
Vol.:(0123456789)

SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6

Research Article

Balanced binary search tree multiclass decomposition method with
possible non‑outliers

Rahul Kumar Sevakula1,2 · Nishchal Kumar Verma1

Received: 7 July 2019 / Accepted: 29 April 2020 / Published online: 28 May 2020
© Springer Nature Switzerland AG 2020

Abstract
Multiclass decomposition algorithms are the means by which binary classification algorithms like support vector machine
are used for multiclass classification problems. The popular multiclass decomposition algorithms like one against one
(OAO), one against all (OAA), etc., perform the decomposition in a naive manner. This paper presents a novel heuristic-
based decomposition algorithm that takes the Hausdorff distance between two classes to decide the decomposition.
During the decomposition, rules are made to ensure a balanced binary search tree structure. To model the uncertainty
and class noise present in the data, an unsupervised outlier detection technique has been used so that only possible
non-outliers take part in the decomposition process. The presented algorithm has been evaluated and compared against
OAO and OAA methods across 6 datasets. While evaluating the decomposition algorithms, fuzzy support vector machine
has been used to model the class noise during each binary classification. The comparison shows that presented method
not only provides comparable performance, but also in all cases, can classify the test samples with fewer average number
of support vectors, thus leading to faster test performance. The paper further observes that the proposed approach can
provide statistically better performance when the decomposition structure is learned only using the possible non-outliers,
as compared to the scenario where the decomposition structure is learned using all samples.

Keywords Classification · Support vector machine · Multi-class classification · Decomposition approaches · Hausdorff
distance · Class noise

1 Introduction

Binary classifiers have a very special place in the history
of classification problems. The first classifiers were promi-
nently binary classifiers, e.g., linear discriminant analysis.
The classifiers having maximum ability to exhibit low vari-
ance are also binary classifiers, e.g., SVM and MVP classi-
fiers [29, 34]. When we look back in history, many of the
classifiers were first designed for binary classification and
later extended to multiclass classification [7, 14]. Primar-
ily, there have been two ways by which binary classifi-
ers are made capable of solving multiclass classification

problems: (1) extend the learning algorithm to a multiclass
version and (2) decompose the multiclass problem into
binary sub-problems. The first method can lead to compu-
tationally costly algorithms [14] or sometimes may also be
impractical to formulate. The second method, on the other
hand, is easy to implement, and it provides the facility of
parallel processing, where the binary sub-problems could
be independently solved using different processors. This
paper shall focus on the second class of methods.

Lorena et al. [20] present an excellent literature survey
on decomposition algorithms. Decomposition algorithms
involve two steps: (1) dividing the multiclass problem into

R. K. Sevakula: Research was performed during stay at Indian Institute of Technology Kanpur, Kanpur, India.

 * Rahul Kumar Sevakula, rahul.sevakula@gmail.com | 1Indian Institute of Technology Kanpur, Kanpur, India. 2Present Address:
Massachusetts General Hospital, Harvard Medical School, Boston, USA.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-2853-6&domain=pdf
http://orcid.org/0000-0002-6234-367X

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6

binary sub-problems and (2) combining the results of the
binary classifiers to assign a class to the sample. Allwein
et al. [1] proposed a code-matrix framework, represented
by code-matrix � for obtaining insights on how multiclass
problems are/could be decomposed to sub-problems.
Consider a multiclass classification problem having k
classes, which is decomposed to l binary sub-problems.
The columns define the labeling that the k classes (groups
of data samples) assume while training individual binary
classifiers. Thus, � has the dimensions of k × l . Element mi,j
gives the expected value of jth classifier w.r.t. ith class and
may assume the values of −1, 0,+1 . ‘ +1 ’ indicates positive
label, ‘ −1 ’ indicates negative label, and ‘0’ indicates non-
participation from class i. Figure 1 shows a sample code
matrix. One can observe that given a value of k, the codes
for individual classes can be either made with lot of redun-
dancy or can be made compact, i.e., with little redundancy.
The most compact decomposition possible for a multiclass
classification problem of k classes would be l = log2(k).

The most popular of all decomposition methods is one
against one (OAO) and one against all (OAA). Sometimes
these methods are also referred to as one versus one (OVO)
and one versus all (OVA), respectively. OAO decomposes
the multiclass classification problem to a situation where
a binary classifier is trained to classify each possible pair of
individual classes. Therefore, the number of binary classi-
fiers trained would equal k(k−1)

2
 , where k is the number of

classes. Final assignment of class is typically done by tak-
ing a majority vote across decisions taken by the individual
classifiers. OAA, on the other hand, solves the problem by
training a binary classifier for each class versus all remain-
ing classes together, leading to a total of k classifiers. The
individual classifiers then classify the test samples with a
probability describing the belongingness of the sample to
the individual classifier. Final assignment of class is typi-
cally done by finding the class assigned maximum prob-
ability. A major disadvantage of both OAO and OAA is the
presence of shadow region [18], which is a region where
final class assignment may turn out to be a tie. Another
disadvantage of OAA approach is that each of the binary
classifiers (in most cases) is trained on class imbalanced
data. Accordingly, class imbalance methods are prefer-
ably employed while training each of the classifiers. Fig-
ure 2a–d presents the code matrix and illustrations for
OAO and OAA, respectively.

Dietterich et al. [9] proposed the use of error-correcting
output codes (ECOC). The idea behind ECOC is to have
more number of classifiers so that some redundancy is
created. This redundancy provides the facility to correct
errors. Allwein et al. [1] pointed out that although the
codes generated by the ECOC decomposition have good
error-correcting properties, many of the binary sub-prob-
lems generated can be difficult to learn. For this reason,
case studies showed that simpler decompositions like OAA
and OAO often provide comparable and sometimes supe-
rior results as compared to ECOC. Further, ECOC is compu-
tationally not efficient as well [22, 24].

Another popular set of strategies are hierarchical strate-
gies [27]. Hierarchical strategies develop a graph-like struc-
ture for the binary classifiers, and they can be further cat-
egorized as: (1) acyclic graphs and (2) directed binary trees.
A key differentiating factor among the two categories is
that each node (binary classifier) in the acyclic graphs is
trained to classify data of 2 classes only, whereas a node
for the directed binary tree is trained to classify two groups
of data wherein each group may have samples from more
than one classes.

Examples of acyclic graph decomposition methods are
decision directed acyclic graph (DDAG) [23] and adaptive
directed acyclic graph [15]. The disadvantages of DDAG
as pointed by Kijsirikul et. al. [15] are as follows: (a) Results
are dependent on the sequence of binary classifiers, and
(b) there is a possibility of shadow region being present.
Another deficiency of DDAG is that the number of classi-
fiers evaluated is independent of the true class’s position
in the graph. For example, if correct class is already present
in root node, it would still be evaluated with k − 1 binary
classifiers before obtaining the output. This increases the
probability of error due to the buildup of cumulative error.
To understand cumulative error here, consider a situation

Fig. 1 Code-matrix framework to describe multiclass decomposi-
tion algorithms

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6 Research Article

where each binary node/classifier has an error rate of � ;
the cumulative error rate for DDAG would then equal
(1 − �)k−1 . Cumulative error therefore can become critical
for data having large number of classes.

In the case of directed binary tree decomposition meth-
ods, the number of classifiers evaluated for test samples
can range from log2 k to a maximum of k − 1 binary classi-
fiers [5, 16, 19, 31, 33, 35]. Clustering methods have been
popularly used for creating the directed binary tree [16,
33, 35]. Lorena et al. [19] used minimum spanning tree for
making the tree/graph. Some drawbacks of these earlier
methods [16, 19, 33, 35] are: (1) Earlier methods could
often lead us to having an imbalanced binary tree decom-
position, and the main advantage of achieving low cumu-
lative error and quick execution of test cases could be lost,
(2) measures used for partitioning of classes could fail in
simple cases, e.g., classes made up of concentric circles.

It is understood that a directed binary tree decompo-
sition which leads to a balanced binary tree-like struc-
ture, would require only log2 k classifiers for test sample
evaluation, and such a decomposition would have the
least amount of redundancy in the code matrix. This
paper extends our recently introduced decomposition
algorithm (introduced in conference paper [31]), which
brings out a balanced binary tree decomposition of
classes. For partitioning of the classes, Hausdorff dis-
tance (HD) is used to identify the classes which are most
separable from each other. As these two most separa-
ble classes form two partitions, remaining classes are
assigned to each partition based on their affinity to the

partition w.r.t. their Hausdorff distances. Special consid-
erations ensure that a balanced binary tree-like structure
is formed, which theoretically gives least redundant code
matrix.

The novelty of this paper includes the consideration for
class noise. Since class noise (outliers) can pose a major
challenge during decomposition and binary classification,
two checks have been performed: (1) when effect of pos-
sible outliers is reduced during the decomposition process
and (2) when possible outliers are appropriately modeled
while training of binary classifiers. For the first check, a
clustering-based approach has been used, and for the
second check, fuzzy support vector machine (FSVM) [17]
has been used. Elaborate experimentation on 6 datasets
shows that proposed method achieves comparable clas-
sification performance with OAO and OAA. Further, the
proposed method was shown to achieve the mentioned
classification performance with least number of nonzero
support vectors (SVs) during testing, which translates to
faster test performance. It was further seen that reducing
the effect of possible outliers led to improvements in clas-
sification performance on both accounts, namely in the
decomposition process, as well as in the individual binary
classification.

The paper further proceeds as follows: Section 2
explains the Hausdorff metric, and Sect. 3 describes the
proposed decomposition algorithm. Section 4 mentions
the performed experimentation, results achieved and con-
clusions derived from the same. Section 5 ends the paper
with Conclusions.

Fig. 2 Illustration: a code
matrix for OAO, b illustration
for OAO, c code matrix for OAA,
d illustration for OAA

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6

2 Hausdorff distance

Hausdorff distance is a popular measure to find out how
close two non-empty sets of a metric space are to each
other [13, 25, 30]. Distance between two sets can be pic-
tured as distance between a representative point from
each set. It is important here that the two sets between
whom Hausdorff distance is to be computed, be non-
empty sets. Closed and bounded properties of the space
are very essential as it allows one to take limits. In the
absence of such restrictions, it cannot be insured that
limit exists and if it exists, it will be finite. The restriction
also allow us to have d(A, B) = 0 for non-empty sets A and
B, when A = B , which is a necessary criteria for a metric
space to be defined.

There exist two mathematical definitions for Haus-
dorff distance [13]. The first definition mentions that two
sets are said to be close when every point of either set
is close to some point in the other set. Given a compact
metric space S, consider X to be the space of non-empty
closed subsets of S. Hausdorff metric is defined on pairs
of elements in X whose expression is given in Eq. 1. In the
definitions below, dH(.) denotes the function computing
the Hausdorff distance.

The second definition which is graphically more appealing
is defined as follows: Given A ∈ X , let its �-expansion be
defined as the union of all �-open spheroids around points
in A and denoted as E�(A) . Hausdorff distance between
the two sets is defined as the smallest � that allows the
expansion of one set to cover the other and vice versa [25].
The expression is given in (2), and its illustration is shown
in Fig. 3.

2.1 Distance between a non‑empty set and a point

We present here two popular metrics to measure dis-
tance between a non-empty set and a point. Consider a
metric space S with metric d. Let e and A be, respectively,
a point and a non-empty closed subset of S. The defini-
tion for the first metric would be by computing the Haus-
dorff distance between A and the non-empty set having
a single point e. The definition is mentioned below and
shall be referred here as HDpt distance.

(1)dH(A, B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}

(2)
E𝜖(A) = ∪x∈AB(x, 𝜖)

dH(A, B) = inf
{
𝜖 > 0| E𝜖(A) ⊃ B and E𝜖(B) ⊃ A

}

The second metric is defined as the greatest lower bound
of distances from points a in A to point e. This measure
which we shall refer here as pt-set distance is more popular
than HDpt due to its greater relevance to physical reality. In
the definition below, dP(.) denotes the function computing
the pt-set distance.

3 Proposed method

The proposed method for decomposition is presented
below in Algorithm 1. The primary concept behind the
method is to find the classes that are most distant from
each other and then segregate other classes into two
groups based on their proximity to each of these two
classes. This process is recursively repeated to bring out
a binary tree-like structure during the decomposition
process. Considering that it is very likely that each of the
classes comprises of more than one training sample, met-
rics which can measure distance between two non-empty
sets, could be useful for our decomposition algorithm.

Some popular options for this objective are: (1) Jac-
card distance, (2) Earth mover’s distance after estimating
probability distributions for each of the two non-empty
sets and (3) the Hausdorff distance. Jaccard distance has
a limitation that when the two sets are mutually exclusive,
no matter how far or close the two sets be, the Jaccard dis-
tance would always be 1. This limits the ability to compare
distance between more than 2 mutually exclusive non-
empty sets. The second option of finding Earth mover’s

(3)
dH({e},A) = max

{
inf
a∈A

d(e, a), sup
a∈A

d(e, a)

}

= sup
a∈A

d(e, a)

(4)dP(e,A) = inf{d(e, a) ∶ a ∈ A}

Fig. 3 Illustration to depict: a first definition of Hausdorff distance,
b second definition of Hausdorff distance

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6 Research Article

distance after estimating probability distributions can be
a very computationally expensive procedure, as estimating
probability distributions is not an easy task. On consider-
ing these options, the easy to compute Hausdorff distance
appeared to be the most suitable metric here.

Algorithm 1: Decomposition algorithm using Hausdorff Metric

Step 1: Compute the Hausdorff distance between each pair of
classes. Given k classes, we shall have k(k−1)

2
 pairs of

classes between which the Hausdorff distance must be
found.

Step 2: Make two empty sets of classes, namely left_node and
right_node (the way we have in Binary Search Trees).
Find the pair of classes which are most distant from each
other w.r.t. Hausdorff distance. From this pair, assign one
class to left_node and the other to right_node.

Step 3: Now based on the Hausdorff distances already found
between different class pairs, check the class, i.e., closest
to either left node or right node and then assign it to the
closer node.

Step 4: Step 3 is repeated until the left node or the right node has
half of the total number of classes present in previous
node. In case, the previous node has an odd number of
classes, half will be rounded off to the higher integer
value. The remaining classes are automatically assigned
to the node which has fewer number of classes.

Step 5: Once all the classes have been divided (equally) into left
node and right node, we recursively perform the Steps
2-4, to further divide each of these nodes. This recursive
operation continues until the leaf nodes have only one
class in them.

Following the proposed method gives a balanced
binary tree-like structure. To make a multiclass decision
making system, a binary classifier needs to be generated
for all the nodes except for the leaf nodes, such that classes
in the left node and classes in the right node are maxi-
mally separated. A pictorial presentation of how classes
are divided into binary tree structure is shown in Fig. 4a,
and the effective code matrix for number of classes k = 4
is shown in Fig. 4b.

During testing, starting from the root node which has
all classes, decision of binary classifier at each node will
direct us to the next node. This operation continues until
a leaf node is reached, which provides the determined/
predicted class. An important point to be noted is that a
case of shadow region, i.e., ambiguity during final class
assignment, does not exist with proposed approach.

3.1 Identifying the possible outliers

Outliers are defined as samples which appear to have
been generated from a distribution other than what they
are denoted to. Hausdorff distance suffers from a limita-
tion that the distance between two non-empty sets can
be seriously affected by outliers present in both classes.

For example, consider a situation where most samples of
the two classes are close to each other, except for a sin-
gle outlier which is very far from all samples of the other
class; Hausdorff distance in such a case would be much
larger than when it is computed in the absence of that
outlier. Keeping such situations in mind, we now explore
the proposed decomposition algorithm after identifying
the possible outliers.

In the absence of prior knowledge, the procedure of
identifying possible outliers would be entirely unsuper-
vised. Most existing outlier identification methods [4, 21]
need some form of training data containing non-outliers
(for unsupervised methods) or both non-outliers and outli-
ers (for semi-supervised methods). For this reason, when
prior knowledge is absent, possible outliers are identified
based on a common notion here. The notion used in this
paper is that after performing clustering procedures, the
samples which do not show strong belongingness to any
of the clusters can be seen as possible outliers. For segre-
gating the training samples that are possibly non-outliers
and outliers, density-based clustering methods, namely
DBSCAN [11] and OPTICS-OF [3], have been tested for use
here. The reasons for using density-based clustering meth-
ods are as follows:

• noise objects can be identified even within broken
structures and irregular shaped structures.

• prior knowledge of the number of clusters is not
required.

• simple and fast to implement.

Tests on various toy datasets showed that DBSCAN is much
more effective than OPTICS-OF, in identifying the possi-
ble outliers. Therefore, only DBSCAN approach was used
for our possible outlier identification strategy. References

Fig. 4 a Partitioning into two groups of classes, b code matrix of
proposed approach

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6

[26, 30] provides justification on how performing DBSCAN-
based outlier identification on input feature space, and
later performing classification in kernel space (which is
used by classifiers like support vector machine), is effective
in improving the classification performance. Accordingly,
the procedure to identify possible outliers gets its primary
ideas from [30].

Introduced by Ester et al. [11], DBSCAN is a density-
based clustering method, which is designed with a notion
that clusters should be formed at locations where samples
are more densely connected than other locations. The den-
sity of a sample is defined as the number of samples k in its
� neighborhood, i.e., within its radius of � . DBSCAN intro-
duces the following concepts for explaining the algorithm.
A point or an object is denoted as a “core point” when the
density in its � neighborhood is above a defined threshold,
� . “Border points” are those objects whose density within
the � neighborhood is less than � , and which have at least
one core point in each of their � neighborhood. Objects/
points which neither fall into the category of core points
nor that of border points, are considered to be “noise
objects/points.”

The algorithm starts with a random sample, which
is allowed to expand as a cluster, only when it is a core
point. A point or cluster expands its cluster by absorbing
the untouched points in its � neighborhood. This expan-
sion ends when there are no more core points or border
points to absorb in their � neighborhood. The same pro-
cess is repeated with a random untouched core point, to
form a new cluster group. This process continues until all
the core points are either exhausted or are absorbed by
the existing clusters, after which the clustering process is
stopped. The noise points which remain unabsorbed can
be treated as possible outliers. Figure 5 shows a plot of
cluster formation.

Before using DBSCAN to identify the possible outliers,
it is required to decide the values for parameters k and � .
Let out_ratio be defined as the ratio of number of noise
objects (as found after running DBSCAN) to the total num-
ber of samples in the class, as shown in Eq. 5. Let max_or
be a user-defined parameter that limits the maximum
allowed out_ratio . As would be seen later, defining max_or
would limit the number of possible outliers allowed. The
algorithm begins by initializing k = n + 1 , a common heu-
ristic where n is the number of features or dimensions in
the space. � is initialized to 0.03 times the largest diameter
of the ellipsoid that can encompass all the samples of the
class, diam_lar as given in Eq. 6. In Eq. 6, max_vec refers
to the vector having maximum value of each feature and
min_vec refers to the vector having the minimum of each
feature value among all samples of the class.

The algorithm proposed to identify possible outliers pro-
ceeds as follows: DBSCAN is first run with these initial
parameter values and out_ratio is found. If the out_ratio
found is above the estimate, then DBSCAN is rerun on the
same class with modified parameters. k is remained fixed,
and � is revised to a new value equal to incr_fac times
the previous � , i.e., �new = incr_fac × �old . This process is
repeated until out_ratio falls just below max_or . By the
end of this procedure, two groups, namely in_class which
refers to the set of samples that are considered to be part
of the class and out_class which refers to the set of possible
outlier samples, are formed.

The objective of defining new variables, namely
out_ratio and max_or , was to substitute the decision of

(5)out_ratio =
no. of samples that are probablyoutliers

total number of data samples

(6)diam_lar = ‖max_vec −min_vec‖

Fig. 5 a DBSCAN run on class 1 of a toy dataset, b DBSCAN run on class 1 and class 2 of a toy dataset

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6 Research Article

defining value for k, � , with max_or , which is intuitively
more easier. The user is asked to give an estimate for
max_or , based on prior knowledge, i.e., by having an idea
of how noisy the dataset is. In case there is no prior knowl-
edge about the dataset, max_or can be varied between 0
and 1 in small steps and value giving best performance
could be selected. The second option would obviously be
a time-consuming process.

3.2 When possible outliers do not take part
in the decomposition algorithm

The effectiveness and sufficiency of the above outlier
detection strategy are checked on a toy problem, as shown
in Fig. 6. The data of the toy problem were randomly gen-
erated between a band of concentric circles of radius 7 to
10 for class 1, and radius 0 to 2 for class 2, with center at
(0, 0). It was also made sure that 10% of the samples from
both classes were outliers. The problem is non-separable
and would need nonlinear classification with kernel clas-
sifiers. As shown in Fig. 6b, the above-mentioned out-
lier detection technique is able to correctly identify the
out_class and in_class groups of both classes, with user
given max_or of 0.15.

In our experiments, in addition to the proposed decom-
position method, we tried a variant where only possible
non-outliers are considered while computing the Haus-
dorff distance between the individual classes. The idea
behind the variant is that when outliers are absent dur-
ing the computation of Hausdorff distance, their effect on
the proposed binary tree decomposition would be signifi-
cantly reduced, which is desirable. Once the decomposi-
tion of the multi-class problem to multiple binary class
problems is complete, all samples (including the possible
outliers) would take part during training of the binary clas-
sifiers. In other words, outliers’ effect is reduced only dur-
ing the decomposition procedure, and not during training
of the binary classifiers.

3.3 Accounting possible outliers within binary
classification

In the previous two subsections, we worked on ways on how
to reduce the effect of possible outliers during the multiclass
decomposition procedure. In this subsection, methods to
appropriately reduce the effect of possible outliers during
the binary classification, would be worked upon.

FSVM is a significant improvement over C-SVM which
allows one to model possible outliers. FSVM allows one to
assign fuzzy membership values (MVs) to each data sam-
ple. Such facility provides greater flexibility in accounting
the data samples differently, w.r.t. their individual perceived
importance. FSVM with appropriate fuzzy membership func-
tions (MFs) has repeatedly shown that it can perform statisti-
cally better than regular C-SVM [2, 30]. For our experiments,
we shall use four of the MFs introduced in our earlier paper
[30], namely �hd_lin , �hd_exp , �ptset_lin and �ptset_exp.

For assigning MVs, the MFs perform the procedure of
outlier detection as mentioned in Sect. 3.1, to divide the
data into two groups, namely the in_class group and the
out_class group. Further, Hausdorff distance between the
in_class groups of the two classes, and pt-set and HDpt
between possible outliers and their in_class group are com-
puted as shown below:

In Eqs. 7–9, dHclass12 refers to the Hausdorff distance
between in_class subset of class1 and in_class subset of
class2. dHclassAi refers to the HDpt (as derived in Eq. 3)
between the in_class subset of class A and ith sample,
where A is the class label of the sample. dPclassAi refers

(7)dHclass12 = dH(in_class1, in_class2)

(8)dHclassAi = dH(ithsample, in_classA)

(9)dPclassAi = dP(ithsample, in_classA)

Fig. 6 Visually depicting the
effectiveness of proposed
methodology : a nonlinear and
non-separable classification
problem, b possible outliers
and non-outliers identified
using proposed strategy with
DBSCAN

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6

to the pt-set distance (as mentioned in Eq. 4) between
in_class subset of class A and ith sample.

MFs are defined separately for each class of the binary
classification problem. Accordingly, the procedure of identi-
fying possible outliers and assigning them MVs is performed
independently for each class. The four MFs we use here are
defined below:

For �
�
∈ out_class,

and for �
�
∈ in_class ,

As shown in Eq. 14, for all four MFs, the samples from
in_class group are assigned a MV of ‘1’, and the samples
belonging to out_class group are assigned MVs based on
heuristics mentioned in Eqs. 10–13. Equations (10)–(11)
use HDpt , and Eqs. (12)–(13) use pt-set distance for find-
ing distance of possible outliers from their in_class group
of samples. These distances are then normalized w.r.t. the
Hausdorff distance between the in_class groups of the
two classes. The idea behind these MFs is that if a sample
is as much far from its own class as the second class is,
then it is quite possible for the sample to belong to the
second class. Hence, the sample’s belongingness to the
class can be doubted, and it may be given low MV. Heu-
ristics �hd_lin(��) and �ptset_lin(��) decay linearly with HDpt
and pt-set distance, respectively, and parameter � decides
the extent of decay. Heuristics �hd_exp(��) and �ptset_exp(��)
decay exponentially with HDpt and pt-set distance, respec-
tively, and parameter � decides the extent of decay.

(10)�hd_lin(��) = max

(
1 −

dHclassAi

� × dHclass12
, 0.01

)

(11)
�hd_exp(��) = exp

(
−
�exp_hd × dHclassAi

dHclass12

)
,

� ∈ (0, 1]

(12)�ptset_lin(��) = max

(
1 −

dPclassAi

� × dHclass12
, 0.01

)

(13)
�ptset_exp(��) = exp

(
−
�exp_ptset × dPclassAi

dHclass12

)
,

� ∈ (0, 1]

(14)
�hd_lin(��) = �

prop

hd_exp
(�

�
) = 1

�ptset_lin(��) = �
prop
ptset_exp(��) = 1

4 Case study and results

Experiments were performed on six datasets from the
UCI repository [10] to infer the conclusions. The pur-
pose of the experiments was threefold: (i) to see how
proposed decomposition algorithm compares to other
traditional decomposition methods like OAA and OAO,
(ii) to observe the effect of using only possible non-outli-
ers to perform the decomposition and (iii) effect of using
FSVM with outlier detection embedded in the member-
ship functions for reducing the effect of outliers in the
training of individual binary classifiers.

Details of the six experimented datasets are reported
in Table 1. The first five datasets shown in Table 1 do not
have a separate test set. Accordingly, the classifiers’ per-
formances for these five datasets were evaluated based
on tenfold cross-validation (we call this as external cross-
validation performance), and the mean classification
accuracy across the tenfold was reported. The Segment
dataset had a distinct training and test dataset; accord-
ingly, classifiers were trained on the training data, and
their performance was evaluated and reported on the
test data.

For all experiments, SVM and FSVM have been used as
the binary classifiers. The experiments were performed
on MATLAB, and LibSVM [30] was used for training each
of binary SVM classifiers. Radial basis function (RBF)
kernel was used in all the experiments. For tuning the
hyperparameters in SVM, a grid search-based procedure
was used in each of the experiments. The value for � was
logarithmically searched across powers of 2, from 2−10
to 24 , and C was searched across powers of 2, from 2−2
to 212 , i.e., across a total of 225 pairs of (C , �) values. For
identifying the optimal parameter values, the fivefold
cross-validation (internal cross-validation) performance
on the training data was ascertained with each parame-
ter pair; and the pair giving best accuracy value was con-
sidered as optimal. While using FSVM, the parameters
max_or , � and � wherever applicable, were also tuned
by searching values across {0.1, 0.2,… , 0.9} , {1, 2, 3} ,
and {0.1, 0.2,… , 1.0} , respectively. The parameter values

Table 1 Details of benchmark datasets

Datasets # Train samples # Test samples # Classes # Features

Iris 150 0 3 4
Glass 214 0 6 13
Vowel 528 0 11 10
Vehicle 846 0 4 18
Segment 2310 0 7 19
Optical 3823 1797 10 64

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6 Research Article

which gave the best overall external cross-validation
accuracy values were selected, and these same accuracy
values are reported in Table 2.

There are three measures across which the performance
of the decomposition methods has been evaluated: (i) clas-
sification performance as measured by classification error,
(ii) average number of nonzero support vectors required
to pass through, before determining the class, and (iii) sum
of the execution times during training and testing. The
decision function for SVM is given below where x refers
to a test data sample, n refers to the number of training
samples in training SVM, �∗ refers to optimal value of SVs
found after training, b∗ refers to optimal value of b found
with training, and K() refers to the kernel function.

The computational complexity in classifying test sam-
ples is directly and linearly proportional to the number
of nonzero SVs �∗ [6, 28]. Therefore, the second measure
of average number of nonzero SVs indicates the speed at
which classification would take place during testing.

The three measures as reported for each of the experi-
ments are shown in Tables 2, 3 and 4, respectively. In all the
tables, ‘Prop’ is used to refer to the proposed decomposi-
tion, and ‘PropO’ is used to refer to the case when only the
possible non-outliers take part in deriving the decompo-
sition structure with proposed decomposition algorithm.

We now perform statistical tests to infer conclusions
from the available results of six datatsets. Some commonly
used statistical tests, which we use here to compare clas-
sifier performance across multiple datasets/cases, are: (i)
the Friedman test to check for Null Hypothesis and (ii) the
Bonferroni–Dunn test [8, 32]. While statistically comparing
two or more classifiers, the Null Hypothesis tests checks if
the differences in classifier performances are by chance
or if they have any statistical significance. Null Hypothesis
states that the differences are only by chance. Using the
exact performance values for statistical analysis can cre-
ate limitations and doubts on the commensurability of the
performance measure [32]. For this reason, a more viable
method is to rank the classifiers for the given dataset/case
(wherein better performance is awarded a lower rank) and
then use the average of ranks taken across all datasets/
cases, to perform statistical analyses.

The Friedman test is performed by computing the
Friedman statistic �2

F
 as shown below. As seen from the

below equation, �2
F
 depends on the number of datasets/

cases N, the degrees of freedom l which equals the number
of classifier being compared, and the average ranks of clas-
sifiers rj . When the computed �2

F
 is greater than a defined

critical value, the Null Hypothesis is rejected; otherwise, it

(15)f (x, �∗, b∗) =

n∑

i=1

yi�iK (xi , x) + b∗

Ta
bl

e
2

 R
es

ul
ts

—
cl

as
si

fic
at

io
n

er
ro

r (
in

 %
)

Sm
al

le
r e

rr
or

 in
di

ca
te

s
be

tt
er

 p
er

fo
rm

an
ce

D
at

as
et

s
C-

SV
M

FS
VM

-�
h
d
_
lin

FS
VM

- �
h
d
_
ex
p

FS
VM

- �
p
ts
et
_
lin

FS
VM

- �
p
ts
et
_
ex
p

O
A

A
O

AO
Pr

op
.

Pr
op

O
O

A
A

O
AO

Pr
op

.
Pr

op
O

O
A

A
O

AO
Pr

op
.

Pr
op

O
O

A
A

O
AO

Pr
op

.
Pr

op
O

O
A

A
O

AO
Pr

op
.

Pr
op

O

Iri
s

4.
00

4.
00

4.
00

4.
00

2.
00

2.
67

2.
67

2.
67

2.
67

2.
67

2.
67

2.
67

2.
67

3.
33

3.
33

3.
33

2.
67

3.
33

3.
33

3.
33

G
la

ss
32

.2
0

33
.1

7
33

.6
3

26
.6

3
31

.2
7

28
.4

7
29

.4
0

27
.5

9
30

.8
1

27
.0

8
28

.9
5

27
.5

3
31

.2
8

29
.4

2
29

.8
7

27
.1

0
31

.2
7

28
.4

8
30

.3
3

26
.6

4
Vo

w
el

43
.5

1
33

.3
3

35
.9

3
35

.5
0

43
.5

1
33

.1
2

35
.9

3
35

.9
3

43
.2

9
33

.3
3

35
.9

3
35

.9
3

43
.5

1
33

.3
3

35
.7

1
35

.9
3

43
.5

1
33

.3
3

35
.9

3
35

.9
3

Ve
hi

cl
e

15
.7

2
14

.4
2

17
.7

3
14

.3
1

14
.9

0
15

.2
5

16
.6

7
15

.0
1

14
.7

8
15

.1
3

17
.8

5
14

.4
2

14
.6

6
14

.3
1

17
.0

2
14

.1
8

14
.4

2
14

.5
4

17
.3

8
14

.6
6

Se
gm

en
t

8.
95

8.
81

10
.3

8
9.

29
8.

71
8.

24
9.

81
9.

10
8.

52
8.

19
9.

19
9.

14
8.

62
8.

00
9.

57
9.

14
8.

57
8.

24
10

.1
4

9.
14

O
pt

ic
al

1.
22

2.
06

2.
06

1.
61

1.
22

1.
95

2.
06

1.
56

1.
28

1.
95

2.
06

1.
56

1.
17

2.
00

2.
06

1.
56

1.
22

2.
00

2.
06

1.
56

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6

Ta
bl

e
3

 A
ve

ra
ge

 n
um

be
r o

f s
up

po
rt

 v
ec

to
rs

 u
se

d
pe

r c
la

ss
 d

ur
in

g
te

st
in

g

Sm
al

le
r n

um
be

r i
s

pr
ef

er
ab

le

D
at

as
et

s
C-

SV
M

FS
VM

-�
h
d
_
lin

FS
VM

- �
h
d
_
ex
p

FS
VM

- �
p
ts
et
_
lin

FS
VM

- �
p
ts
et
_
ex
p

O
A

A
O

AO
Pr

op
.

Pr
op

O
O

A
A

O
AO

Pr
op

.
Pr

op
O

O
A

A
O

AO
Pr

op
.

Pr
op

O
O

A
A

O
AO

Pr
op

.
Pr

op
O

O
A

A
O

AO
Pr

op
.

Pr
op

O

Iri
s

42
41

26
26

44
43

28
28

45
38

24
24

42
40

26
26

39
38

24
24

G
la

ss
23

4
24

9
98

77
22

5
23

2
89

76
23

4
22

7
10

2
70

23
7

23
3

85
66

23
7

22
5

85
72

Vo
w

el
60

2
16

14
18

4
16

0
60

2
16

14
18

4
18

4
60

3
16

14
18

4
18

4
60

2
16

14
18

4
18

4
60

2
16

14
18

4
18

4
Ve

hi
cl

e
57

3
39

2
28

3
19

1
59

2
40

0
27

2
18

1
58

0
39

1
26

1
17

5
58

5
40

0
28

8
17

7
58

2
39

6
28

3
19

1
Se

gm
en

t
24

3
38

9
64

79
28

4
42

4
88

87
28

8
42

4
84

84
24

4
42

1
74

84
25

0
45

3
64

84
O

pt
ic

al
32

17
10

02
9

29
64

19
73

29
06

10
69

7
29

64
19

96
30

62
10

23
4

29
64

19
96

32
82

10
42

1
29

64
19

96
29

05
11

16
3

29
64

19
96

Ta
bl

e
4

 O
ve

ra
ll

ex
ec

ut
io

n
tim

e
du

rin
g

tr
ai

ni
ng

 a
nd

 te
st

in
g

(in
 s

)

Sm
al

le
r n

um
be

r i
s

pr
ef

er
ab

le

D
at

as
et

s
C-

SV
M

FS
VM

-�
h
d
_
lin

FS
VM

-�
h
d
_
ex
p

FS
VM

-�
p
ts
et
_
lin

FS
VM

-�
p
ts
et
_
ex
p

O
A

A
O

AO
Pr

op
.

Pr
op

O
O

A
A

O
AO

Pr
op

.
Pr

op
O

O
A

A
O

AO
Pr

op
.

Pr
op

O
O

A
A

O
AO

Pr
op

.
Pr

op
O

O
A

A
O

AO
Pr

op
.

Pr
op

O

Iri
s

9
4

4
4

8
4

4
4

8
5

4
4

9
5

4
4

8
5

4
4

G
la

ss
77

36
41

30
66

35
32

28
67

45
33

33
76

35
52

37
55

33
36

60
87

Vo
w

el
95

32
24

28
11

3
37

25
28

10
6

36
26

31
10

5
36

26
28

99
33

22
28

Ve
hi

cl
e

94
3

39
9

53
48

36
5

90
8

33
6

47
8

36
7

82
3

35
9

50
0

34
9

97
2

39
8

68
0

40
7

56
32

40
2

68
3

42
1

Se
gm

en
t

12
2

72
51

41
15

8
95

47
53

13
2

78
43

49
14

3
87

49
47

12
8

89
70

53
O

pt
ic

al
18

27
6

16
57

75
05

59
97

19
13

6
23

24
84

26
32

40
27

86
8

17
14

69
99

31
17

13
21

2
18

90
27

17
66

73
20

50
0

23
09

31
74

79
23

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6 Research Article

is understood that Null Hypothesis is true and the differ-
ences in classifier performance are by chance. The criti-
cal values for Friedman test are unique to the degrees of
freedom l and the desired significance level � ; these can
be found from Table A4 of [32].

If Null Hypothesis is rejected, we perform Bonferroni–Dunn
(BD) post hoc test to make individual comparisons across
algorithms and check if one statistically performs better
than the other [8]. Given the degrees of freedom l and the
desired significance level � , the BD post hoc test provides
a statistic called critical difference CD� . The statistic sig-
nifies that any classifier algorithm can be considered as

(16)�2
F
=

12N

l(l + 1)

[
l∑

j=1

r2
j
−

l(l + 1)2

4

]

statistically superior to another at � , if the difference in
their performance average ranks is greater than CD� . CD�
can be computed using the below equation; the value of
q� for the equation can be taken from Table 5(b) of [8].

We now perform statistical tests to see: (i) how the pro-
posed decomposition approach performs in compari-
son with OAO and OAA decomposition approaches,
(ii) how “PropO” (proposed decomposition performed
while accounting only the possible non-outliers) com-
pares to Prop (proposed decomposition performed while
accounting for all samples), (iii) how FSVM compares with
C-SVM, and (iv) how the OAO, OAA and the proposed

(17)CD� = q�

√
l(l + 1)

6N

Table 5 Statistical analysis
to compare OAO, OAA and
proposed decomposition
method

Classifier Dataset Test error (in %) Ranks (lower error is better)

OAA OAO PropO OAA OAO PropO

C-SVM Iris 4.00 4.00 4.00 2 2 2
Glass 32.20 33.17 26.63 2 3 1
Vowel 43.51 33.33 35.50 3 1 2
Vehicle 15.72 14.42 14.31 3 2 1
Segment 8.95 8.81 9.29 2 1 3
Optical 1.22 2.06 1.61 1 3 2

FSVM-�hd_lin Iris 2.00 2.67 2.67 1 2.5 2.5
Glass 31.27 28.47 27.59 3 2 1
Vowel 43.51 33.12 35.93 3 1 2
Vehicle 14.90 15.25 15.01 1 3 2
Segment 8.71 8.24 9.10 2 1 3
Optical 1.22 1.95 1.56 1 3 2

FSVM-�hd_exp Iris 2.67 2.67 2.67 2 2 2
Glass 30.81 27.08 27.53 3 1 2
Vowel 43.29 33.33 35.93 3 1 2
Vehicle 14.78 15.13 14.42 2 3 1
Segment 8.52 8.19 9.14 2 1 3
Optical 1.28 1.95 1.56 1 3 2

FSVM-�ptset_lin Iris 2.67 3.33 3.33 1 2.5 2.5
Glass 31.28 29.42 27.10 3 2 1
Vowel 43.51 33.33 35.93 3 1 2
Vehicle 14.66 14.31 14.18 3 2 1
Segment 8.62 8.00 9.14 2 1 3
Optical 1.17 2.00 1.56 1 3 2

FSVM-�ptset_exp Iris 2.67 3.33 3.33 1 2.5 2.5
Glass 31.27 28.48 26.64 3 2 1
Vowel 43.51 33.33 35.93 3 1 2
Vehicle 14.42 14.54 14.66 1 2 3
Segment 8.57 8.24 9.14 2 1 3
Optical 1.22 2.00 1.56 1 3 2
Sum of Ranks 61 58.5 60.5
Average Rank 2.03 1.95 2.02

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6

decomposition approach compare against each other,
w.r.t. the number of nonzero support vectors in the trained
classifier.

For deciding how proposed decomposition approach
works in comparison with OAA and OAO, let us compare
and rank the classifier performances of OAA, OAO and
PropO, with each classifier, namely C-SVM, F-SVM with MF
�hd_lin , F-SVM with MF �hd_exp , F-SVM with MF �ptset_lin , and
F-SVM with MF �ptset_exp . The ranking for these decomposi-
tion methods, as observed with each dataset and classifier,
is shown in Table 5. The sum of all ranks for OAA, OAO and
PropO is 61, 58.5 and 60.5, respectively; this gives an aver-
age rank of 2.03, 1.95 and 2.02, respectively. Performing
the Friedman test, we get

As per [32], for l = 3 and N = 30 , the threshold required to
reject Null Hypothesis at � = 0.05 , is 7.81. Since �2

F
 is below

the threshold value, Null Hypothesis is true. With this, we
can infer that the proposed decomposition method pro-
vides comparable performance to those of OAA and OAO
decomposition methods, and none of the approaches can
be considered superior w.r.t. test classification scores.

For the next analysis, we shall compare the proposed
decomposition methods when: (1) applied on all samples,
Prop, and (2) applied only on the possible non-outliers,
PropO. Similar to the earlier analysis, we shall compare
the performances of Prop and PropO, with each clas-
sifier, namely C-SVM, F-SVM with MF �hd_lin , F-SVM with
MF �hd_exp , F-SVM with MF �ptset_lin , and F-SVM with MF
�ptset_exp . In this paper, including additional tables to
compare the performances and rank the methods like in
Table 5, would make the paper too long. For this reason,
without mentioning all details, we directly mention the
sum of all ranks, and the average ranks for each of the indi-
vidual methods.

The sum of ranks across N = 30 for Prop and PropO is 55
and 35, respectively; this gives us average ranks of 1.83
a n d 1 . 1 7 , r e s p e c t i v e l y . T h u s ,
�2
F
=

12 × 30

2 × 3
[1.832 + 1.672 − 4.5] = 13.2 . For l = 2 and

N = 30 , the threshold required at � = 0.05 to reject Null
Hypothesis is 5.99. Since the �2

F
 value is greater than the

desired threshold, Null Hypothesis is rejected. Now we
shall perform the BD post hoc test. q� for l = 2 and � = 0.05
is 1.96. Accordingly, the critical difference value would be

CD0.05 = 1.96 ×

√
2(2 + 1)

6 × 30
= 0.358 . The d i f ference

between the average ranks of PropO and Prop is
(1.83 − 1.17) = 0.66 , which is greater than CD0.05 . It can be
therefore statistically ascertained that PropO is better than
Prop, i.e., proposed decomposition method truly performs

�2
F
=

12 × 30

3(3 + 1)

[
2.032 + 1.952 + 2.022 −

3 × (3 + 1)2

4

]
= 0.114

better when the decomposition procedure is performed
only with the possible non-outliers. This is a very impor-
tant inference for us and indicates that the unsupervised
method for identifying possible outliers and possible non-
outliers, works pretty well. Furthermore, it indicates that
our hypothesis of using only possible non-outliers for the
decomposition process has been effective. In fact, other
heuristics-based decomposition techniques could also
benefit from this finding, and one could try using only the
possible non-outliers for the specific decomposition.

To compare the performance of FSVM with C-SVM, we
took the best performance of FSVM across all MFs, as
found for each dataset and each decomposition strategy
and compared them with the respective C-SVM perfor-
mance. Six datasets and four decomposition strategies
give us a total of N = 24 cases. Ranking the performance
of C-SVM and FSVM, we found the sum of ranks to be 45.5
and 26.5, respectively; this gives us average ranks of 1.896
and 1.104, respectively. Performing Friedman test, the �2

F

value is �2
F
=

12 × 24

2 × 3
[1.8962 + 1.1042 − 4.5] = 15.07 . We

know the threshold required for l = 2 at � = 0.05 to reject
Null Hypothesis is 5.99; hence, Null Hypothesis can be
rejected at � = 0.05 . To see if FSVM is statistically better
than C-SVM, we shall perform the BD post hoc test. q� for
l = 2 and � = 0.05 is 1.96. Accordingly, the critical differ-

ence value would be CD0.05 = 1.96 ×

√
2(2 + 1)

6 × 24
≈ 0.4 . The

difference between the average ranks of C-SVM and F-SVM
is (1.896 − 1.104) = 0.892 , which is greater than CD0.05 . We
can therefore statistically ascertain with � = 0.05 that
FSVM, with the tested MFs, gives better performance than
C-SVM. It may be noted that this inference is in line with
the conclusion mentioned in [30].

Finally, we compare the average number of nonzero
support vectors required by the SVM classifier when
trained with each decomposition methods, before deter-
mining the class of a sample. This statistical analysis would
be very similar to the analysis performed in Table 5 of this
paper; the only difference is that we would compare the
number of nonzero support vectors mentioned in Table 3
for OAA, OAO and PropO methods. Ranking the methods
for N = 30 cases, we find the sum of ranks for OAA, OAO
and PropO to be 73, 77 and 30, respectively, which give the
average ranks of 2.43, 2.57 and 1.0, respectively. Perform-
i n g t h e F r i e d m a n t e s t , w e g e t
�2
F
=

12 × 30

3 × 4
[2.432 + 2.572 + 12 − 12] = 45 . The threshold

required for l = 3 and � = 0.05 is 7.81. Since the �2
F
 value is

greater than the threshold, Null Hypothesis can be
rejected. q� for l = 3 and � = 0.05 is 2.343. On performing
the BD post hoc, we arrive at a critical difference value of

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6 Research Article

CD0.05 = 2.343 ×

√
3(3 + 1)

6 × 30
≈ 0.61 . Th e d i f fe re n ce

between the average rank of PropO and OAA is 1.43, and
difference between PropO and OAO is 1.57. From the BD
test, we can statistically ascertain with � = 0.05 that PropO
provides fewer nonzero support vectors than both OAO
and OAA.

This is another very important inference. As mentioned
in Eq. (15), it has direct implication on the computational
complexity during test phase of the classifier. We can
therefore expect that the proposed decomposition tech-
nique is quicker in execution during test phase. It should
be noted that the quicker test execution is achievable with
the proposed decomposition technique, while ensuring a
classification performance which is comparable to that of
OAA and OAO (as learned from the first statistical analysis).
Interestingly, we also see that PropO, in 27 of N = 30 cases,
has an equal/fewer number of nonzero support vectors
than Prop decomposition.

A non-conclusive observation which is relevant for the
tested datasets, is that except for the ‘Optical’ dataset, the
total execution time for training and testing together is
always lowest in the case of proposed decomposition
approach. In the case of ‘Optical’ dataset, the execution
time for train and test is best with ‘OAO’ approach, and
second best with ‘PropO’ approach. To understand this
point, let us compare the training time complexity for
different decomposition algorithms. The worst case time
complexity for training a binary kernel SVM classifier with
n data samples is O(n3) , and the average time complexity
is O(n2) [28]. Consider a case where we have n samples
which are equally divided amongst k classes. In the case
of OAA decomposition method, all n samples take part
in forming k classifiers (one for each class). Therefore, the
training time complexity for OAA would be O(kn2) . In the
case of OAO, with all classes having an equal number of
samples (we stated this assumption while defining the
case) of n

k
 , a total of 2n

k
 samples will take part to generate

a single SVM classifier. Further, OAO requires k(k−1)
2

 such
classifiers. Therefore, the time complexity for training SVM
with OAO decomposition method would be

Now let us consider the case of proposed decomposition
method which leads to a balanced binary tree (say a com-
plete balanced binary tree). For the first/root node, all n
samples would take part in training a single SVM classifier,

O

((
2n

k

)2

∗
k(k − 1)

2

)

⇒ O

(
4n2

k2
∗
k2 − k)

2

)

⇒ O
(
2n2

(
1 −

1

k

))

which requires O(n2) operations on average. In the second
level, two binary classifiers would be trained with n

2
 sam-

ples each. Similarly, for each lower tth level, 2t−1 classifiers
would be trained with n

2t−1
 samples each. This leads us to

the following

In the above time complexity for proposed decomposition
method, if we even include the time complexity for com-
puting the Hausdorff distance between individual classes,
then total time complexity would turn out to be

Further, if we consider the time complexity of identifying
possible outliers and non-outliers from each class, the addi-
tional time complexity based on [30] would be O(2n log 2n

k
) ,

which is negligible compared to O
(
2n2

(
1 −

1

k

))
 . It may be

observed from Table 4 that while the time complexity of
proposed decomposition method is similar to that of OAO,
in reality, it is observed that proposed decomposition
method takes lesser time to train and test for smaller sized
datasets. This is expected because the constant time opera-
tions required during training of each binary SVM classifier,
would play a big role for smaller sized datasets. OAO has
many more binary SVM classifiers to be trained than the
proposed decomposition method; thus, OAO ends up tak-
ing larger execution time in smaller sized datasets.

To compare the proposed approach with other directed
binary tree decomposition methods, our results with

O

(
n2 + 2 ∗

(
n

2

)2

+ ⋮ +2log2 k−1 ∗
(

n

2log2 k−1

)2
)

⇒ O
(
n2
(
1 +

1

2
+ ⋮ +

1

2log2 k−1

))

⇒ O

(
n2

(
1 − (

1

2
)log2 k

1 −
1

2

))

⇒ O
(
2n2

(
1 −

1

k

))

O
(
2n2

(
1 −

1

k

))
+ O

((
2n

k
log

2n

k

)
∗
k(k − 1)

2

)

⇒ O
(
2n2

(
1 −

1

k

))
+ O

(
n(k − 1) log

2n

k

)

≈ O
(
2n2

(
1 −

1

k

))
, when k << n

Table 6 Comparing directed binary tree decomposition methods
(in %)

Datasets Pro-
posed
method

Method 1
centroid
distance

Method 2
balanced
subsets

Method
3 scatter
measure

Sat. image 91.80 90.90 91.90 91.80
Optical 98.39 96.50 96.90 96.20

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6

C-SVM have been compared with those presented in Lor-
ena et al.’s paper [19] (which followed a similar experimen-
tation procedure). The comparison is presented in Table 6.
Looking at the table, it seems that the proposed method
provides either comparable or superior performance to
that of the methods presented in [19]. Further, an added
advantage of the proposed approach is that it assures a
balanced binary tree-like decomposition structure, which
leads to faster execution speed during testing.

4.1 Limitations and possible future work

This paper proposed a method which decomposes a
multi-class classification problem to binary classification
problems with balanced binary search tree structure, and
we found that it execute quickly during testing. Arguably,
there are multiple ways to decompose the multi-class clas-
sification problem to a balanced binary search tree-like
structure, and this paper is limited to describing and test-
ing only one heuristic-based method. An important future
work would be to explore other heuristic-based decom-
position methods, which ensure a balanced binary search
tree structure, and statistically find which method does
best. Another limitation of the proposed method is that
optimizing the hyper-parameters of FSVM during classifier
training, can be computationally very expensive. Hence, an
important avenue for future research would be to develop
heuristic-based methods that can quickly (i.e., in fewer iter-
ations) bring out a reasonable set of hyper-parameters for
classifier training. It is known from the literature [12] that
the 0-1 loss function, the sigmoid loss function and the
ramp loss function can provide good robustness to class
noise; accordingly, in the future, it would be a good idea
to compare the multi-class classification performance over
noisy data, with SVM trained over the different loss func-
tions and that with FSVM.

5 Conclusions

This paper extended our recently proposed Hausdorff
distance-based decomposition algorithm, by studying the
effect of excluding possible non-outliers during decompo-
sition process and/or using fuzzy SVM as the binary clas-
sifier. Two studies on use of outlier detection techniques
in this scenario were made while keeping class noise into
consideration. The first study compared the performance
of proposed decomposition approach, when performing
the decomposition procedure on: (1) all data and (2) only
the possible non-outliers. A second study compared the
multiclass classification performances of the decomposi-
tion approaches, while using C-SVM or FSVM as the binary

classifier. The objective of both studies was to see if there
is an improvement in overall classification performance
when effect of class noise is reduced with outlier detection
techniques. The study concluded that proposed approach
statistically performs better when only possible non-outli-
ers were considered while deriving the decomposition. The
study also indicated that the unsupervised method used for
identifying possible outliers and possible non-outliers, works
well. The study then suggested that other decomposition
techniques, which use heuristics to determine the decom-
position structure, can benefit from this finding, and that
they could try using only the possible non-outliers for the
learning of decomposition structure. The conclusion from
the second study conformed with our earlier paper, which
mentioned that FSVM with appropriate MFs can provide sta-
tistically better classification results than C-SVM.

The proposed decomposition approach was elaborately
evaluated and compared with the OAO and OAA decom-
position methods. Inferring from the results, the proposed
approach statistically required fewer nonzero support vec-
tors to ascertain the class during testing, and comparable
performance, to those of OAA and OAO. As expected theo-
retically, testing speed of the proposed method was empiri-
cally observed to be faster than OAO and OAA methods for
all tested datasets. Theoretically speaking, execution time for
training SVMs with OAO is expected to be lower than that of
the proposed approach. However, during our experiments,
it was found that for most datasets, combined training and
testing time with SVMs using proposed approach is lesser
than that with the OAO method. This is because OAO has
more number of classifiers, and more number of constant
time operations to perform, which especially matter for
smaller sized training data. The proposed approaches have
an added advantage that there is zero ambiguity during final
class assignment, i.e., without shadow region. Possible future
work could include the use of hierarchical clustering tech-
niques on individual classes w.r.t. the Hausdorff distances
between them, for deriving the binary tree decomposition.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Research involving human participants and/or animals This article
does not contain any studies with human participants or animals
performed by any of the authors.

Informed consent This article does not contain any studies with
human participants.

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1130 | https://doi.org/10.1007/s42452-020-2853-6 Research Article

References

 1. Allwein EL, Schapire RE, Singer Y (2000) Reducing multiclass to
binary: a unifying approach for margin classifiers. J Mach Learn
Res 1(DEc):113–141

 2. Batuwita R, Palade V (2010) FSVM-CIL: fuzzy support vector
machines for class imbalance learning. IEEE Trans Fuzzy Syst
18(3):558–571

 3. Breunig MM, Kriegel HP, Ng RT, Sander J (1999) Optics-of: identi-
fying local outliers. In: Principles of data mining and knowledge
discovery, Springer, pp 262–270

 4. Breunig MM, Kriegel HP, Ng RT, Sander J (2000) LOF: identify-
ing density-based local outliers. ACM SIGMOD Record, ACM
29:93–104

 5. Chen J, Wang C, Wang R (2008) Combining support vector
machines with a pairwise decision tree. IEEE Geosci Remote
Sens Lett 5(3):409–413

 6. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn
20(3):273–297

 7. Crammer K, Singer Y (2002) On the learnability and design
of output codes for multiclass problems. Mach Learn
47(2–3):201–233

 8. Demsar J (2006) Statistical comparisons of classifiers over mul-
tiple data sets. J Mach Learn Res 7:1–30

 9. Dietterich TG, Bakiri G (1995) Solving multiclass learning
problems via error-correcting output codes. J Artif Intell Res
2:263–286

 10. Dua D, Graff C (2019) UCI machine learning repository http://
archi ve.ics.uci.edu/ml. University of California, School of Infor-
mation and Computer Science, Irvine, CA

 11. Ester M, Kriegel HP, Sander J, Xu X (1996) A density based algo-
rithm for discovering clusters in large spatial databases with
noise. In: Proceedings of international conference on knowledge
discovery and data mining (KDD’96), pp 226–231

 12. Ghosh A, Manwani N, Sastry PS (2015) Making risk minimization
tolerant to label noise. Neurocomputing 160:93–107

 13. Henrikson J (1999) Completeness and total boundedness of the
hausdorff metric. MIT Undergrad J Math 1:69–80

 14. Hsu CW, Lin CJ (2002) A comparison of methods for multiclass
support vector machines. IEEE Trans Neural Netw 13(2):415–425

 15. Kijsirikul B, Ussivakul N (2002) Multiclass support vector
machines using adaptive directed acyclic graph. In: Proceedings
of the 2002 international joint conference on neural networks,
2002. IJCNN’02. IEEE, vol 1, pp 980–985

 16. Lei H, Govindaraju V (2005) Half-against-half multi-class support
vector machines. In: International workshop on multiple classi-
fier systems. Springer, pp 156–164

 17. Lin CF, Wang SD (2002) Fuzzy support vector machines. IEEE
Trans Neural Netw 13(2):464–471

 18. Liu B, Hao Z, Tsang ECC (2008) Nesting one-against-one algo-
rithm based on SVMs for pattern classification. IEEE Trans Neural
Netw 19(12):2044–2052

 19. Lorena AC, de Carvalho AC (2005) Minimum spanning trees in
hierarchical multiclass support vector machines generation.
In: International conference on industrial engineering and
other applications of applied intelligent systems. Springer, pp
422–431

 20. Lorena AC, De Carvalho AC, Gama JMP (2008) A review on the
combination of binary classifiers in multiclass problems. Artif
Intell Rev 30(1–4):19

 21. Perdisci R, Gu G, Lee W (2006) Using an ensemble of one-class
svm classifiers to harden payload-based anomaly detection
systems. In: IEEE sixth international conference on data mining
(ICDM’06), pp 488–498

 22. Pimenta E, Gama J (2005) A study on error correcting output
codes. In: Portuguese conference on artificial intelligence, 2005.
epia 2005. IEEE, pp 218–223

 23. Platt JC, Cristianini N, Shawe-Taylor J (2000) Large margin dags
for multiclass classification. In: Advances in neural information
processing systems, pp 547–553

 24. Pujol O, Radeva P, Vitria J (2006) Discriminant ECOC: a heu-
ristic method for application dependent design of error cor-
recting output codes. IEEE Trans Pattern Anal Mach Intell
28(6):1007–1012

 25. Scharf L (2003) Computing the Hausdorff distance between sets
of curves

 26. Scholkopf B, Mika S, Burges CJ, Knirsch P, Muller KR, Ratsch G,
Smola AJ (1999) Input space versus feature space in kernel-
based methods. IEEE Trans Neur Netw 10(5):1000–1017

 27. Schwenker F (2000) Hierarchical support vector machines for
multi-class pattern recognition. In: Proceedings of Fourth inter-
national conference on knowledge-based intelligent engineer-
ing systems and allied technologies. vol 2, IEEE, pp 561–565

 28. Sevakula RK, Verma NK (2012) Support vector machine for large
databases as classifier. In: International conference on swarm,
evolutionary, and memetic computing. Springer, pp 303–313

 29. Sevakula RK, Verma NK (2017) Assessing generalization ability
of majority vote point classifiers. IEEE Trans Neural Netw Learn
Syst 28(12):2985–2997

 30. Sevakula RK, Verma NK (2017) Compounding general purpose
membership functions for fuzzy support vector machine under
noisy environment. IEEE Trans Fuzzy Syst 25(6):1446–1459

 31. Sevakula RK, Verma NK (2017) Hausdorff distance based binary
search tree multiclass decomposition algorithm. In: 2017 lntel-
ligence, Springer, pp 239–249

 32. Sheskin DJ (2003) Handbook parametric nonparametric statisti-
cal procedures. CRC Press, Boca Raton

 33. Takahashi F, Abe S (2002) Decision-tree-based multiclass sup-
port vector machines. In: Proceedings of the 9th international
conference on neural information processing, 2002. ICONIP’02.
vol 3, IEEE, pp 1418–1422

 34. Vapnik VN (1999) An overview of statistical learning theory. IEEE
Trans Neural Netw 10(5):988–999

 35. Vural V, Dy JG (2004) A hierarchical method for multi-class sup-
port vector machines. In: Proceedings of the twenty-first inter-
national conference on machine learning. ACM, p 105

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Balanced binary search tree multiclass decomposition method with possible non-outliers
	Abstract
	1 Introduction
	2 Hausdorff distance
	2.1 Distance between a non-empty set and a point

	3 Proposed method
	3.1 Identifying the possible outliers
	3.2 When possible outliers do not take part in the decomposition algorithm
	3.3 Accounting possible outliers within binary classification

	4 Case study and results
	4.1 Limitations and possible future work

	5 Conclusions
	References

