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Abstract
Geostatistics was developed to generate maps or 3D models interpolating observed values in space. The so-called spa-
tiotemporal geostatistic applies the same principles to estimate observed values that have both spatial and temporal 
distribution. Moreover, time series analysis can decompose and extrapolate its main trends and seasonality, preparing 
data for geostatistical assumptions. Using this principle, this study aims to decompose the time series of a spatiotemporal 
dataset as external drifts and estimate its residuals by spatiotemporal kriging. Since each observation point is a time 
series, it is possible to decompose its trend and seasonality locally and map its parameters, preferable, by traditional 
geostatistics. Aftermath, it is possible to extrapolate the trend and seasonality at each pixel. This procedure can achieve 
great long-term forecasting maps even in regions with poor sampling due to its time series analysis. As well as, the geo-
statistics guarantee that the spatio-temporal correlation is maintained. This method is especially good for prediction in 
regions that the time series pattern depends on its location, which is a common problem in large areas and the problem 
is worsened in poorly sampled regions. This study presents a 10 years map forecast (2008–2017) comparison by spati-
otemporal geostatistics, the first with original data, with ARIMA Models Panels, then with global decomposition, finally, 
with the local decomposition approach. The target variable is temperature captured by the 18 active weather stations 
in Patagonia between 1973 and 2007. To validate the results, they are compared to Land Surface Temperature (LST), 
which is an image product MOD11C3 derived from the MODIS sensor onboard on Terra/Aqua satellites. The proposed 
method can make long-term forecasts with low error, low smoothing effect and similar spatiotemporal statistics (mean 
and variance) of the stations and the LST product. Finally, its results are comparable with the ARIMA Models Panels with 
the advantage that it can generate maps with spatiotemporal correlation and better than the often-used methods (st-
kriging and global decomposition) to forecast large areas maps.
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1 Introduction

This study objective is a procedure that uses methods that 
are well-known, straightforward, statistics-based and data-
driven to achieve robust long-term results in low informa-
tion regions with high spatial variability of its time series 
(i.e. consider the local time series due to its patterns are 

different in mountain and beaches). The major contribu-
tion of this study is the procedure that can make long-
term map prediction of a large and poorly sampled area 
(e.g. mapping the effects of climate change over an entire 
county for a long period such as a century) with low error 
and low smoothness.
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The climatological processes operate over a wide range 
of timescales and time series analysis supports the detec-
tion, description, and modeling of the climatic variability 
and impacts [1]. Weather forecasts are made by solving 
the equations of motion for the atmosphere, the non-
linear partial differential equations of dynamics, moisture 
conservation, thermodynamics, and mass continuity [2]. 
These equations try to keep track of the myriad of complex 
nonlinear interactions between winds, temperature, and 
moisture at thousands of locations and altitudes around 
the world [2]. Numeric modeling attempts to add a bet-
ter understanding of the modus operandi of the Earth’s 
climate system [3]. Climatology and meteorology study 
chaotic and non-linear signals that are unstable and non-
periodic to model all possible interaction between the 
natural events and the dependency to initial states as 
shown in Chaos Theory [4]. Slightly differing initial states 
can evolve into considerably different states [4]. Further-
more, the errors in different stages were analyzed and it 
is assumed that there would be no prediction error if we 
could observe an initial state without error [5]. Other stud-
ies in chaos theory applied to spatiotemporal variables are 
cited: reconstructing spatiotemporal dynamics using sup-
port vector machines [6]; nonlinear ensemble prediction 
of chaotic daily rainfall [7]; polynomial Chaos methods are 
used to quantify uncertainties in ocean forecasting [8]; 
fuzzy Bayesian network-based data-driven framework for 
spatiotemporal prediction with an elegant approach of 
dealing with intrinsic chaos in time series [9].

The global climate models (GCM) can make forecasts 
over a grid that covers the globe by numerically solving 
sets of finite-differences equations [2]. Because models are 
imperfect, and observations have inherent errors and inad-
equate coverage, neither model nor observations alone 
will provide a full, comprehensive description of the Earth’s 
climate system [3]. Likewise, some physical processes are 
not known well enough to provide exact physical laws or, 
for other situations, the exact physical processes are so 
complicated or computationally unwieldy that, in these 
circumstances, a simpler parameterization can provide 
an answer that could be considered good enough [2]. A 
major barrier to improvement in climate model simulation 
is the insufficiency of detailed investigation for climate 
processes with high temporal and spatial resolutions [3]. 
Further, all models are simplifications of the real world and 
the climate models can be considered as a series of equa-
tions expressing physical, chemical, biological and social 
laws [10]. Moreover, the more complex the representation, 
the costlier the model is to use, and the result can only be 
approximations [10].

With all this information and the right parameters, 
GCMs can generate great predictions with a lot of details. 
On the other hand, setting all climate parameters can 

be truly demanding and its processing will request a 
supercomputer and long periods. The climate system is 
extremely complex and statistical analysis is essential in 
providing useful simplifications of the system variability. 
In order to generate long-term trend maps, the accuracy 
in the specific location and date is not as important as its 
local trends and statistics, so the use of geostatistics and 
time series is adequate. With the advantage of being sta-
tistics-based and data-driven models that do not demand 
excessive processing time in supercomputers.

Geostatistics is defined as the study of distribution in 
space of useful values for mining [11]. Its application was 
transferred to other areas such as hydrogeology, environ-
mental studies, agriculture, climate, epidemiology and 
everything else presenting a correlated spatial distribu-
tion. After that, this theory started being applied in a 
spatiotemporal framework to estimate the random vari-
ables at unobserved points at any specific time. However, 
its basics concepts explained in [11] and deepen in [12] 
should be followed, like second-order stationarity in space 
and time. Temporal data collected over time usually pre-
sent some seasonality. In other words, it is non-stationary. 
Qualitatively, a stationary time series presents statistical 
equilibrium, containing no trends and, most methods of 
handling non-stationary time series remove the non-sta-
tionary parameters [13].

Considering any spatially distributed dataset with val-
ues of a specific variable being recorded periodically, e.g. 
monitoring stations (weather stations, water level, pollu-
tion stations, and others), the dataset is spatiotemporal 
due to its temporal and spatial components. The spati-
otemporal variables (e.g. temperature or pollution) Z(s, t) 
of both space (s) and time (t) domains are usually regis-
tered at constant temporal intervals at established points 
[14]. Space represents a state of coexistence, where occur 
multiple dimensions (or directions) and it is frequently 
interpolated [15]. On the other hand, time is the state of 
successive existence with a defined order (nonreversible) 
in only one dimension and the extrapolation is commonly 
the main interest [15]. Considering one natural spatiotem-
poral variable Z(s, t) where s is the location in space and 
the t is an instant in time, its spatiotemporal framework 
tends to be cyclical in the temporal component. In other 
words, natural events usually present a seasonality, it can 
be short as day and night or long as a visible comet pass 
near Earth. However, it is harder to create a deterministic 
model of space and that is why one commonly estimated 
its values with geostatistics.

Based on the spatiotemporal observations, it is possible 
to reproduce the behavior of the spatiotemporal process, 
or simply predict its value at given space–time points. 
Geostatistics takes advantage of the spatio-temporal 
correlations present in the spatio-temporal data to make 
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predictions at unobserved space–time locations [16]. 
Spatiotemporal geostatistics can be applied to generate 
maps that represent the spatial distribution of a feature 
at any desired time, that is, it is possible to forecast entire 
regions with a few time-series sampling points. The com-
bined space–time domain should be regarded only as a 
coordinate system, where observations are tagged by a 
spatial coordinate vector s and a temporal coordinate t 
[17]. Essentially, the definition of isotropy cannot be stated 
for spatio-temporal random fields, since space and time 
have to be considered as distinct and non-comparable 
entities [18]. Furthermore, units and scales are distinct 
between space and time, as well as, they cannot be com-
pared in a physical sense. Similarly, it is shown that every 
spatiotemporal location is a point on  Rd × R with  Rd being 
the d-dimensional Euclidean space and R the time dimen-
sion [16].

The spatiotemporal geostatistical modeling requires 
second-order stationary dataset in space and time 
domains. Thereby, one should consider a procedure to 
access the stationary components of the time series. The 
presence of the drift does not allow it to be estimated 
directly from the variogram [12]. The first important step 
in all geostatistical modeling is to establish the correct 
variable to model and make sure that this property can 
be modeled as stationary over the domain of the study 
[19]. Moreover, if data show a systematic trend, this trend 
must be modeled and removed before the geostatistics 
and added back to the estimated values at the end [19]. 
Because trend makes the variable non-stationary and it is 
unreasonable to expect the mean value to be independent 
of location [19].

Thus, in order to obtain the second-order stationarity, 
one way is to remove its global trend and seasonal com-
ponents of the variable. Some studies formulate a general 
space–time model with a purely spatial mean function, 
purely temporal mean function and the intrinsically sta-
tionary space–time error process and considering that this 
model is sufficiently flexible to model a large range of spa-
tiotemporal data sets [20]. However, if there is seasonality, 
it can be detected and removed by inspecting each time 
series graphs and kriged the residuals to get the values in 
the future and at the monitoring location [21, 22]. More 
fully, it is possible to decompose the space–time consid-
ering the case where the dynamical structure is unknown 
and it can be written in terms of the deterministic means 
and four mutually statistically independent mean-zero 
random effects [23]: (i) location-specific variability com-
mon to all times; (ii) time-specific variability common to 
all locations; (iii) capturing the spatiotemporal interaction; 
(iv) representing the microscale spatiotemporal variability. 
As well as, decompositions approaches in the spatiotem-
poral framework [24], such as (i) the trend component is 

constant over the space–time domain; (ii) the trend com-
ponent is described by a deterministic model in space and 
time; (iii) the trend component is described by a stochastic 
model in space and time. All interpolation and results were 
compared at the sample locations.

Other authors applied the global trend/seasonal 
decomposition to generate a map thought spatiotemporal 
geostatistics—where the global trend and/or seasonality 
components and the residual variogram model are used 
to predict future maps. Considering the sub-regions of 
the domain, it is possible to remove the spatiotemporal 
drift component from each observed sub-region in order 
to perform a residual geostatistical analysis [25]. Another 
approach is to model the trend applying the generalized 
linear model with a random component and a linear func-
tion of regressors with the long-term trend and/or periodic 
components as the large-scale variation and the small-
scale residuals are the stationary residuals [26, 27]. Fur-
thermore, to assess its residuals (remove the trend and the 
seasonality), some authors [28–30] used the differencing 
time series. Time series decomposition for climate dataset 
was also done by multifractal characterization [31], spec-
trum analysis for investigating chaos [32], pattern scaling 
decomposition [33]; modeling big data with MapReduce 
framework [34]; spatiotemporal prediction using dimen-
sion reduced local states [35]; ensemble empirical mode 
decomposition [36]; and, finally, a comparison of meth-
ods for extracting annual cycle with changing amplitude 
shows the importance of the non-linear mode decomposi-
tion [37].

The geostatistical methods found in the literature works 
well if the study is focused on a specific location or consid-
ering sub-regions. However, if the objective is to generate 
a map of a long-term forecast in a large area (where the 
time series depends on its location), one should consider 
the use of the local temporal drift. The local temporal drift 
decomposes (removing the trend and seasonality) each 
sampling point (time series) and consider its parameters 
as regionalized variables. These new regionalized variables 
can be mapped with geostatistical or non-geostatistical 
interpolators. Then, it is possible to generate an equation 
of time trend and oscillation at all studied locations (grid 
points) with every parameter of the time series at each 
pixel in the grid. Then one can estimate every time series 
parameter at each domain point and forecast the future 
values with extrapolation of the time series regression. The 
residuals of those deterministic equations are the station-
ary component that can be forecasted by spatiotemporal 
geostatistics, they are composed of a mixture of an intrin-
sic non-separable spatiotemporal framework, natural 
oscillations of non-decomposed scales and randomness. 
Finally, it is possible to combine the forecasted results with 
the estimation computed by spatiotemporal geostatistical 
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of the residuals. This procedure, spatiotemporal forecast 
with local temporal drift, can be applied to any spatiotem-
poral variable that one may want to generate future maps 
(spatial distribution). Variables with spatiotemporal char-
acteristics are increasing with big data technology, once 
smartphones users are always providing geotagged infor-
mation about traffic jams, health, crimes, among others. 
Traditional variables are exemplified by meteorological/
air quality stations that contain environmental variables; 
satellite images with spectrum analysis that can represent 
temperature, air pollution, vegetation quality, soil expo-
sure, and others; security/health stations that report the 
city criminality and well-being.

The use of auxiliary information or complex models (e.g. 
machine learning or global climate models) can produce 
great results. However, these complex models take longs 
processing periods and most of the times supercomput-
ers. Although it is not the focus of this study, some proce-
dures with auxiliary variables and machine learning are 
commented on below. The use auxiliary information to 
model the trend, it is done with geometric temperature 
trends which are modeled as a function of the day of year 
and latitude [38] or considering the values measured in 
satellites in the regression function [39]. Likewise, dynamic 
secondary information (net precipitation) can be incorpo-
rated to model the soil water trend [15]. Another way is to 
estimate the slope of the linear trend at each pixel using 
a digital elevation model as secondary data [40]. Another 
study [41] used the elevation as an external drift to help 
the estimation of the temperature map considering a lin-
ear relationship between temperature and elevation.

Alternatively, some authors use parametric models, 
machine learning, neural network or advanced data 
analysis to models the trend, such as genetic algorithm 
to extract dynamical rules from the data and forecast in 
confined systems displaying spatiotemporal chaos [42]; 
seasonal-trend decomposition based on the non-para-
metric local regression [43]; characterized spatio-temporal 
processes through non-linear models utilizing physical 
arguments of wave mode interactions in which medium 
scales influence the evolution of large-scale modes [44]; 
neural network models to generate short-term tempo-
ral forecasts and local conditional distributions of the 
observed values to perform spatial stochastic simulations 
for the entire geographic area of interest [45]; random for-
est algorithms to fit the trend model for the regression 
kriging [46]; introduced the use of hidden physics models 
(data-efficient learning machines expressed by nonlinear 
partial differential equations) to extract patterns from 
high-dimensional data generated from experiments [47]; 
exponentially weighted moving average to model the 
temporal trend component [48]; nonlinear dynamic spa-
tiotemporal models [49]; proposed the echo state network 

machine learning approach that can be used to generate 
long‐lead forecasts of non‐linear spatio‐temporal pro-
cesses with reasonable uncertainty quantification [50]; fit 
trend surface model from the spatiotemporal position of 
the sample study with median polish [51, 52]; embed a 
nonparametric trend modeling approach in data-driven 
real-time predictions [53]; stochastic local interaction 
model for space–time interpolation [54]; deep learning 
(integro-difference equation) models for spatio-temporal 
forecasting [55].

2  Methodology

In general, the procedures mentioned in the literature are 
enough to remove the trend/seasonality and transform a 
non-stationary into a stationary dataset, in order to apply 
spatiotemporal geostatistics. Yet, if the spatiotemporal 
dataset presents a high spatial variability of its time-series, 
mainly in the trend and cyclicity, the mentioned trend 
models may not represent well the spatial variability of 
the time series at every point of the map. In these cases, 
it is proposed the geostatistical estimation method with 
local time drift whose steps can be observed in the flow-
chart of Fig. 1. This method uses the time series analysis 
at each spatial point to assess its trend and seasonality 
parameters (local decomposition) and considered them 
as regional variables to generate each parameter map. 
The map can be interpolated by a geostatistical or a non-
geostatistical method.

The proposed method intends to transform every time 
series into a combination of the simplest time series model 
(iid random variable with zero means), some intrinsic spa-
tiotemporal framework that cannot be captured by tem-
poral decomposition and the oscillations of other scales 
(i.e. climate oscillations such as El Niño, La Niña, Mad-
den–Julian, Milankovitch cycles, Pacific Decadal, Quasi-
biennial, and others). For this, the trend and seasonality 
decomposition are applied at each time series of the 
studied region, and if it is necessary spatial trends can be 
removed, too. The simple decomposition equation of a 
spatiotemporal variable Z(s, t), is:

where U(s, t) is the space–time stationary residual, tr(s, t) is 
the temporal trend and sea(s, t) seasonality at each sam-
pled point s (i.e. weather station location). One can con-
sider that the variable is monitored at N sites  si and p time 
points  tj so that the data are on a space–time mesh {Z(si, tj}, 
i = 1, …, N; j = 1, …, p} [14]. In practice, assuming temporal 
stationary is never trivial, and it should guarantee that all 
data originate from the same underlying physical process 

(1)Z(s, t) = U(s, t) + tr(s, t) + sea(s, t)
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[14]. Considering a specific point in space s, the time series 
is the residual values (res(t)) plus its determinist models, 
seasonality (sea(t)) and trend (tr(t)), the classical decom-
position model:

A useful technique for estimating tr(t) is the method of 
least squares, as well as, sea(t) can be modeled as harmon-
ics in Fourier series. The sinusoid of frequency ω can be 
written as a traditional non-linear function (Eq. 3) and as a 
linear function (Eq. 4) [56]:

where R is the amplitude and ϕ is the phase, A = Rcos � 
and B = − Rsin � , ω (in radians per unit of time) is the fre-
quency [56]. Furthermore, given any value of A and B, one 
can solve for R and � (Eq. 3) [56]. Considering A and B as 
the parameters, the equation is now linear, for fixed ω. So, 

(2)�(t) = tr(t) + sea(t) + res(t)

(3)sea(t) = R cos (�t + �)

(4)sea(t) = A cos�t + B sin�t

the calculus is computationally easier if the frequency ω 
is known and constant [56].

Additionally, the linear regression in the time series con-
text considers that a dependent time series is affected by a 
set of known and fixed inputs or independent series [57]. 
One may use a classic linear regression to estimate the 
trend by fitting the linear model:

where bi are unknown fixed regression coefficients [57].
The spatiotemporal forecast with local temporal drift 

depends on two time series considerations. First, the 
deterministic trends can be extrapolated in order to fore-
cast future steps, so, one can justify the projection by alleg-
ing that fundamental trends will commonly change slowly 
in comparison with the prediction/forecast lead time 
[58]. Second, the objective is to estimate and define the 
deterministic elements, linear trend ( tr(t) ) and seasonality 
( sea(t) ), expecting that its residual or noise component 
res(t) are stationary time series [59]. The “residual” res(t)  is 

(5)tr(t) = b1 + b2t

Fig. 1  Flowchart of the spatiotemporal forecast with local temporal drift
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the difference between a fitted from an observed value 
[60].

It is possible to apply the spatiotemporal geostatistics 
to map the residuals res(t) at future steps, as well as, to 
interpolate the tr(t) and the sea(t) parameters to all pixels 
in the domain and deterministically predict the next steps 
in time. Considering a simple space–time model (Eq. 1) 
and substituting the components with the ones in the 
time series analysis (Eqs. 3, 4 and 5), the spatiotemporal 
process Z(s, t) can be written as:

where, b1(s) + b2(s)t is the temporal trend for each point s 
in space, R(s)cos(�t + �(s)) is the seasonality for each point 
s in space and U(s, t) is the space–time stationary residuals. 
Moreover, the parameters from the time series decomposi-
tion depend only on its location s in space, these points 
can be considered as regionalized variables and mapped. 
The residual is a mixture of the random effect (iid), spati-
otemporal interaction and oscillations of other scales.

The spatiotemporal variable U(s, t) can be estimated 
at every point of the domain and at any desirable time 
with the spatiotemporal geostatistics. Spatiotemporal 
continuity is a property that characterizes the relation-
ship between observations at different locations in the 
space–time framework, such as U(si , tk) and U(sj , tl) with i, 
j = 1,…,N and k, l = 1,…,p [16]. Similarly, to spatial geosta-
tistics, the relationship depends on the spatiotemporal dis-
tance between the points  (si − sj;  tk − tl) and its spatiotem-
poral semivariogram can be defined as the function [16]:

where (si, tk) and (sj, tl) are spatial–temporal points sepa-
rated by lag h in space and u in time [16]. Most of the theo-
retical functions to model the spatiotemporal variability 
are defined as covariance functions. A joint space–time 
covariance function allows space–time kriging estimation 
at any spatial position s and any moment t in time [17]. To 
use the covariance function to estimate, one should con-
sider models that are guaranteed to be valid ones, since 
any covariance function needs to be nonnegative definite 
and, in general, the moment estimators of the covariance 
functions do not satisfy these properties [20]. In addition, 
to accomplish optimal prediction, Cov[Z(s0, t0), Z(sn, ti)] for 
n = 1, …, N, i = 1, …, p, is required, in other words, covari-
ances at unobserved space–time lags must be known [20].

Since the goal of kriging is to predict U(s0, t0) from 
incomplete and noisy data [23]. Considering time as 
another dimension does not change the form of the krig-
ing estimator nor in the kriging equations [21]. Moreover, 
apart from characterizing statistical dependencies in space 

(6)Z(s, t) = U(s, t) + b1(s) + b2(s)t + R(s)cos(�t + �(s))

(7)�(h, u) =
1

2
E
[

U
(

si , tk
)

− U
(

sj , tl
)]2

and time, the spatiotemporal covariance can be used for 
kriging [23]. In that way, if (s, t) is an unsampled location-
time and given (U(s1,  ti), …, U(sN,  ti), i = 1, …, p) then U(s, t) 
could be estimated by [21]:

where �n,i is the kriging weighs and there are no assump-
tions about any interrelations between space and the time 
coordinates of a point [21]. The estimator will interpolate 
in either space or time and may extrapolate in either space 
or time [21].

3  Patagonia’s land surface temperature case 
study

Land surface temperature is one of the key parameters in 
the physics of land surface processes from local through 
global scales [61] and accesses the effects of climate 
change [62]. It is the kind of variable that changes rapidly, 
in both space and time [61, 63, 64]. Therefore, adequate 
characterization of land surface temperature distribution 
and its temporal evolution requires measurements with 
detailed spatial and temporal scales. Given the complexity 
of surface temperature over land, ground measurements 
cannot practically provide values over wide areas and it is 
a spatially inhomogeneous parameter especially in urban 
areas [65]. With the development of remote sensing from 
space, satellite data offer the only possibility for measuring 
temperature over the entire globe with sufficiently high 
temporal resolution and with complete spatially averaged 
rather than point values [61]. The land surface tempera-
ture derived from satellite observations can be used for 
a wide range of applications in several fields of study, like 
agriculture [66, 67], urban climate[65, 68], disasters [69], 
glaciology [70], land use cover change [71], epidemiol-
ogy [72] and climate modeling [62]. Different mathemati-
cal and statistical methods and satellite data can be used 
such as combined land surface temperature and vegeta-
tion index to detect long term changes in land cover [73]; 
performed temperature downscaling using principal 
components of various data [65]; two land surface tem-
perature time series, from geostationary Meteosat Second 
Generation satellite data and Noah land surface modeling 
to detect geothermal anomalies and extract the geother-
mal component of the data [74]; temperature modeled 
for 15 years (2001–2015) by the geographically weighted 
regression using imagery of Landsat 7 [75]. Apart from all 
these examples, the spatio-temporal nature of the remote 
sensing dataset has not been explored and compared with 
ground samples.

(8)Û(s, t) =

p
∑

i=1

N
∑

n=1

𝜆n,iU
(

sn, ti
)
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In contrast with climate modeling, geostatistics has the 
advantage of being computationally data-driven due to its 
models depend only on the spatiotemporal covariance of 
the variable with itself at a settled lag in space and a lag in 
time. If the variable presents a spatiotemporal continuity, 
usually, it can be modeled and statistically estimated at 
any point in space and time. Furthermore, spatiotemporal 
geostatistics is a useful tool to estimate values in desired 
locations at a determined time.

In order to study the efficacy of the local temporal 
drift (kriging the residuals of the local decomposition), 3 
geostatistics procedures were applied: (i) spatiotemporal 
kriging of the original dataset (no decomposition); (ii) spa-
tiotemporal kriging of the global decomposition residu-
als; (iii) spatiotemporal kriging of the local decomposition 
residuals. In addition to these 3 geostatistical approaches, 
the results were compared also with the ARIMA Models 
Panels (i.e. ARIMA Models considering the influence region 
of each time series). All 4 methods were applied in the 
Patagonia region, where the long-term temperature study 
is particularly interesting for climate change pattern once 
possible global warming impacts the animal distribution 
and behavior such as the lizards’ spatial distribution [76] 
and the fish culture quality [77]. Besides that, this region is 
poorly sampled with high climate diversity, thus, the inves-
tigation is done in severe conditions. The comparison with 
spatiotemporal ordinary kriging (original) and global tem-
poral drift is made for two main reasons: (i) show that the 
external drift is essential when extrapolating spatiotem-
poral estimation with geostatistical methods; (ii) compare 
how much the local trend decomposition is more robust 
than the global decomposition in an extreme situation. 
Moreover, the satellite image Land Surface Temperature—
LST [78] was considered the true values to calculate the 
estimation errors. All processing was done in the R pro-
ject [79], the geostatistics used the ‘geoR’ [80], ‘gstat’ [81, 
82] and ‘spacetime’ [83, 84] R packages. The spatiotem-
poral covariance model was chosen with the help of the 
‘covatest’ [85] R package. All maps are considered as raster 
images and treated in ‘raster’ [86] R package.

3.1  Dataset

The dataset used is the Global Summary of The Day [87] 
and they were obtained in the Climate Data Online (CDO) 
platform. The downloaded dataset is daily, and it was 
monthly averaged, considering that at least 10 days to 
compute an average for a month. Moreover, some weather 
stations have been discarded due to a very low amount of 
collected information (days measured) and/or no tempera-
ture measurements in the last few years. In practice, the 
used dataset has at least 25% of measured months, 2 years 
of continuum measurements and, preferentially, recent 

data. Another reason to choose this area is testing the 
methodology in extreme conditions, the selected dataset 
has only 18 weather stations and it is a very poor sample 
to cover over one million square kilometers with a high 
climate diversity. Figure 2 shows the Patagonia weather 
stations and highlights two stations used as examples. The 
Patagonia shapefile used was retrieved from the GADM 
website [88].

The Patagonia weather stations dataset starts monitor-
ing with adequate temporal continuity in 1973 and con-
tinues until the present. For a long-term (10 years) com-
parison, the data set was divided as the calibration period 
(from January 1973 to December 2007) and the control 
period (from January 2008 to December 2017). The mod-
eling (decomposition) and forecast were done with the 
calibration period data, the control period was used just 
to compare and validate the results’ statistics. In order to 
compute the errors of the method, the forecasted values 
were compared to LST, which is a satellite image computed 
to estimate the surface temperature with a resolution of 
0.05°. Figure 3 shows the histogram and the boxplot of the 
calibration period, control period, and the LST. The satellite 
dataset presents a higher spread temperature range with 
a higher maximum and a lower minimum, as well as, the 
control and the calibration periods seem to be similar with 
a close mean and similar statistical distribution. The main 
reason for this difference is due to the LST higher territory 
coverage and some difference between the measured data 

Fig. 2  Patagonia map with the locations of the weather stations in 
blue and two stations (878,030 and 879,340) used as examples (red)
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and calculated by the satellite images. LST and the control 
periods were taken in the same period.

3.2  Decomposition

The calibration period data was decomposed with Eq. 6 
that consists of 2 components, one deterministic time 
series (trend and seasonality) and its residuals ( U(s, t) ). In 
the global decomposition model, the determinist compo-
nent as only one temporal model to the entire region, in 
other words, the model was adjusted to the time series 
average. That is, the residuals were acquired at each time 
series location (s) by subtracting the average model from 

its values. The local decomposition approach takes into 
account one model at each time series location (s), i.e. the 
residuals were computed by decomposing each weather 
station with its time series model. All models were fitted 
to the dataset using least-squares fitting. Figures 4 and 
5 illustrate both decompositions at the selected points 
of Fig. 2. It is clear that the Global decomposition does 
not fit well all the temperature at weather stations (i.e. 
879,340) due to the regional differences in the time-series 
pattern. Meanwhile, the local decomposition adjusts the 
trend and seasonality at each station which signifies that 
every fit depends on its own local time series. In Figs. 4 
and 5 lower panels, it is possible to analyze visually that 
the global (red dots) and local (blue dots) residuals show 
no temporal pattern (trend or seasonality). Moreover, five 
parameters are required to reproduce the deterministic 
equation, the frequency is constant as twelve months and 
the other four parameters were recorded as regionalized 
variables, amplitude ( R ), intercept ( b1 ), angular coefficient 
( b2) and phase ( �).

In order to evaluate the accuracy of the time series 
models, the Root Mean Square Error (RMSE) was applied. 
Its computation is expressed as [89]:

where  et is the error (time series sample − time series 
model) and there are calculated at each time t. The RMSE 
is largely used due to its theoretical relevance in statistical 

(9)RMSE =

√

E
[

e2
t

]

Fig. 3  Histogram and the box plot of the temperature measured at 
stations and calculated by satellite (LST)

Fig. 4  Temperature measured (black dots) at weather station 878,030, the global (red line) and local (blue line) models and the residuals 
data with the local (red) and the global (blue) methods
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modeling and it has the advantage of being at the same 
scale of the data [89].

Figure 6 illustrates the statistics with the histogram and 
the boxplot of the local and the global decomposed resid-
uals’ data and its error (RMSE). It is computed one RMSE 
for each weather station of the calibration period to verify 
how good are the fitted decompositions models. Thus, it 
is clear that the local decomposition models fitted better 
because its residuals are more concentrated near the zero 
and its RMSE is significantly smaller (RMSE = 1.33) when 
compared with the global decomposition (RMSE = 3.83).

3.3  Geostatistical analysis

In order to forecast for the entire region, it is necessary to 
know every parameter of the Fourier analysis (amplitude 
( R ), intercept ( b1 ), angular coefficient ( b2) and phase ( � )) 
at all locations of the meteorological stations. The param-
eters are retrieved at each locations from Eq. 6. Moreover, 
the best way to spatially estimate these parameters is the 
application of the kriging techniques. If it is not possible 
to model the variogram, one could use an interpolation 
method as the inverse of distance, spline, radial basis 

Fig. 5  Temperature measured (black dots) at weather station 879,340, the global (red line) and local (blue line) models and the residuals 
data with the local (red) and the global (blue) methods

Fig. 6  Histogram and the box plot of the global and local residuals (left) and its errors (RMSE)
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function, nearest point or others. Figure 7 points out the 
station’s location and the parameters to be mapped.

Moreover, Fig. 8 shows that only the amplitude and 
the phase have modelable variograms and the anisot-
ropy could not be recognized. Probably, if the region had 
a denser dataset, the angular coefficient and the intercept 
variograms could be structured, as well as, all variograms 
could present anisotropy. The region has only 18 weather 
stations and certainly more stations would enrich these 
models. Whenever the spatial continuity could present 
some structured variogram its model should be consid-
ered and applied for the estimation method. The trends 
can be identified from the experimental variogram, which 
keeps increasing above the theoretical sill [19]. Thereby, 
the variograms of all the time series parameters were 
verified whether they have any first or second-order spa-
tial trends, and amplitude shows a structured variogram 
when the spatial first-order polynomial was adjusted and 
removed. The variogram of the amplitude was modeled 
with the spherical model with a nugget effect of 0.12, 
the sill at 0.6 and range equal to 4. As well as, the phase 

variogram was modeled with the spherical model, no nug-
get effect, sill at 0.01 and range equals to 5. The semivari-
ogram is the graph of the semivariance (a measure of the 
spatial discontinuity) by its distances and its parameters 
are: the nugget effect, that is the variability (variance or 
covariance) at a very close (near zero) sample distance; 
the sill, that is the higher variability or where the curve 
reaches its plateau and; the range, that is the distance that 
the curve reaches the sill. All variogram parameters were 
adjusted interactively.

For the purpose of mapping, the chosen cell size is 0.5° 
in latitude and longitude. And the ordinary kriging used 
a global search neighborhood. The alternative for the 
parameters without variogram models (angular coefficient 
and intercept) was the interpolation by inverse distance 
weighted with the power of two. Figure 9 illustrates the 
resultant maps for each parameter. The figure shows a 
clear trend in the amplitude indicating that the seasonality 
of the time series temperature is minimized in the Andes, 
that is, the monthly average temperature there is more 
stable during the year. The same patters are observed in 

Fig. 7  Time series parameters (amplitude, angular coefficient, intercept and, phase), presented as regionalized variables

Fig. 8  Experimental semivariograms (red dots) and its models (lines) of the time series parameters as a regionalized variable
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the phase, illustrating that the sine wave that represents 
the seasonality is in a different phase in the pacific coast.

The spatiotemporal variogram was calculated for the 
original and the two decomposed datasets. To choose the 
adequate spatiotemporal model, the test of separability 
[90, 91] was applied for all datasets and every result does 
not reject the null hypothesis at 0.05 level of significance. 
The separability characteristics mean that the spatiotem-
poral covariance can be defined by a purely spatial and 
purely temporal covariance [16]. The function is separable 
if C(h, u)/C(h,0) = C(0, u)/C(0,0), for all h and u and, since the 
C(0,0) is constant, the equation can be simplified as C(h, 
u) ~ C(h, 0)C(0, u) [16, 92]. The Product Covariance Model 
[21] was used to model every experimental variogram in 
this study. The authors explain that the product of the 
covariances separate the dependence on the two and it 
is the simplest way to model a variogram in space–time. 
The method multiplies the spatial and the temporal covari-
ances (Eq. 10) and, it can also be written as the variogram 
function (Eq. 11). Both functions are defined [21] as:

where  Cs is the spatial covariance,  Ct is the temporal covari-
ance, γs is the spatial variogram, γt is the temporal vari-
ogram [21]. Thus, the spatiotemporal variogram model of 
all datasets was detached between the spatial component 
and the temporal component. This separability makes the 
spatial anisotropy easy to access, that is, one can model the 
2D (or 3D if working with a three-dimension spatial data-
set) variogram with anisotropy in the spatial component 

(10)C(h, u) = Cs(h)Ct(u), (h, u) ∈ R
n × T

(11)
�(h, u) = Cs(0)�t(u) + Ct(0)�s(h) − �s(h)�t(u), (h, u) ∈ R

n × T

γs(h) or  Cs(h). The variogram model of the original data has 
no nugget effect, the joint sill at 22, the spatial range at 
8° and the temporal at 45 months. The variogram model 
of the global decomposition residuals shows no nugget 
effect, the joint sill at 14, the spatial component with the 
same sill and range at 8°, and the temporal component 
with the sill at 2.52 and the range at 12 months. Last but 
not least, the variogram model of the local decomposi-
tion residuals exhibits no nugget effect, the joint sill at 2, 
the spatial part with the sill at 1.02 and the range at 6°, 
and the temporal part with the sill at 1.6 and the range 
at 12 months. Although the spatial components seem to 
have a spatial trend, the polynomials analysis does not 
indicate any improvement in the spatial variance. Some 
authors [14, 93–95] explain that the variogram should be 
fitted manually due to the decisions that the user must 
make and the automatic algorithms can make mistakes, 
such as anisotropy direction, nugget effect, structures 
(quantity and type), guarantee the positive definite func-
tion and consider the points as independent observations. 
For that reason, all analysis, fitting and adjustments in the 
spatiotemporal variogram models were done manually 
with exhausting tests to guarantee that the final results 
follow the best practices in geostatistics. All the spatiotem-
poral variogram parameters are the same as the spatial, 
however, the range considers the distance in the space 
and in the time components.

The original variogram shows a strong temporal sea-
sonality that is partially maintained in the global decom-
position residuals. Meanwhile, the local decomposition 
residuals modeled and removed almost all the trend 
and seasonality so well that leads the experimental vari-
ogram to an almost pure nugget effect in the temporal 

Fig. 9  Spatial interpolated time series parameters
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component. The three experimental variograms and their 
respective models are represented in Fig. 10.

The spatiotemporal ordinary kriging as computed to all 
three datasets with their respective variogram models. The 
cell size is 0.5° in latitude and longitude in space and every 
month for the next 10 years (January 2008 to December 
2017). Finally, both decomposed datasets were trans-
formed back with its original deterministic model (trend 
and seasonality) with the Eq. 6. The global decomposition 
method used averaged parameters and the local decom-
position approach used the parameters beforementioned 
(Fig. 9).

Another comparison is considering the influence area 
of each time series. That is, the area (panels or sub-regions) 
of each time series are made of its closest grid points. Thus, 
ARIMA Models can forecast one value for the entire panels 
at each time. The ARIMA Models forecast was executed 
by automatic ARIMA (’forecast’ R package) [96, 97]. The 
ARIMA Models were introduced by [98]; and are explained 
by several authors [58, 99–105]. The ARIMA Models and 
its forecast are presented in Fig. 11 at the weather station 
978,030 and 879,340. It is clear that the seasonality is well 
defined in these models.

3.4  Results and comparison

In order to determine the most accurate and precise 
method, the results are compared with the temperature 
measured at the weather stations (calibration and con-
trol periods) and the temperature computed by satellite 
images. Table 1 display their statistics and it is easy to 
check that all approaches maintained the stations aver-
age, meanwhile, they smoothed the results, that is, the 
minimum is higher, and the maximum is lower in all cases. 
Consequently, the standard deviation tends to be lower 
as the range of values is narrow. The ARIMA Panels and 
the local decomposition method smoothed less than the 
global method and the smoothness of the spatiotemporal 
ordinary kriging is brutal with the temperature 283.3 K in 
all quartiles.

Similarly, the average and the standard deviation of 
each month was calculated and compared among all 
methods (Fig. 12). It is straightforward that the spatiotem-
poral kriging tends to the values’ averages at the vario-
gram range and does not represent the temporal oscilla-
tion, either the spatial distribution. Both decomposition 
methods represented properly the average temperature 
of the control period. Moreover, the standard deviation 
graph illustrates that the kriging and the global decompo-
sition approaches go to zero due to the values is the aver-
age after the influence of the variogram’s range, that is, 
only one global average is considered at all spatial points 
for each month. Besides that, the local decomposition 

approach repeated the stations’ pattern with smaller val-
ues, probably due to the smooth effect. It is straightfor-
ward that the temporal average and standard deviation of 
ARIMA Panels could follow the dataset (weather stations 
temperature) patterns, once its forecast (Fig. 11) and statis-
tics (Table 1) shows no smoothing. The mean temperature 
range of the stations is narrower, and the standard devia-
tion is systematically lower than the respective results of 
LST. The statistical difference between the stations and LST 
is due to insufficient sampling.

Another results’ comparison is to measure its inaccu-
racy, one robust way of doing this is computing the RMSE 
(Eq. 9). This calculation requires the true values at every 
point and while there are no real values at every single 
pixel, the temperature calculated by the satellite image 
LST was used to compute the estimation errors. The LST 
resolution (0.05°) dataset was adjusted by aggregating the 
pixels to be at the same resolution of the cell sizes used 
in the interpolation (0.5°). Firstly, the RMSE of the control 
period (all weather stations) is 3.13, which means that the 
temperature taken at the weather stations is different from 
the calculated in LST. Besides that, considering all points 
in the grid at all study period (January 2008 to December 
2017), the prediction methods: spatiotemporal kriging, 
with global and local decompositions and ARIMA Panels 
have RMSE, respectively, 9.42, 7.05, 5.44 and 5.30. Thus, the 
comparison of all methods shows that the ARIMA Panels 
and the local decomposition method have a significantly 
lower error and it is slightly above the control periods’ 
error.

Withal, the error can also be assessed spatially (com-
pute the error of the temporal values at each pixel) or 
temporally (compute the error the spatial values at each 
month). Figure 12 shows the spatial error, in other words, 
the RMSE was calculated at each pixel. That is, the error of 
every single pixel comparing the estimated value and the 
LST value of all months (January 2008 to December 2017). 
The figure exposes that, spatially, the local and the ARIMA 
Panels approaches have an inferior error because they are 
visually more blueish, and the Andes region presents the 
higher values in all methods. Furthermore, a large part of 
the error in the stations and consequently in all methods 
is caused by scarce information where the temperature 
oscillation is higher, the Andes (Fig. 13).

The temporal error can be measured each month 
comparing all the estimated values with the LST on that 
date. It is an adjustment of Eq. 9 that calculates the spatial 
points error at a fixed time. The graph in Fig. 14 clarifies the 
improvement of the local decomposition and the ARIMA 
Panels approaches, their errors are almost always lower 
than the global decomposition approach and the regular 
kriging procedure, as well as the temporal patterns, reflect 
the one in the control period.



Vol.:(0123456789)

SN Applied Sciences (2020) 2:1001 | https://doi.org/10.1007/s42452-020-2814-0 Research Article

Fig. 10  Experimental and model variogram of the original and residuals from global and local decompositions
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4  Conclusion

The local temporal drift approach demonstrated to be an 
efficient way to map the deterministic parameters and 
estimate a spatiotemporal variable at any location at any 
time even in a poorly sampled region. Despite this, the 
map of the decomposition parameters was achieved 
by ordinary kriging and inverse distance weighted and 
the results seem to be satisfactory for an area with a 
few stations. To ensure the second-order stationary 
for the entire area, the local decomposition removed, 
deterministically, not only its trend but also its cyclic-
ity. The temporal drift at each spatial location (station) 
guarantees the best fit model for the complete dataset 
and not mixing space and time dimension. The global 
decomposition method considers that the temporal 
oscillation is the same for the entire area, which may 
not be the case, especially, when forecasting massive 
regions with several temporal patterns. However, the 
global external drift is easier to set and computation-
ally less demanding. That is, if one is working in a small 
area that the time series parameters are similar to all 

spatial points, the global decomposition method may 
present acceptable results. In general, the ARIMA Panels 
presented results very close to the local decomposition 
approach, that is, low smoothness and low errors, as well 
as, expected temporal patterns in the average tempera-
ture and standard deviation. The major advantage of the 
ARIMA Panels is that this method does not need a spa-
tial correlation model, so it is good for a poorly sampled 
region as Patagonia. On the other hand, this method 
cannot generate well-distributed maps (only one value 
per sub-region) and the spatial continuity may be lost 
in long-term studies due to the independence of each 
time series forecast.

The proposed method is notably good when the st-
kriging can be used to estimate the spatial distribution 
of the residual, in other words, estimation considers the 
residual spatial correlation while the variogram does not 
reach the sill. Nevertheless, the ten-year analysis indicates 
that the local decomposition approach can also be applied 
to long-term forecast due to three main reasons: (i) the 
average temperature is very close to the observed in the 
control period; (ii) the standard deviation follows the same 
pattern of the control period; (iii) the error is inferior of 

Fig. 11  ARIMA models with forecast (blue lines) at weather stations (978,030 and 879,340)

Table 1  Statistical analysis of 
the stations, LST, kriged, local 
and global estimations

Min 1st Median Mean 3rd Max Std. Dev

Calib. stations 267.9 278.8 282.4 283.1 287 299.6 5.86
Ctrl. stations 271.8 279.1 282.6 283.5 287.2 299.5 5.78
LST 256.3 273.9 279.0 280.9 287.2 307.3 9.17
Krig 281.5 283.3 283.3 283.6 283.3 294.7 1.18
Global 274.7 278.9 282.7 282.7 286.5 295.9 4.39
Local 273.7 278.6 282.1 282.8 286.2 296.9 4.97
ARIMA Panels 272.9 278.9 282.2 283.1 287.1 297.3 5.61
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the st-kriging and global decomposition method and it 
presents a similar pattern of the control periods’ error. 
Although the temporal correlation of the case study is 
not long enough to cover the entire forecast period, the 
results beyond the temporal (variogram) range may not be 
influenced by the kriging of the residuals. That means that 

after the temporal (variogram) range the results are just 
a model of its trend and seasonality. In order to keep the 
space–time covariance in the long-term forecast, one may 
apply a sequential stochastic simulation instead of krig-
ing. Another point is that it is expected that this method 
should perform better when the covariance model is not 

Fig. 12  Mean and the standard deviation of the temperature at each month

Fig. 13  Error (RMSE) at each estimated pixel
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separable, that is, the spatiotemporal framework could 
not be entirely separable. Thus, the variogram model of 
the residuals should represent the intrinsic space–time 
continuity.
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