem. Accordingly, the procedure of identi-
fying possible outliers and assigning them MVs is performed 
independently for each class. The four MFs we use here are 
defined below:

For �
�
∈ out_class,

and for �
�
∈ in_class ,

As shown in Eq. 14, for all four MFs, the samples from 
in_class group are assigned a MV of ‘1’, and the samples 
belonging to out_class group are assigned MVs based on 
heuristics mentioned in Eqs. 10–13. Equations (10)–(11) 
use HDpt , and Eqs. (12)–(13) use pt-set distance for find-
ing distance of possible outliers from their in_class group 
of samples. These distances are then normalized w.r.t. the 
Hausdorff distance between the in_class groups of the 
two classes. The idea behind these MFs is that if a sample 
is as much far from its own class as the second class is, 
then it is quite possible for the sample to belong to the 
second class. Hence, the sample’s belongingness to the 
class can be doubted, and it may be given low MV. Heu-
ristics �hd_lin(��) and �ptset_lin(��) decay linearly with HDpt 
and pt-set distance, respectively, and parameter � decides 
the extent of decay. Heuristics �hd_exp(��) and �ptset_exp(��) 
decay exponentially with HDpt and pt-set distance, respec-
tively, and parameter � decides the extent of decay.

(10)�hd_lin(��) = max

(
1 −

dHclassAi

� × dHclass12
, 0.01

)

(11)
�hd_exp(��) = exp

(
−
�exp_hd × dHclassAi

dHclass12

)
,

� ∈ (0, 1]

(12)�ptset_lin(��) = max

(
1 −

dPclassAi

� × dHclass12
, 0.01

)

(13)
�ptset_exp(��) = exp

(
−
�exp_ptset × dPclassAi

dHclass12

)
,

� ∈ (0, 1]

(14)
�hd_lin(��) = �

prop

hd_exp
(�

�
) = 1

�ptset_lin(��) = �
prop
ptset_exp(��) = 1

4  Case study and results

Experiments were performed on six datasets from the 
UCI repository [10] to infer the conclusions. The pur-
pose of the experiments was threefold: (i) to see how 
proposed decomposition algorithm compares to other 
traditional decomposition methods like OAA and OAO, 
(ii) to observe the effect of using only possible non-outli-
ers to perform the decomposition and (iii) effect of using 
FSVM with outlier detection embedded in the member-
ship functions for reducing the effect of outliers in the 
training of individual binary classifiers.

Details of the six experimented datasets are reported 
in Table 1. The first five datasets shown in Table 1 do not 
have a separate test set. Accordingly, the classifiers’ per-
formances for these five datasets were evaluated based 
on tenfold cross-validation (we call this as external cross-
validation performance), and the mean classification 
accuracy across the tenfold was reported. The Segment 
dataset had a distinct training and test dataset; accord-
ingly, classifiers were trained on the training data, and 
their performance was evaluated and reported on the 
test data.

For all experiments, SVM and FSVM have been used as 
the binary classifiers. The experiments were performed 
on MATLAB, and LibSVM [30] was used for training each 
of binary SVM classifiers. Radial basis function (RBF) 
kernel was used in all the experiments. For tuning the 
hyperparameters in SVM, a grid search-based procedure 
was used in each of the experiments. The value for � was 
logarithmically searched across powers of 2, from 2−10 
to 24 , and C was searched across powers of 2, from 2−2 
to 212 , i.e., across a total of 225 pairs of (C , �) values. For 
identifying the optimal parameter values, the fivefold 
cross-validation (internal cross-validation) performance 
on the training data was ascertained with each parame-
ter pair; and the pair giving best accuracy value was con-
sidered as optimal. While using FSVM, the parameters 
max_or , � and � wherever applicable, were also tuned 
by searching values across {0.1, 0.2,… , 0.9} , {1, 2, 3} , 
and {0.1, 0.2,… , 1.0} , respectively. The parameter values 

Table 1  Details of benchmark datasets

Datasets # Train samples # Test samples # Classes # Features

Iris 150 0 3 4
Glass 214 0 6 13
Vowel 528 0 11 10
Vehicle 846 0 4 18
Segment 2310 0 7 19
Optical 3823 1797 10 64
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which gave the best overall external cross-validation 
accuracy values were selected, and these same accuracy 
values are reported in Table 2.

There are three measures across which the performance 
of the decomposition methods has been evaluated: (i) clas-
sification performance as measured by classification error, 
(ii) average number of nonzero support vectors required 
to pass through, before determining the class, and (iii) sum 
of the execution times during training and testing. The 
decision function for SVM is given below where x refers 
to a test data sample, n refers to the number of training 
samples in training SVM, �∗ refers to optimal value of SVs 
found after training, b∗ refers to optimal value of b found 
with training, and K() refers to the kernel function.

The computational complexity in classifying test sam-
ples is directly and linearly proportional to the number 
of nonzero SVs �∗ [6, 28]. Therefore, the second measure 
of average number of nonzero SVs indicates the speed at 
which classification would take place during testing.

The three measures as reported for each of the experi-
ments are shown in Tables 2, 3 and 4, respectively. In all the 
tables, ‘Prop’ is used to refer to the proposed decomposi-
tion, and ‘PropO’ is used to refer to the case when only the 
possible non-outliers take part in deriving the decompo-
sition structure with proposed decomposition algorithm.

We now perform statistical tests to infer conclusions 
from the available results of six datatsets. Some commonly 
used statistical tests, which we use here to compare clas-
sifier performance across multiple datasets/cases, are: (i) 
the Friedman test to check for Null Hypothesis and (ii) the 
Bonferroni–Dunn test [8, 32]. While statistically comparing 
two or more classifiers, the Null Hypothesis tests checks if 
the differences in classifier performances are by chance 
or if they have any statistical significance. Null Hypothesis 
states that the differences are only by chance. Using the 
exact performance values for statistical analysis can cre-
ate limitations and doubts on the commensurability of the 
performance measure [32]. For this reason, a more viable 
method is to rank the classifiers for the given dataset/case 
(wherein better performance is awarded a lower rank) and 
then use the average of ranks taken across all datasets/
cases, to perform statistical analyses.

The Friedman test is performed by computing the 
Friedman statistic �2

F
 as shown below. As seen from the 

below equation, �2
F
 depends on the number of datasets/

cases N, the degrees of freedom l which equals the number 
of classifier being compared, and the average ranks of clas-
sifiers rj . When the computed �2

F
 is greater than a defined 

critical value, the Null Hypothesis is rejected; otherwise, it 

(15)f (x, �∗, b∗) =

n∑

i=1

yi�iK (xi , x) + b∗
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is understood that Null Hypothesis is true and the differ-
ences in classifier performance are by chance. The criti-
cal values for Friedman test are unique to the degrees of 
freedom l and the desired significance level � ; these can 
be found from Table A4 of [32].

If Null Hypothesis is rejected, we perform Bonferroni–Dunn 
(BD) post hoc test to make individual comparisons across 
algorithms and check if one statistically performs better 
than the other [8]. Given the degrees of freedom l and the 
desired significance level � , the BD post hoc test provides 
a statistic called critical difference CD� . The statistic sig-
nifies that any classifier algorithm can be considered as 

(16)�2
F
=

12N

l(l + 1)

[
l∑

j=1

r2
j
−

l(l + 1)2

4

]

statistically superior to another at � , if the difference in 
their performance average ranks is greater than CD� . CD� 
can be computed using the below equation; the value of 
q� for the equation can be taken from Table 5(b) of [8].

We now perform statistical tests to see: (i) how the pro-
posed decomposition approach performs in compari-
son with OAO and OAA decomposition approaches, 
(ii) how “PropO” (proposed decomposition performed 
while accounting only the possible non-outliers) com-
pares to Prop (proposed decomposition performed while 
accounting for all samples), (iii) how FSVM compares with 
C-SVM, and (iv) how the OAO, OAA and the proposed 

(17)CD� = q�

√
l(l + 1)

6N

Table 5  Statistical analysis 
to compare OAO, OAA and 
proposed decomposition 
method

Classifier Dataset Test error (in %) Ranks (lower error is better)

OAA OAO PropO OAA OAO PropO

C-SVM Iris 4.00 4.00 4.00 2 2 2
Glass 32.20 33.17 26.63 2 3 1
Vowel 43.51 33.33 35.50 3 1 2
Vehicle 15.72 14.42 14.31 3 2 1
Segment 8.95 8.81 9.29 2 1 3
Optical 1.22 2.06 1.61 1 3 2

FSVM-�hd_lin Iris 2.00 2.67 2.67 1 2.5 2.5
Glass 31.27 28.47 27.59 3 2 1
Vowel 43.51 33.12 35.93 3 1 2
Vehicle 14.90 15.25 15.01 1 3 2
Segment 8.71 8.24 9.10 2 1 3
Optical 1.22 1.95 1.56 1 3 2

FSVM-�hd_exp Iris 2.67 2.67 2.67 2 2 2
Glass 30.81 27.08 27.53 3 1 2
Vowel 43.29 33.33 35.93 3 1 2
Vehicle 14.78 15.13 14.42 2 3 1
Segment 8.52 8.19 9.14 2 1 3
Optical 1.28 1.95 1.56 1 3 2

FSVM-�ptset_lin Iris 2.67 3.33 3.33 1 2.5 2.5
Glass 31.28 29.42 27.10 3 2 1
Vowel 43.51 33.33 35.93 3 1 2
Vehicle 14.66 14.31 14.18 3 2 1
Segment 8.62 8.00 9.14 2 1 3
Optical 1.17 2.00 1.56 1 3 2

FSVM-�ptset_exp Iris 2.67 3.33 3.33 1 2.5 2.5
Glass 31.27 28.48 26.64 3 2 1
Vowel 43.51 33.33 35.93 3 1 2
Vehicle 14.42 14.54 14.66 1 2 3
Segment 8.57 8.24 9.14 2 1 3
Optical 1.22 2.00 1.56 1 3 2
Sum of Ranks 61 58.5 60.5
Average Rank 2.03 1.95 2.02
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decomposition approach compare against each other, 
w.r.t. the number of nonzero support vectors in the trained 
classifier.

For deciding how proposed decomposition approach 
works in comparison with OAA and OAO, let us compare 
and rank the classifier performances of OAA, OAO and 
PropO, with each classifier, namely C-SVM, F-SVM with MF 
�hd_lin , F-SVM with MF �hd_exp , F-SVM with MF �ptset_lin , and 
F-SVM with MF �ptset_exp . The ranking for these decomposi-
tion methods, as observed with each dataset and classifier, 
is shown in Table 5. The sum of all ranks for OAA, OAO and 
PropO is 61, 58.5 and 60.5, respectively; this gives an aver-
age rank of 2.03, 1.95 and 2.02, respectively. Performing 
the Friedman test, we get

As per [32], for l = 3 and N = 30 , the threshold required to 
reject Null Hypothesis at � = 0.05 , is 7.81. Since �2

F
 is below 

the threshold value, Null Hypothesis is true. With this, we 
can infer that the proposed decomposition method pro-
vides comparable performance to those of OAA and OAO 
decomposition methods, and none of the approaches can 
be considered superior w.r.t. test classification scores.

For the next analysis, we shall compare the proposed 
decomposition methods when: (1) applied on all samples, 
Prop, and (2) applied only on the possible non-outliers, 
PropO. Similar to the earlier analysis, we shall compare 
the performances of Prop and PropO, with each clas-
sifier, namely C-SVM, F-SVM with MF �hd_lin , F-SVM with 
MF �hd_exp , F-SVM with MF �ptset_lin , and F-SVM with MF 
�ptset_exp . In this paper, including additional tables to 
compare the performances and rank the methods like in 
Table 5, would make the paper too long. For this reason, 
without mentioning all details, we directly mention the 
sum of all ranks, and the average ranks for each of the indi-
vidual methods.

The sum of ranks across N = 30 for Prop and PropO is 55 
and 35, respectively; this gives us average ranks of 1.83 
a n d  1 . 1 7 ,  r e s p e c t i v e l y .  T h u s , 
�2
F
=

12 × 30

2 × 3
[1.832 + 1.672 − 4.5] = 13.2 . For l = 2 and 

N = 30 , the threshold required at � = 0.05 to reject Null 
Hypothesis is 5.99. Since the �2

F
 value is greater than the 

desired threshold, Null Hypothesis is rejected. Now we 
shall perform the BD post hoc test. q� for l = 2 and � = 0.05 
is 1.96. Accordingly, the critical difference value would be 

CD0.05 = 1.96 ×

√
2(2 + 1)

6 × 30
= 0.358  .  The  d i f ference 

between the average ranks of PropO and Prop is 
(1.83 − 1.17) = 0.66 , which is greater than CD0.05 . It can be 
therefore statistically ascertained that PropO is better than 
Prop, i.e., proposed decomposition method truly performs 

�2
F
=

12 × 30

3(3 + 1)

[
2.032 + 1.952 + 2.022 −

3 × (3 + 1)2

4

]
= 0.114

better when the decomposition procedure is performed 
only with the possible non-outliers. This is a very impor-
tant inference for us and indicates that the unsupervised 
method for identifying possible outliers and possible non-
outliers, works pretty well. Furthermore, it indicates that 
our hypothesis of using only possible non-outliers for the 
decomposition process has been effective. In fact, other 
heuristics-based decomposition techniques could also 
benefit from this finding, and one could try using only the 
possible non-outliers for the specific decomposition.

To compare the performance of FSVM with C-SVM, we 
took the best performance of FSVM across all MFs, as 
found for each dataset and each decomposition strategy 
and compared them with the respective C-SVM perfor-
mance. Six datasets and four decomposition strategies 
give us a total of N = 24 cases. Ranking the performance 
of C-SVM and FSVM, we found the sum of ranks to be 45.5 
and 26.5, respectively; this gives us average ranks of 1.896 
and 1.104, respectively. Performing Friedman test, the �2

F
 

value is �2
F
=

12 × 24

2 × 3
[1.8962 + 1.1042 − 4.5] = 15.07 . We 

know the threshold required for l = 2 at � = 0.05 to reject 
Null Hypothesis is 5.99; hence, Null Hypothesis can be 
rejected at � = 0.05 . To see if FSVM is statistically better 
than C-SVM, we shall perform the BD post hoc test. q� for 
l = 2 and � = 0.05 is 1.96. Accordingly, the critical differ-

ence value would be CD0.05 = 1.96 ×

√
2(2 + 1)

6 × 24
≈ 0.4 . The 

difference between the average ranks of C-SVM and F-SVM 
is (1.896 − 1.104) = 0.892 , which is greater than CD0.05 . We 
can therefore statistically ascertain with � = 0.05 that 
FSVM, with the tested MFs, gives better performance than 
C-SVM. It may be noted that this inference is in line with 
the conclusion mentioned in [30].

Finally, we compare the average number of nonzero 
support vectors required by the SVM classifier when 
trained with each decomposition methods, before deter-
mining the class of a sample. This statistical analysis would 
be very similar to the analysis performed in Table 5 of this 
paper; the only difference is that we would compare the 
number of nonzero support vectors mentioned in Table 3 
for OAA, OAO and PropO methods. Ranking the methods 
for N = 30 cases, we find the sum of ranks for OAA, OAO 
and PropO to be 73, 77 and 30, respectively, which give the 
average ranks of 2.43, 2.57 and 1.0, respectively. Perform-
i n g  t h e  F r i e d m a n  t e s t ,  w e  g e t 
�2
F
=

12 × 30

3 × 4
[2.432 + 2.572 + 12 − 12] = 45 . The threshold 

required for l = 3 and � = 0.05 is 7.81. Since the �2
F
 value is 

greater than the threshold, Null Hypothesis can be 
rejected. q� for l = 3 and � = 0.05 is 2.343. On performing 
the BD post hoc, we arrive at a critical difference value of 
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CD0.05 = 2.343 ×

√
3(3 + 1)

6 × 30
≈ 0.61 .  Th e  d i f fe re n ce 

between the average rank of PropO and OAA is 1.43, and 
difference between PropO and OAO is 1.57. From the BD 
test, we can statistically ascertain with � = 0.05 that PropO 
provides fewer nonzero support vectors than both OAO 
and OAA.

This is another very important inference. As mentioned 
in Eq. (15), it has direct implication on the computational 
complexity during test phase of the classifier. We can 
therefore expect that the proposed decomposition tech-
nique is quicker in execution during test phase. It should 
be noted that the quicker test execution is achievable with 
the proposed decomposition technique, while ensuring a 
classification performance which is comparable to that of 
OAA and OAO (as learned from the first statistical analysis). 
Interestingly, we also see that PropO, in 27 of N = 30 cases, 
has an equal/fewer number of nonzero support vectors 
than Prop decomposition.

A non-conclusive observation which is relevant for the 
tested datasets, is that except for the ‘Optical’ dataset, the 
total execution time for training and testing together is 
always lowest in the case of proposed decomposition 
approach. In the case of ‘Optical’ dataset, the execution 
time for train and test is best with ‘OAO’ approach, and 
second best with ‘PropO’ approach. To understand this 
point, let us compare the training time complexity for 
different decomposition algorithms. The worst case time 
complexity for training a binary kernel SVM classifier with 
n data samples is O(n3) , and the average time complexity 
is O(n2) [28]. Consider a case where we have n samples 
which are equally divided amongst k classes. In the case 
of OAA decomposition method, all n samples take part 
in forming k classifiers (one for each class). Therefore, the 
training time complexity for OAA would be O(kn2) . In the 
case of OAO, with all classes having an equal number of 
samples (we stated this assumption while defining the 
case) of n

k
 , a total of 2n

k
 samples will take part to generate 

a single SVM classifier. Further, OAO requires k(k−1)
2

 such 
classifiers. Therefore, the time complexity for training SVM 
with OAO decomposition method would be

Now let us consider the case of proposed decomposition 
method which leads to a balanced binary tree (say a com-
plete balanced binary tree). For the first/root node, all n 
samples would take part in training a single SVM classifier, 

O

((
2n

k

)2

∗
k(k − 1)

2

)

⇒ O

(
4n2

k2
∗
k2 − k)

2

)

⇒ O
(
2n2

(
1 −

1

k

))

which requires O(n2) operations on average. In the second 
level, two binary classifiers would be trained with n

2
 sam-

ples each. Similarly, for each lower tth level, 2t−1 classifiers 
would be trained with n

2t−1
 samples each. This leads us to 

the following

In the above time complexity for proposed decomposition 
method, if we even include the time complexity for com-
puting the Hausdorff distance between individual classes, 
then total time complexity would turn out to be

Further, if we consider the time complexity of identifying 
possible outliers and non-outliers from each class, the addi-
tional time complexity based on [30] would be O(2n log 2n

k
) , 

which is negligible compared to O
(
2n2

(
1 −

1

k

))
 . It may be 

observed from Table 4 that while the time complexity of 
proposed decomposition method is similar to that of OAO, 
in reality, it is observed that proposed decomposition 
method takes lesser time to train and test for smaller sized 
datasets. This is expected because the constant time opera-
tions required during training of each binary SVM classifier, 
would play a big role for smaller sized datasets. OAO has 
many more binary SVM classifiers to be trained than the 
proposed decomposition method; thus, OAO ends up tak-
ing larger execution time in smaller sized datasets.

To compare the proposed approach with other directed 
binary tree decomposition methods, our results with 

O

(
n2 + 2 ∗

(
n

2

)2

+ ⋮ +2log2 k−1 ∗
(

n

2log2 k−1

)2
)

⇒ O
(
n2
(
1 +

1

2
+ ⋮ +

1

2log2 k−1

))

⇒ O

(
n2

(
1 − (

1

2
)log2 k

1 −
1

2

))

⇒ O
(
2n2

(
1 −

1

k

))

O
(
2n2

(
1 −

1

k

))
+ O

((
2n

k
log

2n

k

)
∗
k(k − 1)

2

)

⇒ O
(
2n2

(
1 −

1

k

))
+ O

(
n(k − 1) log

2n

k

)

≈ O
(
2n2

(
1 −

1

k

))
, when k << n

Table 6  Comparing directed binary tree decomposition methods 
(in %)

Datasets Pro-
posed 
method

Method 1 
centroid 
distance

Method 2 
balanced 
subsets

Method 
3 scatter 
measure

Sat. image 91.80 90.90 91.90 91.80
Optical 98.39 96.50 96.90 96.20
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C-SVM have been compared with those presented in Lor-
ena et al.’s paper [19] (which followed a similar experimen-
tation procedure). The comparison is presented in Table 6. 
Looking at the table, it seems that the proposed method 
provides either comparable or superior performance to 
that of the methods presented in [19]. Further, an added 
advantage of the proposed approach is that it assures a 
balanced binary tree-like decomposition structure, which 
leads to faster execution speed during testing.

4.1  Limitations and possible future work

This paper proposed a method which decomposes a 
multi-class classification problem to binary classification 
problems with balanced binary search tree structure, and 
we found that it execute quickly during testing. Arguably, 
there are multiple ways to decompose the multi-class clas-
sification problem to a balanced binary search tree-like 
structure, and this paper is limited to describing and test-
ing only one heuristic-based method. An important future 
work would be to explore other heuristic-based decom-
position methods, which ensure a balanced binary search 
tree structure, and statistically find which method does 
best. Another limitation of the proposed method is that 
optimizing the hyper-parameters of FSVM during classifier 
training, can be computationally very expensive. Hence, an 
important avenue for future research would be to develop 
heuristic-based methods that can quickly (i.e., in fewer iter-
ations) bring out a reasonable set of hyper-parameters for 
classifier training. It is known from the literature [12] that 
the 0-1 loss function, the sigmoid loss function and the 
ramp loss function can provide good robustness to class 
noise; accordingly, in the future, it would be a good idea 
to compare the multi-class classification performance over 
noisy data, with SVM trained over the different loss func-
tions and that with FSVM.

5  Conclusions

This paper extended our recently proposed Hausdorff 
distance-based decomposition algorithm, by studying the 
effect of excluding possible non-outliers during decompo-
sition process and/or using fuzzy SVM as the binary clas-
sifier. Two studies on use of outlier detection techniques 
in this scenario were made while keeping class noise into 
consideration. The first study compared the performance 
of proposed decomposition approach, when performing 
the decomposition procedure on: (1) all data and (2) only 
the possible non-outliers. A second study compared the 
multiclass classification performances of the decomposi-
tion approaches, while using C-SVM or FSVM as the binary 

classifier. The objective of both studies was to see if there 
is an improvement in overall classification performance 
when effect of class noise is reduced with outlier detection 
techniques. The study concluded that proposed approach 
statistically performs better when only possible non-outli-
ers were considered while deriving the decomposition. The 
study also indicated that the unsupervised method used for 
identifying possible outliers and possible non-outliers, works 
well. The study then suggested that other decomposition 
techniques, which use heuristics to determine the decom-
position structure, can benefit from this finding, and that 
they could try using only the possible non-outliers for the 
learning of decomposition structure. The conclusion from 
the second study conformed with our earlier paper, which 
mentioned that FSVM with appropriate MFs can provide sta-
tistically better classification results than C-SVM.

The proposed decomposition approach was elaborately 
evaluated and compared with the OAO and OAA decom-
position methods. Inferring from the results, the proposed 
approach statistically required fewer nonzero support vec-
tors to ascertain the class during testing, and comparable 
performance, to those of OAA and OAO. As expected theo-
retically, testing speed of the proposed method was empiri-
cally observed to be faster than OAO and OAA methods for 
all tested datasets. Theoretically speaking, execution time for 
training SVMs with OAO is expected to be lower than that of 
the proposed approach. However, during our experiments, 
it was found that for most datasets, combined training and 
testing time with SVMs using proposed approach is lesser 
than that with the OAO method. This is because OAO has 
more number of classifiers, and more number of constant 
time operations to perform, which especially matter for 
smaller sized training data. The proposed approaches have 
an added advantage that there is zero ambiguity during final 
class assignment, i.e., without shadow region. Possible future 
work could include the use of hierarchical clustering tech-
niques on individual classes w.r.t. the Hausdorff distances 
between them, for deriving the binary tree decomposition.
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