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Abstract
Adhesive-bonded joints made up of composite materials offer complex structures with the ease of joining similar or dis-
similar materials. The failure behavior of adhesive-bonded joints is influenced largely by geometrical parameters (overlap 
length and adhesive thickness) and adherend surface preparations. The glass fiber-reinforced epoxy composites are 
prepared for single-lap adhesive joints to know their strength with different sets of geometrical factors. The adherend 
surfaces of composites are roughened to 2 ± 0.1 µm, prior to joint preparation. Taguchi  L9 experimental matrix represent-
ing different combinations of overlap length and adhesive thickness is employed to know the behavior of failure load 
(FL) and shear strengths (SS) of the adhesive-bonded single-lap composite joints. The results showed that the impact of 
overlap length of adhesive-bonded joints is more compared to that of adhesive thickness. The interaction effects of geo-
metrical parameters are found negligible toward both the outputs. The optimal factor levels received the highest load to 
fracture; the joints are found equal to 6096.1 N for FL and 80 MPa for SS, respectively. The empirical relationship based on 
multiple linear regression (MLR) equations is derived for both the failure load and shear strength. Levenberg–Marquardt 
algorithm-trained neural networks (NNs) are used for the prediction of both responses. Ten experimental cases are used 
to check the prediction capabilities of both MLR and NNs. The mean absolute percent error in prediction of both the 
responses is found equal to 2.27% for NNs and 3.12% for MLR. The NNs and MLR results in accurate prediction might 
be due to the model development process based on experimental input–output data, rather than assumption-based 
theoretical and numerical methods.

Keywords Adhesive bonding · Single-lap composite joint · Failure load · Shear strength · Taguchi method · Artificial 
neural networks

1 Introduction

Adhesive-bonded joints are widely accepted as poten-
tial substitute to mechanical joints in modern industries 
(marine, oil, sports, packaging, automotive, electronics, 

aeronautical, construction and so on) for different appli-
cations [1, 2]. The adhesive-bonded joint offers significant 
technical advantages over conventional joining methods, 
namely ease of fabrication, uniform stress distribution, 
design flexibility, reduced structure weight, economical, 
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better fatigue resistance, damage tolerance, excellent 
surface contours and high strength-to-weight ratio [1–3]. 
Adhesive-bonded composite joints for structural parts are 
increasingly used in most of the aforementioned appli-
cations from the past two decades [1, 4]. In recent years, 
researchers all around the globe pay much attention to 
replace the metal parts with the adhesive-bonded fiber-
reinforced composite joints [3, 5–7]. High specific strength, 
corrosion resistance, uniform stress distribution, light 
weight, economical and greater design flexibility charac-
teristics make the potential candidate for replacing the 
metal parts [3, 6]. The significant benefits of adhesive-
bonded joints must be balanced with their associated 
drawbacks during assembly task [8]. Mechanical joints (i.e., 
bolts, rivets and fasteners) used in composite structures for 
assembly operations enable breaking of reinforcing fibers 
while making a hole. This results in higher stress concen-
tration around the fastener holes which leads to creation 
of either micro- or macro-damages at the composite lami-
nate and often weakens the strength of the whole struc-
ture [3, 8]. Therefore, significant attention is required to 
study and analyze the failure mechanisms of adhesively 
bonded composite joints with a focus on damage control.

Critical analysis of interlaminar bonding strength and 
detailed insight of mechanics of composite laminates are 
essential for damage control of adhesive-bonded joints 
[9]. Till date, classical engineering experimental approach 
(i.e., varying one factor at once and keeping rest at fixed 
values) and analytical and numerical modeling studies are 
carried out for the analysis of failure mechanisms of lami-
nates [10–20]. Determining solutions with analytical meth-
ods are often difficult due to the requirement of incorpo-
ration of material nonlinearity and geometry in analysis 
[12]. Although mechanical tests can be conducted for 
such cases and stresses can be estimated, which is often 
expensive and time-consuming due to many influencing 
parameters [12], numerical methods such as finite ele-
ment analysis FEA can estimate the stresses of any com-
plex geometry subjected to tensile load [12]. The effects 
of adhesive thickness, adherend widths and thickness and 
scarf angles were studied to know the stress distributions 
in scarf adhesive single-lap joints using numerical finite 
element methods [13–15]. However, numerical methods 
often analyze and determine solutions based on many 
assumptions which are impractical to attain in real exper-
iments. The following few assumptions are discussed in 
estimating the solutions, viz., finite element analysis such 
as [21, 22], (1) adhesives behave pure shear state during 
shear loading (in practical, the adhesive behaves linear at 
the joint or thickness of adhesives and nonlinear at the lap 
ends). (2) Maximum adhesive peel stress is also influenced 
with the assumptions considered such as plane stress or 
plain strain analysis with or without considering the shear 

deformation of adherends and so on. Therefore, experi-
mental analysis is more reliant to offer precise analysis and 
gives detailed insight of failure mechanisms by limiting the 
models that rely on assumptions. Classical experimental 
approaches are used to know the performances of bonded 
structure of composites by considering different variables 
such as geometrical parameters (fillet, adhesive thick-
ness, overlap length, ply angle, etc.), materials (adhesive 
and adherend types, and properties), surface treatment, 
environment (temperature and humidity), loading rate, 
bonding methods and so on [1, 17, 18, 22–25]. The major 
disadvantages of classical experimental approaches are 
[26, 27] (1) increase in influencing variables increases the 
number of experiments (i.e., large experimental trials are 
essential with increase in control variables). (2) Fail to esti-
mate the interaction factor effects and their contribution 
toward output. (3) Generates sub-optimal solutions. (4) 
Time-consuming approach, each parameter is analyzed 
individually. (5) This approach does not derive empirical 
relations, and hence, predictions cannot be possible. To 
limit the said disadvantages of above methods, the multi-
variate statistical methods are of paramount importance 
for precise analysis and perform optimization.

Design of experiments (DOE) is a statistical technique, 
wherein the multiple variables are studied simultaneously 
by conducting minimum experiments which offer precise 
analysis and derive optimal solutions [27, 28]. Taguchi-
based design of experiments is used to study the influ-
ence of composite–adhesive interfacial adhesion and the 
adhesive strength on the performance of carbon fiber-
reinforced composite joint strength [29]. Taguchi experi-
mental design is used to study the variables (adhesive 
toughness and thickness, overlap length, surface prepa-
ration and adherend thickness) on the performances of 
single-lap joint made up of carbon steel [30]. However, the 
derived predictive equation resulted in a maximum error 
of 56.2% and greater than 20% error for more than five 
experiments (out of 12). This error might be due to the out-
put data of failure load collected partly from the finite ele-
ment analysis rather than experiments. Adhesive thickness 
resulted in significant influence on the fracture behavior 
subjected to loading [31]. The effect of adhesive thickness 
and adhesive types on the single-lap joints are studied 
using the Taguchi method [32]. High-strength steel is used 
as adherend material, and FEA analysis is used to detail 
the insight of lap shear strength. The numerical method 
offers approximate solutions but requires complex math-
ematical computations and often difficult to implement 
and interpret the obtained results by engineers work-
ing in industries. The Taguchi method is an excellent tool 
which can be applied by practice engineers (as it solves 
the problem with simple computational steps) to analyze 
and determine the optimal levels for a process. However, 
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the Taguchi method fails to perform prediction (for both 
single and multiple outputs) without the requirement of 
practical experiments. Industry personnel are more inter-
ested to develop the tools such that the predictions can 
be done for multiple outputs with simple steps at reduced 
computation time, effort and cost.

In recent times, the use of artificial neural networks 
(ANNs) for prediction of output values has increased 
in research. The experimental works are costlier, time 
dependent and involves complexity in understanding 
the response behavior. In order to overcome these experi-
mental difficulties, researchers use various modeling tech-
niques. ANNs is one of the most widely used modeling 
techniques for predictions. ANNs learn from experimental 
data possessing inherent characteristics with good gen-
eralization capabilities to handle nonlinear behavior of 
data patterns [33]. ANNs are used to develop mathemati-
cal models that could predict the wear behavior of carbon 
fiber-reinforced epoxy composites [34]. Levenberg–Mar-
quardt (LM) algorithm showed better wear prediction 
compared to other seven variants of backpropagation 
algorithms [34]. ANNs predict the failure load of pultruded 
composite samples for the set of bonding angle, patching 
type and patching structure [35]. It is important to note 
that LM algorithm of ANNs outperformed other six algo-
rithms in predicting the failure load of composites. ANNs 
and multiple linear regression (MLR) models are used to 
predict the bonding strength of wood for the set of mois-
ture content and assembly time both open and close 
before the joint preparation [36]. ANNs predict the wood 
bonding strength of the joints better than the MLR model. 
Failure load corresponds to single-lap adhesive joints (i.e., 
adherend: aluminum alloy and adhesive: DP460) is pre-
dicted by varying two variables overlap length and width 
of adherend using ANNs trained with LM algorithm [37]. 
Note that, although the output data collected with neural 
networks are capable to predict close to the target val-
ues. From the above literature, ANNs with LM algorithm is 
capable to predict the outputs with good accuracy corre-
sponding to target (i.e., experimental) values. In addition, 
not much experimental studies are carried out to study the 
factor effects on the strength of the glass fiber-reinforced 
composites of adhesive-bonded SLJs.

The present research work is carried out to experimen-
tally study the effects of two input factors, namely adhe-
sive thickness and overlap length on the performance of 
shear strength and failure of adhesive-bonded SLJs. Tagu-
chi experimental design is used not only to limit the con-
duction of the large number of practical experiments, but 
also to perform statistical analysis (i.e., to determine factor 
effects and optimal levels for shear strength and failure 
load). Multiple linear regression equations are derived for 
both the responses (FL and SS) expressed as mathematical 

function of input variables. ANNs trained with LM algo-
rithm are employed to predict the multiple outputs for the 
different combinations of adhesive thickness and overlap 
length. The practicality of usefulness of the developed 
models (ANNs and Taguchi methods) for adhesive-bonded 
SLJs is discussed in detail. The frame work of the proposed 
research work of modeling, and analysis and prediction of 
adhesive-bonded joint strength are shown in Fig. 1.

2  Selection of factors, materials 
and experimentation

2.1  Selection of factors influencing 
the performance of bonded joints

The strength of the bonded joints or structure is depend-
ent on the appropriate choice of the parameters such as 
adhesive thickness, overlap length, adherend thickness 
and surface preparation [1, 2]. Surface preparation of com-
posites is paramount importance and is carried out with 
150-grit sand paper that could help to roughen the surface 
and allow the mixture (gel composed of epoxy resin and 
hardener) to penetrate deeply into the crevices and pores. 
The cavities thus formed on the composites during rough-
ening provide a larger surface area, wherein the gel mix-
ture goes deeply inside the adherends (top and bottom) 
and enable strong chemical reaction that increases the 
strength of adhesive-bonded joints. The surface roughness 
of the adherends should not be too high, as it weakens 
the adherend strengths, since increased surface roughness 
weakens the interlaminar bonding forces. Therefore, for 
the present work the surface roughness of the adherends 
is maintained to a fixed average value of 2 ± 0.1 µm. The 
adhesive joint strengths are proportional to the overlap 
length [25]. Increased values of overlap length make the 
composite stiffer, but beyond the critical value the joint 
strength remains unaltered or even few times drops [11, 
38]. True overlap length is dependent on adhesive thick-
ness for the particular adherends [38]. Increased values 
of adhesive thickness result in thick bonding lines which 
create more defects in the form of voids and micro-cracks 
[1, 2, 18]. The joint strength is influenced mainly by many 
parameters, and appropriate choice of parameters could 
result in strong joint [29, 30]. The operating levels of over-
lap length and the adhesive thickness are selected after 
conducting some pilot experiments and consulting litera-
tures [11, 12, 18, 20, 29, 30].

2.2  Materials and fabrication

The hand layup method is used to prepare the glass fiber 
epoxy composite. 250 GSM E-glass fiber is used as the 
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Fig. 1  Framework adopted for modeling, analysis and prediction of adhesive-bonded joint strength
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reinforcement material for preparing composites which 
possess a density of 2.48 g/cm3 supplied by Mactech 
India Pvt. Ltd, Bengaluru. Epoxy resin [i.e., LAPOX L-12 
(3202)] is used as a matrix material to prepare the com-
posites. Triethylenetetramine (K-6) hardener possessing 
a density of 954 kg/m3 supplied by Atul India Pvt. Ltd 
is used. Note that, curing has been carried out at room 
temperature. The viscosity of the hardener is less than 
that of the epoxy resin. The epoxy resin-to-hardener 

ratio is maintained at 10:1 during composite preparation. 
The gel time of a mixture (hardener and epoxy resin) is 
allowed for 20 min for proper mixing. Thus, the prepared 
composite laminates are hard pressed to squeeze out the 
excess mixture and allowed to set for a period of 24 h. 
The glass fabric–reinforced epoxy composite panels are 
prepared for a dimension (width × breadth × thickness: 
300 × 300 × 3 mm) with the help of hand layup process.

Fig. 2  a Single-lap joint specimen geometry, b SLJs with uniform adhesive thickness maintained by steel plates
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2.3  Specimen preparation

After the composite materials are cured, the specimens 
for tensile testing are cut by a diamond-tipped cutter to 
attain the desired dimensions according to ASTM D5868 
(refer Fig. 2). The samples are cleaned with acetone to 
remove the traces of oil or grease, present if any. The 
150-grit sand paper is used to prepare the surface of a 
composite for the desired surface roughness. Later, the 
inner- and outer-adherend regions of a joint are covered 
with adhesive mixture (i.e., epoxy resin and hardener). 
The present work aims at studying the shear strength 
and failure load behavior of the specimens prepared 
with three different overlap lengths (15, 25 and 35 mm) 
and adhesive thickness (0.2, 0.3 and 0.5 mm). In order to 
maintain the desired dimensions of an adhesive thick-
ness, the steel plate with (0.2, 0.3 and 0.5 mm) is posi-
tioned between the adherends placed at the edges of 
composites. In order to spread the adhesive uniformly 
across the bonding area, the two adherends are gently 
pressed that will help to obtain the desired dimension by 
squeezing out the excess adhesives. Then, the joints are 
allowed to cure at room temperature about 2 h.

2.4  Tensile test on joint

The specimen for strength testing has been prepared 
according to ASTM D5868, and the testing has been car-
ried out using universal testing machine (UTM) Instron 
3366 of 1 Ton capacity. The specimens are held between 
the grippers while testing the strength using UTM. The 
grippers are connected to both movable and fixed arms 
of the testing device. During testing, the grippers are 
aligned effectively with the load assigned. The tensile 
loading test was performed at the controlled rate of 
13 mm/min for each of the joints, as per the ASTM stand-
ard D5868 for testing of FRP-bonded joints. As reported 
by many researchers, rate of loading will also influence 
the load bearing capacity of the joint. In the experimen-
tal trials, the specimen elongates parallel to the direc-
tion of applied load. The load is utilized by effectively 
gripping reverse ends of the specimen as well as paral-
leling it aside. Failure load as well as deflection of the 
specimens is determined by pulling the specimens at 
their ends. The failure position is of great interest, and it 
is normally called the breaking load or failure load.

3  The Taguchi procedure

Dr. Genechi Taguchi introduced the parametric design 
concept for the design of parameter levels and to 
develop the correlations toward excellence in character-
istics with least variations. The Taguchi method not only 
minimizes the experimental trials, but also details the 
insight of influencing variables on different responses. 
Compared to classical engineering experimental 
approach, The Taguchi method reveals precisely the 
interplay between the parameters on the responses. In 
this study, there are two factors operating at three levels, 
which influence the strength of adhesively bonded com-
posite joints, and hence,  L9 orthogonal array experimen-
tal trials are used for planning the experiments, analysis 
and determine optimal levels for a process. Table 1 pro-
vides the details of input variables (adhesive thickness 
and overlap length) and their operating levels. Table 2 
shows the experimental design of  L9 orthogonal array.

Table 1  Influencing factors and levels of adhesive bonding process

Symbols Factors Levels

Low (1) Medium (2) High (3)

A Overlap length (mm) 15 25 35
B Adhesive thickness 

(mm)
0.2 0.3 0.5

Table 2  L9 orthogonal array of input–output details of adhesive-
bonded SLJs

Exp. trial Input factors Output variables

Overlap 
length 
(mm)

Adhesive 
thickness 
(mm)

Failure load (N) Shear 
strength 
(MPa)

1 15 0.2 3250.20 42.654
2 15 0.3 2879.80 37.793
3 15 0.5 2250.60 29.535
4 25 0.2 5473.97 71.837
5 25 0.3 3593.40 47.157
6 25 0.5 2293.45 30.097
7 35 0.2 6096.10 80.001
8 35 0.3 5813.16 76.288
9 35 0.5 4036.88 52.965
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4  ANN approach

Neural networks (NN) are the simplified models of net-
work of neurons which are naturally available in our 
biological nervous system (i.e., animal brain). Neural 
networks contain the large number of interconnected 
assemblies of processing element referred as neurons. 
The human brain consists of  1011 neurons, wherein each 
neuron can connect up to 20 × 104 neurons and approxi-
mately  103 to  104 connections are available. The neu-
rons are arranged in a connected pattern with weights to 
form a layer, which refers to network architecture. In neu-
ral networks, the weights act as a connecting strength 
which carries the information about the input signal [33]. 
The performance of neural networks is dependent on 
the appropriate choice of hidden neurons and training 
the algorithm employed [39–43].

4.1  Levenberg–Marquardt algorithm

Kenneth Levenberg and Donald Marquardt are cred-
ited for the development of LM algorithm [44]. LM 
algorithm was developed to limit the disadvantages of 
error-backpropagation algorithm, namely slow conver-
gence and getting trapped at local solutions. Note that, 
error-backpropagation algorithm possesses excellent 
generalization capability from the data patterns during 
network training. Gaussian–Newton method speeds 
up the training process when error-backpropagation 
algorithm trapped at local minima. LM algorithm com-
bines the desirable features of error-backpropagation 
algorithm and Gauss–Newton method that offers fast 
and stable convergence. Training with LM algorithm 
uses error-backpropagation algorithm where solutions 
are searched at large area till they get trapped at local 
minima and switch to Gauss–Newton method, wherein 
it helps to jump from local minima and speed up the 
training process toward faster convergence.

LM algorithm training includes the following steps,

Step 1 Calculation of Jacobian Matrix.
Step 2 Design the training process.

The steps involved in calculation of Jacobian matrix 
include both forward and backward computations [44],

Forward pass computation involves:

1. Determine the net values ( net1
j
 ), slope ( S1

j
 ) and network 

outputs ( Y1
j
 ) of all the neurons lying in the input (i.e., 

first) layer [refer Eqs. (1)–(3)]. 

  Terms f 1
j
 refer to the transfer or activation function 

of jth neuron, net1
j
 be the sum of weighted input units 

of neuron j, W1
j, i

 be the weighted ith input unit of neu-
ron j, W1

j, o
 refers to bias weight of the neuron j, Ii cor-

responds to network inputs and j refers to the index 
neurons lying in the first layer.

2. The neurons output of input layer is treated as the 
inputs of all neurons lying in the hidden (i.e., second) 
layer. The calculations correspond to second-layer 
neurons of net values, slopes and network outputs 
are done using Eqs. (4)–(6). 

3. The output (third) layer of the net values, slopes and 
outputs is computed with the outputs of the second-
layer neurons using Eqs. (7)–(9). 

  The backward pass computation is performed with 
the results of forward pass calculations to update and 
optimize the network weights that could result in 
minimum error.

4. Determine network error (i.e., difference of neural 
network predictions of forward pass calculation and 

(1)net1
j
=

ni
∑

i = 1

Ii W
1
j, i
+W1

j, o

(2)Y1
j
= f 1

j

(

net1
j

)

(3)S1
j
=

�f 1
j

�net1
j

(4)net2
j
=

n1
∑

i = 1

Y1
i
W2

j, i
+W2

j, o

(5)Y2
j
= f 2

j

(

net2
j

)

(6)S2
j
=

�f 2
j

�net2
j

(7)net3
j
=

n2
∑

i = 1

Y2
i
W3

j, i
+W3

j, o

(8)Oj = f 3
j

(

net3
j

)

(9)S3
j
=

�f 3
j

�net3
j
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target values) at output j and initial slope of output j 
(refer Eq. 10). 

5. To update weights, backpropagate δ from the output 
layer inputs to the outputs of the hidden layer (refer 
Eq. 13). 

  Term, k, refers to the index of neurons lying in the 
hidden layer from 1 to n2.

6. To update the slope, backpropagate δ from the out-
puts to inputs of the hidden layer (refer Eq. 14). 

7. To update slope, backpropagate δ from the inputs of 
the hidden layer to input of input layer outputs (refer 
Eq. 15). 

  Term k refers to the index of neurons lying in the 
hidden layer, from 1 to n1.

  Step 4–7 is repeated for computation of other out-
puts.

8. The Jacobian Matrix (J) is obtained by calculating the 
forward and backward computation which generates 
the array of whole δ and y matrix for the given inputs.

4.2  Training process design

The training process is designed with the defined rule of LM 
algorithm, and the computation of Jacobian matrix is carried 
out using Eq. (16). During training, if the resulted error of 
the current iteration is smaller than the previous error, then 
it works with quadratic approximation and the μ (i.e., com-
bination coefficient) value could be changed to low values 
that reduce the effect of the gradient descent method (error-
backpropagation). Contrary, if current iteration resulted in 
higher error values than the previous one, then it follows the 
error-backpropagation algorithm till to obtain the appro-
priate curvature for quadratic approximation and for this 
situation, μ should be increased. Note that, if µ value is very 
small (say near to zero) then the Gauss–Newton method is 

(10)
Error (e) = target output − network output = dj − Oj

(11)�3
j,j
= Self-backpropagation = S3

j

(12)

�3
j, k

= Backpropagation

from other neurons lying in

the output layer = 0

(13)�2
j, k

= W3
j, k

× �3
j, k

(14)�2
j, k

= �2
j, k

× S2
k

(15)�1
j, k

= �1
j, k

× S1
k

used [refer Eq. (17)]. However, if µ value is very large then the 
error-backpropagation method is used [refer Eq. (18)], where 
α (learning rate) = 1/µ, ek be the error vector and N and k refer 
to the number of weights and iterations, respectively. Note 
that, the weights are continuously updated till it reaches the 
set target error.

5  Results and discussion

In this section, the Taguchi experimental results were ana-
lyzed by identifying the significant parameters both indi-
vidual and interaction for failure load and shear strength 
of the joints using analysis of variance. MLR and NN mod-
els are developed for prediction purpose. In addition, 
the predicted results of failure load and shear strengths 
of adhesive-bonded joints are tested for the ten random 
experimental cases by the two developed models (MLR 
and NN).

5.1  Taguchi method experimental results

The experimental input–output data correspond to adhe-
sive-bonded single-lap composite joints are presented in 
Table 2. Three replicates are taken for each experimental 
trials, and the corresponding average values of failure 
load and shear strengths of adhesive-bonded compos-
ite SLJs are presented. Table 2 shows the experimental 
design of  L9 orthogonal array and outputs of the SLJs of 
composites.

5.2  Tensile test investigation

The tensile test determines the behavior of material sub-
jected to tension with the application of load. During ten-
sile tests, the specimens (adhesive-bonded GFRP compos-
ite-lap joints) held in a gripper such that effective loading 
is carried out in a controlled manner till the joints undergo 
fracture to determine the failure load and shear strength 
of SLJs of composite.

(16)Wk+1 = Wk −
(

JT
k
Jk + �I

)−1
Jk × ek

(17)Wk+1 = Wk −
(

JT
k
Jk
)−1

Jk × ek

(18)Wk+1 = Wk − � × gk

(19)

Gradient vector, gk =

[

�E

�w1

�E

�w2

�E

�w3

− − − −
�E

�wN

]T
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5.2.1  The plots of load versus displacement for single‑lap 
joints (SLJ’s)

Figure 3a–c shows the load versus displacement plots for 
different overlap lengths (15, 25 and 35 mm) at constant 
adhesive thickness of 0.2, 0.3 and 0.5 mm, respectively. The 
minimum and maximum failure load occurred for the over-
lap length is found equal to 15 mm and 35 mm, respec-
tively. The results showed that the deformation at the joint 

increases linearly till the failure of adhesive-bonded lap 
joints. Increase in overlap length of adhesive-bonded com-
posite joint from 15 to 35 mm results in increase in failure 
load in the ranges between 3250.2 and 6096.1 N, 2879.8 
and 5813.16 N, and 2250.6 and 4036.88 N for 0.2, 0.3 and 
0.5 mm of adhesive thickness, respectively. This occurs 
due to increase in bonding area. It is worth mentioning 
that increased values of overlap length from 15 to 35 mm 
resulted in 1.87, 2.02 and 1.79 times increment to that of 
failure load for 0.2, 0.3 and 0.5 mm of adhesive thickness, 
respectively. This could be attributed to the substantial 
increase in adhesive bonding area which tends to receive 
increased proportion of total load carried out at the com-
posite joints.

5.3  Multiple regression analysis

Multiple linear regression technique is applied to deter-
mine the relationship between the adhesive-bonded 
joint strengths and the two influencing variables such as 
overlap length and adhesive thickness. The experimental 
input–output data of adhesive-bonded joints presented 
in Table 2 were used to derive the response equations and 
determine significant contributions. The derived response 
equation for failure load and shear strength expressed as 
a mathematical function of input variables are presented 
in Eqs. (20) and (21).

5.4  Analysis of variance (ANOVA)

The Taguchi method alone could not detail the factor 
effects and optimal levels on any process. Therefore, 
Ronald A Fisher, a British statistician, was credited for the 
development of ANOVA. In general, ANOVA is performed 
to interpret the data collected from a series of experiments 
and determine optimal parameter levels for a process. In 
the present work, ANOVA is used to determine the signifi-
cance of both individual factors such as overlap length, 
adhesive thickness and their interaction effects on the 
responses (FL and SS). Minitab software of ANOVA mod-
ule is used to know the factor effects on responses. The 
ANOVA test results for failure load and shear strength are 
presented in Table 3.

ANOVA table consists of degrees of freedom (DF), 
adjusted sum of squares (Adj. SS) and mean square (Adj. 
MS), Fisher (F value) and preset confidence (P value) value. 
The significance of parameters is determined for the pre-
set confidence level of 95% (i.e., P value < 0.05). For the 

(20)FL = 1485 + 190.2A − 2016B − 192AB

(21)SS = 19.5 + 2.497A − 26.4B − 2.53AB
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Fig. 3  Load versus displacement plot for different overlap lengths 
(15, 25 and 35 mm) at a constant adhesive thickness: a 0.2 mm, b 
0.3 mm and c 0.5 mm
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responses (i.e., FL and SS), both the main effect factors 
(i.e., overlap length A and adhesive thickness B) are found 
to be significant as their corresponding P values are less 
than 0.05. However, the interplay of adhesive thickness 
and overlap length are not significant and also inclusion 
of the term AB does not contribute much toward both 
the responses (refer Table 3). Figure 4a, b shows the sur-
face plots of responses (FL and SS) with overlap length 

and adhesive thickness. Increase in overlap length tends 
to increase both FL and SS, whereas decreasing trend of 
FL and SS was observed with increased values of adhe-
sive thickness. This might be due to the fact that as the 
overlap length increases, the bonding area improves that 
helps to sustain higher loads, whereas increase in adhesive 
thickness results in thick bonding lines coupled with the 
formation of voids and micro-cracks. It is also clear from 
the surface plots that higher and lower values correspond 
to overlap length and adhesive thickness could produce 
higher failure load and shear strength (refer Fig. 4a, b). 
The results of the surface plots are in good agreement 
with the statistical values correspond to optimal levels 
determined for FL and SS (refer Table 4). From Fig. 4a, b, 
it is clearly showed that the impact of overlap length is 
more compared to that of adhesive thickness for both the 
responses. Table 4 shows the statistical values of impact 
(rank) of adhesive thickness and overlap length and the 
optimal levels for FL and SS.

The models developed for failure load and shear 
strength of adhesive-bonded single-lap composite joints 
are tested for statistical adequacy by estimating multiple 
correlation coefficients. For all terms (significant and insig-
nificant), the multiple correlation coefficient values corre-
spond to failure load and shear strengths are found equal 

Table 3  ANOVA results of 
adhesive-bonded composite 
SLJs for the responses (FL and 
SS)

Response Failure load Shear strength

Details DF Adj. SS Adj. MS F value P value Adj. SS Adj. MS F value P value

Model 16,405,137 35,468,379 19.61 0.003 2825.4 941.8 19.62 0.002
Linear 2 15,421,999 7,710,999 27.65 0.002 2655.94 1327.97 27.66 0.002
A 1 8,901,717 8,901,717 31.92 0.002 1532.59 1532.59 31.92 0.001
B 1 6,520,282 6,520,282 23.38 0.005 1123.35 1123.35 23.42 0.005
Two-term 

interac-
tion

1 345,289 345,289 1.24 0.316 59.56 59.56 1.24 0.318

AB 1 345,289 345,289 1.24 0.316 59.56 59.56 1.24 0.318
Error 5 1,394,234 278,847 240.05 48.01
Total 8 17,799,370 3065.45

Fig. 4  Surface plots of responses: a FL with overlap length and adhesive thickness and b SS with overlap length and adhesive thickness

Table 4  Optimal parameter levels for failure load and shear 
strength

a Optimized levels of parameters:  A3B1 for both failure load and 
shear strength

Adhesive-bonded 
joint parameters

Average values of 
responses

(Maxi-
mum–min-
imum)

Rank

Level 1 Level 2 Level 3

Failure load
 Overlap length 2793.5 3786.9 5315.4a 2521.8 1
 Adhesive thick-

ness
4940.1a 4095.5 2860.3 2079.8 2

Shear strength
 Overlap length 36.7 49.7 69.8 33.1 1
 Adhesive thick-

ness
64.8 53.7 37.5 27.3 2
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to 0.9217 and 0.9223, respectively. The correlation coef-
ficient values with inclusion of all terms are found close to 
unity, indicating that the models are statistically capable 
for their practical usefulness. Noteworthy that correlation 
coefficient values by neglecting noncontributory terms 
[i.e., AB shown in Table 5 and Eqs. (20) and (21)] resulted in 
0.8747 for FL and 0.8754 for SS. It is important to note that 
removing insignificant terms from the regression equa-
tions not only reduces the prediction accuracy (because 
the calculated F values generate more than that of Table F 
values), but also results in imprecise input–output relation-
ships. From the above discussions, the models developed 
for both responses are statistically adequate and can be 
used for practical usefulness in industries.

5.5  Artificial neural networks

ANNs learn with examples (input–output data) and pre-
dict the performances based on their learned or training 
experiences. Therefore, collecting an appropriate set of 
quality data and quantity of training data is of paramount 
importance. Neural networks train with low data (say less 
than 20) may find it difficult to estimate the fitting param-
eters, and even if does, they are not mathematically logical 
due to number of network connections which found to 
be greater than that of the data available for training [45]. 

The mathematically derived response equations through 
experiments were used to generate artificially [random 
sets of 91 inputs are generated and outputs are predicted 
with Eqs. (20) and (21)] huge input–output data for train-
ing. Note that, the training data consist of both artificial 
and experimental data whose value corresponds to 91 and 
9, respectively.

LM algorithm is used to train the three-layered neural 
network architecture developed for prediction of failure 
load and shear strength. Two neurons in the input layer 
represent the overlap length and adhesive thickness, 
whereas failure load and shear strengths are treated as 
output neurons lying in the output layer. The hidden 
neurons lying in their respective layer is determined after 
conducting many trials with a goal corresponding to mini-
mum error or better correlation coefficient (i.e., R value). 
There exists a perfect correlation between experimental 
and predicted values when R = 1, while R = 0 indicates 
there is no correlation. A total of 100 input–output data 
sets are treated with 80% for training and 20% for vali-
dation. A set of total ten experimental cases are used for 
testing the trained neural network (refer Table 6). To avoid 
numerical overflows, the training and testing data were 
normalized between the ranges of 0 and 1. Training has 
been carried out to optimize the network architecture 
(i.e., weights and hidden neurons). During training, the 
activation functions correspond to the hidden layer was 
log-sigmoid function, whereas linear activation function 
is used for both input and output layers. After many trials 
(i.e., different neurons varied in the hidden layer from 3 
to 10), the neurons of hidden layer are kept fixed to 6, as 
their corresponding R value was found better than that 
of other neurons tested for hidden layer. Therefore, the 
final network architecture corresponds to better correla-
tion coefficient was found equal to 2–6–2 (i.e., neurons of 
input–hidden–output layers) and obtained at 45 iterations.

Regression plots give the relationships between net-
work outputs and the defined targets, which are used to 

Table 5  Coefficient of multiple correlations, significance and non-
significant terms for FL and shear Strength

Response Coefficient of multiple cor-
relation

Terms

All R terms Excluding 
insignificant 
terms

Significant Insignificant

FL 0.9217 0.8747 A and B AB
SS 0.9223 0.8754 A and B AB

Table 6  Input–output data 
of ten random experimental 
cases

Exp. no. Input factors Experiment values NN predictions MLR predictions

A B FL (N) SS (MPa) FL (N) SS (MPa) FL (N) SS (MPa)

1 17 0.25 3308 40.8 3381.56 44.36 3398.4 44.6
2 17 0.35 2898 38.2 2866.18 37.52 2870.4 37.7
3 17 0.45 2248 29.8 2309.63 31.19 2342.4 30.7
4 23 0.25 4295 58.2 4233.79 56.93 4251.6 55.8
5 23 0.35 3665 48.8 3625.18 47.19 3608.4 47.3
6 23 0.45 3013 40.4 2960.37 40.67 2965.2 38.9
7 33 0.25 5557 69.1 5651.92 69.67 5673.6 74.4
8 33 0.35 4890 60.1 4844.61 62.67 4838.4 63.4
9 33 0.45 4060 54.2 4010.97 53.13 4003.2 52.5
10 30 0.4 4095 55.9 4060.00 54.80 4080.6 53.5
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validate the performance of NN. Figure 5 show the regres-
sion plots correspond to training and validation of neural 
networks. The R value is 0.99995 for training and 0.9998 
for validation, which indicates the values of experimental 

outputs (i.e., FL and SS) are close to the target values. Since 
the R values of network training and validation are close to 
unity, the models are ideal to make predictions for random 
test (i.e., experimental) cases.

Fig. 5  Regression plots correspond to optimal network architecture (2–6–2) for training and testing

Fig. 6  Experimental- versus model-predicted values: a FL of NN model, b FL of MLR model, c SS of NN model and d SS of MLR model
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5.5.1  Summary results of MLR and NN predictions

NN and MLR models are examined for the prediction per-
formances of adhesive-bonded joints (i.e., FL and SS) of 
composites. The prediction performances are evaluated 
with two indices such as mean absolute percent error 
(MAPE) and correlation coefficients (R).

Figure 6a–d shows the model comparison for failure 
load and shear strength predictions with experimental 
failure load and shear strengths for ten experimental cases. 
Note that, the experimental cases generated at random 
are to know their practical usefulness of the developed 
models. Although R values obtained for NN model in pre-
dicting the experimental cases are found close to unity, 
they are slightly inferior compared to that of training 
and validation (refer Figs. 5 and 6). This occurs because 
the experimental cases used for testing are different from 
those data used for training and validation for efficient 
model development. The R values of NN are found better 
than MLR in predicting both the responses (i.e., FL and 
SS). The percent deviation in predictions of FL is found to 
vary in the ranges of − 2.74 to + 1.75% for NN, and − 4.20 
to + 1.59% for MLR, respectively (refer Fig. 7a). For shear 
strength, the range of percent deviation in predictions is 
found to be − 8.72 to + 3.29% for NN, and − 9.31 to + 4.31% 
for MLR, respectively (Fig. 7b). The FL and SS data points 
are predicted on both positive and negative sides from the 
reference zero line and follow the identical path for both 
the models. Note that, most of the data points represent-
ing the percent deviations are close to reference zero line 
for NN model compared to MLR (refer Fig. 7). The MAPE 
obtained for FL is 1.5% for NN, 1.69% for MLR, and for SS is 
3.03% for NN, and 4.56% for MLR, respectively. Considering 
both the outputs, the average absolute percent deviation 
in predictions is found equal to 2.27% for NN and 3.12% for 
MLR. Neural network predictions are found better, might 
be due to the inherent ability to capture the process non-
linearity. Simultaneous prediction of multiple outputs by 

the neural networks is useful for online monitoring of a 
process. 

6  Conclusion

Systematic experimental analysis for the development of 
predictive models and determining optimal levels are car-
ried out for adhesive-bonded joining process to limit the 
several theories used in past, which are developed based 
on assumptions. The following conclusions are drawn as 
discussed below,

1. The Taguchi method is used to collect the experimen-
tal input–output data correspond to adhesive-bonded 
single-lap composite joints. Overlap length and adhe-
sive thickness are statistically significant, whereas the 
corresponding interaction terms are statistically insig-
nificant. The overlap length contributions are more 
compared to adhesive thickness for both the FL and 
SS. Coefficient of multiple correlation is found equal to 
0.9217 for FL and 0.9223 for SS, respectively.  A3B1 is the 
optimal levels for adhesive-bonded single-lap com-
posite joints, which results in high values of 6096.1 N 
for FL and 80 MPa for SS.

2. As the overlap length increases from 15 to 35 mm, it 
results in 1.87, 2.02 and 1.79 times increment in failure 
load for the constant adhesive thickness of 0.2, 0.3 and 
0.5 mm. This occurs because increased proportion of 
adhesive bonding area helps to sustain maximum total 
load at the composite joints.

3. LM algorithm-trained artificial neural networks with 
100 data sets (experimental and artificially generated 
data with response equations) resulted with R value 
close to 1 for both training and validation. Ten experi-
mental cases were used to test the prediction accu-
racy of adhesive-bonded composite single-lap joint 
strengths (i.e., FL and SS) resulted with the mean abso-

Fig. 7  Percent deviation in prediction of two models for different responses: a failure load and b shear strength
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lute percent error found equal to 2.27% for NN, and 
3.12% for MLR, respectively. Multiple output predic-
tions of NN not only capture the dependency among 
the outputs, but also are used for online monitoring of 
adhesive-bonded joints strengths.

4. The models (Taguchi, NN and MLR) developed for 
adhesive-bonded single-lap composite joints are 
capable for predictions and determine optimal lev-
els that could result in higher strengths accurately. 
Therefore, the developed models can readily be used 
in industries for adhesive bonding joining process.
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