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Abstract
Biosurfactants are surface-active natural polymers produced within several microorganisms and are secreted outside 
the cellular environment. They are the focus of modern researches due to their eco-friendly nature and high produc-
tion capability using low-cost agro-industrial wastes. In this research, we have evaluated Aspergillus niger (A. niger) for 
its biosurfactant production potential during solid state fermentation of banana stalks powder. The native strain of A. 
niger produced 2.3 g/L of biosurfactant with 49.74 cm2 oil displacement, 57% emulsification index and an emulsifica-
tion activity of 1.024 (OD540). Sequential mutagenesis was induced in the native strain of A. niger by exposing the strain 
with different concentrations of ethidium bromide (EtBr), for different time periods. Significantly higher amount of 
biosurfactant (3.3 g/L) was obtained from the mutant strain A. niger M2 exposed to 50 µg/10 mL of EtBr for 60 min. The 
screening tests revealed the improvement in oil displacement (59.81 cm2), emulsification index (62.3%) and emulsifi-
cation activity (OD540, 1.262) of biosurfactant. FTIR analysis confirmed the presence of amine, amide, fatty acids and 
triglycerides functional groups. The maximum biosurfactant synthesizing mutant (A. niger M2) was further optimized 
using RSM under CCD. After optimization, the highest biosurfactant (5.50 g/L) was obtained at 35 °C temperature, 7 
pH, 5.75 g substrate concentration and 168 h of overall incubation period. In conclusion, the cost-effective production 
of biosurfactant, along with novel structural and multifunctional characteristics, this study may be useful for different 
industrial and biotechnological applications.

Keywords  Biosurfactant · Aspergillus niger · Mutagenesis · Structural properties · Statistical optimization · 
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1  Introduction

Surfactants are surface-active chemical substances which 
have gained high importance in fluid mechanics because 
of their ability to reduce surface tension of liquids. Most of 
these surface-active compounds are synthesized chemi-
cally, which are causing serious toxicological and envi-
ronmental problems. Biosurfactants are biopolymers, 
produced by several microorganisms (bacteria and fungi), 
which possess hydrophobic and hydrophilic moieties. They 
provide the best alternative to synthetic surfactants in 

term of low toxicity, high biodegradability, environmen-
tally friendly nature, and the production capability using 
low-cost agro-industrial raw materials “green technology” 
[1]. Biosurfactants comprise a large group of chemical 
compounds e.g. glycolipids, lipopeptides, phospholipids, 
lipoproteins and lipid-polysaccharide complexes [2]. They 
present various applications as emulsifiers, conditioners, 
cosmetics and food industries [3, 4].

Biosurfactants have been reported to possess excel-
lent biomedical and therapeutic properties [5–8] and also 
found to be effective to tackle environmental pollution 
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through bioremediation [4, 9]. They are important in 
food digestion and respiratory action, plant pathogenic-
ity, paints, beverages, cosmetics and cement industries. 
Moreover, biosurfactants can be produced from renew-
able resources and commonly effective in extreme envi-
ronmental conditions. Biosurfactants also have applica-
tions in laundry formulations, pesticides and herbicides, 
agriculture, textile, household cleaning products, deter-
gents, petroleum and paper industries, food processing, 
and pharmaceutical industries. They are also important in 
enzyme biotechnology because of their regulatory effects 
and bio-stimulatory effects [10].

Surfactant display properties like foaming, emulsifica-
tion, detergency and dispersion [11–13]. Microorganisms 
have ability to produce different kinds of surfactants, from 
these, high molecular weight polymers are highly efficient 
emulsifiers [14, 15], while low molecular weight polymers 
efficiently reduce interfacial and surface tension of liquids 
[16]. Biosurfactants can bear extreme environmental con-
ditions e.g., wide range of pH, high salinity and tempera-
ture [17]. In previous decade, much attention has been 
devoted towards biosurfactants because of their excep-
tional functional properties. These properties allow a pos-
sible replacement of chemically synthesized surfactants 
for a number of industrial and biotechnological operations 
[18].

The identification and optimization of fermentation 
parameters that influence the surfactant yield represent 
the major points for the development of cost-effective 
procedures [19]. There are several different factors con-
trolling the microbial biosurfactant production during 
fermentation which are needed to be maintained within 
a specific range. It will allow maximum microbial multi-
plication, which ultimately leads to higher biosurfactant 
production. In this regard, several physical and nutritional 
parameters are needed to be optimized for enhance bio-
surfactant yield. The yield of biosurfactant highly depends 
upon the availability of carbon and nitrogen sources and 
other limiting nutrients [20]. Factors influencing biosur-
factant production have extensively been investigated 
particularly for Pseudomonas spp. [21, 22], Candida spp. 
[23–25], Rhodococcus spp. [26, 27] There is a dirt of infor-
mation related to biosurfactant production from bacterial 
spp. and the optimization of several nutritional and physi-
cal parameters influencing the overall yield [28–30].

Microbial biosurfactant production can only be maxi-
mized if fermentation parameters are maintained at the 
optimal growth conditions of microbe. For this purpose, 
one of the most appropriate approach could be response 
surface optimization. RSM is a combination of statisti-
cal and mathematical tool that is frequently being used 
in fermentation biotechnology for optimization of fer-
mentation parameters [31–33]. RSM is a statistical design 

experimental process in which several factors are varied 
simultaneously. In fact, the relationship between the inde-
pendent variables and the response variable is usually 
unknown in an experiment. Therefore, the initial step is to 
approximate the response variable through analyzing the 
independent variables.

This study was designed to investigate A. niger for its 
ability to synthesize biosurfactant. The native fungal strain 
was mutated using different concentrations of EtBr for 
different time periods. The lyophilized biosurfactant from 
both native and mutant strain was structurally character-
ized using FT-IR spectroscopy. The maximum biosurfactant 
producer mutant strain (A. niger M2) was further optimized 
using RSM under CCD. An insight of primary characteristics 
of fungal biosurfactant have also been provided in this 
article.

2 � Materials and methods

2.1 � Materials

Banana stalks were obtained from Botanical Garden of 
University of Agriculture, Faisalabad (UAF), Pakistan. After 
pretreatment, stalks were chopped and placed in the 
incubator (LabTech LDO-150 N) at 50 °C for 48 h. The dried 
substrate was ground into fine powder and stored in an 
airtight jar at 25 °C temperature. All other chemicals/mate-
rials used in this study were obtained from distributors 
of international companies (Merck KGaA, USA and Sigma 
Aldrich, Germany).

2.2 � Fungal strain

Purified culture of a black rot fungus (A. niger) was col-
lected from Industrial Biotechnology Laboratory of UAF, 
Pakistan. Culture was streaked on a freshly prepared PDA 
slants of pH 6.5 and incubated at 35 °C temperature for 
6–8 days. Fungal spore suspension was prepared by trans-
ferring the culture to Vogel’s minimal media [34]. Media 
was added with glucose (2%) as carbon source and placed 
in shaking incubator at 160 rev/min and 37 °C temperature.

2.3 � Chemical mutagenesis

Ethidium bromide (EtBr) was used for the induction of 
mutation in A. niger. For this purpose, mutagen stock solu-
tion was prepared by the addition of EtBr 500 µg/10 mL 
of distilled water. Solutions of different concentrations i.e. 
50, 100, 150 and 200 µg/10 mL were prepared from EtBr 
stock. Serial dilutions of vegetative cells of fungal inocu-
lum were formed and pellets were suspended in EtBr solu-
tion for different time periods of 30, 60 and 90 min. The 
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fungal suspension was centrifuged, and the pellets were 
washed thrice with saline solution [composition (g/L) of 
NaCl (8.9) and yeast extract (1.0) in ddH2O]. Agar media 
containing triton X-100 was used for the development of 
genetically modified colonies [35]. The final screening of 
mutant colonies was achieved by using 2-deoxy-d-glucose 
as metabolic inhibitor that was used for the isolation of 
mutant strains [36]. The inocula were prepared from native 
as well as selected mutant strain and preserved at refrig-
erator temperature (4 °C).

2.4 � Development and recovery of biosurfactant

The solid-state fermentation was carried out using banana 
stalk powder (5 g) as substrate moistened with 5 mL of 
fungal growth suspension prepared by mixing g/L of 
NaNO3 (3.0), MgSO4.7H2O (0.5), KH2PO4 (1.0), yeast extract 
(1.0) and peptone (3.0) with a pH 7.0. The media was steri-
lized by autoclaving for 20 min at 121 °C temperature. Fer-
mentation medium was added with 2 mL of A. niger inocu-
lum containing 107 spores/mL and incubated at 37 °C for 
6–8 days. All the experiments were conducted in triplicate. 
Media was centrifuged for 20 min at 5600 rev/min to get 
cell-free supernatant. Cell-free supernatant was acidified 
with 6 N HCl to get a final pH of 2.0 and was kept in refrig-
erator temperature (4 °C) for the precipitation of lipids and 
proteins [1]. The pallets were harvested by centrifugation 
for 15 min at 10,000 rev/min and pH was adjusted to nor-
mal by the addition of sufficient amount of distilled water. 
The extracted pallets were lyophilized for the quantifica-
tion of biosurfactant.

2.5 � Screening of biosurfactant

2.5.1 � Oil displacement

Oil displacement was performed using the method 
adopted from Morikawa et al. [37] with little modifica-
tions. Briefly, distilled water (40 mL) was poured in a glass 
petri plate of 90 mm diameter. Cottonseed oil (8.0 mL) 
was poured on the water surface to form a thin layer. Cell-
free supernatant containing biosurfactant (3  mL) was 
gently poured at the center of petri plate. The area (cm2) 
of displaced oil layer was measured for determination of 
biosurfactant.

2.5.2 � Emulsification index

Emulsification index (E24) was determined by the method 
of Alvarez et al. [38]. Briefly, the cell free supernatant was 
added in the cottonseed oil with 3:2 (biosurfactant: oil) 
ratio. The mixture was gently vortexed, and the height 
(cm) of emulsion layer and total height of solution was 

calculated after 24 h. The emulsification index was calcu-
lated by using the equation.

2.5.3 � Emulsification activity assay

The determination of emulsification assay was performed 
by the method described by Patel and Desai, [39]. Briefly, 
a solution of Tris-Mg was prepared by the addition of 
Tris–HCl (20 mM) and MgSO4 (10 mM) with a final pH of 
8.0. Tris-Mg solution (7.5 mL) was added in a test tube and 
added with 0.5 mL of cell-free supernatant (biosurfactant) 
and 0.1 mL of kerosene oil. The tubes were gently vortexed 
and allowed to stand for 60 min. Absorbance was recorded 
at 540 nm using UV/visible spectrophotometer (Dynamica 
Scientific, HALO DB-20). Patel and Desai (1997) described 
the emulsification activity as the measured optical density 
of a sample. The activity was calculated by using the fol-
lowing relationship:

here ‘A’ is absorbance and ‘L’ is optical pass length.

2.6 � Structural characterization of biosurfactant

2.6.1 � Fourier transform infrared spectroscopy (FT‑IR)

Biosurfactant obtained from native as well as mutant 
strains of A. niger was analyzed using FT-IR (Bruker Alpha 
FTIR, Germany) for the detection of major functional 
groups. The lyophilized biosurfactant samples (0.5 mg) 
were placed directly under the infrared beam and spec-
trum was recorded at 500 – 4000  nm wavelength for 
detailed structural analysis.

2.7 � Optimization of biosurfactant production

Optimization is a technique used to get the best possible 
results with maximum achievable performance and cost-
effectiveness under certain limitations. The biosurfactant 
production from mutant A. niger was optimized using 
response surface methodology (RSM) under central com-
posite design (CCD). RSM is a combination of statistical 
and mathematical techniques used to analyze the effect 
of dependent variables on one or more independent vari-
ables (response). Four parameters i.e., temperature (X1), 
pH (X2), incubation time (X3) and substrate concentra-
tion (X4) were optimized using four-factors, six-level CCD 
requiring 30 runs with six central points and α 0.5. The bio-
surfactant was harvested by acid-precipitation followed by 

Emulsification index
(

E24
)

=
Hight of emulsion layer (cm)

Total hight of solution (cm)
× 100

Emulsification activity
(

OD540

)

= A∕L
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centrifugation at 10,000 rev/min for 15 min. The extracted 
biosurfactant was freeze-dried and weighted for quantifi-
cation. The RSM model was designed using Design Expert 
software v11.1.0.1.

3 � Results

3.1 � Screening for best biosurfactant producer 
strain

Biosurfactant produced by native strain of A. niger (2.3 g/L) 
showed 49.74 cm2 oil displacement area, 57% emulsifica-
tion index and 1.024 emulsification activity. The wild fun-
gal strain was mutated with EtBr to determine the con-
sequence of mutagenesis on total biosurfactant yield. 
Table 1 summarizes the data obtained after sequential 

mutagenesis in A. niger using different concentrations 
and exposure time to mutagen (EtBr). Maximum bio-
surfactant yield (3.3 g/L) was attained from A. niger M2 
specie exposed to 50 µg/10 mL EtBr for 60 min. In addi-
tion, screening tests revealed an emulsification index of 
62.30% and emulsification activity of 1.262 (OD540) with 
oil displacement area of 59.81 cm2. All the mutants pro-
duced significant amount of biosurfactant ranging from 
1.5 – 3.3 g/L depending upon mutagen concentration and 
exposure time (Fig. 1a). Figure 1b provides a representa-
tion of emulsification index (E24) from different mutant 
strains of A. niger. The emulsification and oil displacements 
conformed the biosurfactant production, and the dry 
weight estimation after lyophilization made the selection 
easier for maximum producing mutant colonies (A. niger 
M2) which was subjected to RSM optimization.

Table 1   Screening of A. 
niger mutants for their 
biosurfactant production 
potential depending upon 
total biomass, oil displacement 
area, emulsification index and 
emulsification activity

EtBr conc. 
(µg/10 mL)

Mutant strain ID Exposure 
time 
(min.)

Displace-
ment area 
(cm2)

Emulsifica-
tion index % 
(E24)

Emulsification 
activity (OD540)

Biosur-
factant yield 
(g/L)

50 M1 30 47.76 ± 3.44 57.63 ± 2.30 1.024 ± 0.01 2.9 ± 0.20
M2 60 59.81 ± 4.20 62.30 ± 2.41 1.262 ± 0.00 3.3 ± 0.21
M3 90 52.78 ± 4.01 59.95 ± 1.80 1.175 ± 0.01 3.0 ± 0.18

100 M4 30 30.18 ± 3.32 42.45 ± 2.81 0.820 ± 0.03 2.1 ± 0.28
M5 60 37.37 ± 3.41 47.50 ± 2.73 0.963 ± 0.02 2.6 ± 0.30
M6 90 35.24 ± 3.00 47.23 ± 2.89 0.894 ± 0.01 2.7 ± 0.27

150 M7 30 25.50 ± 2.91 39.60 ± 2.31 0.679 ± 0.00 1.6 ± 0.10
M8 60 24.62 ± 3.31 38.24 ± 2.40 0.652 ± 0.01 1.5 ± 0.13
M9 90 32.96 ± 4.29 43.04 ± 2.44 0.740 ± 0.00 1.7 ± 0.11

200 M10 30 40.69 ± 4.10 49.90 ± 7.20 0.826 ± 0.00 1.9 ± 0.51
M11 60 44.39 ± 6.21 63.45 ± 7.61 1.260 ± 0.02 3.0 ± 0.39
M12 90 42.99 ± 4.02 61.20 ± 6.91 1.187 ± 0.00 2.4 ± 0.42

Fig. 1   Representation of a Biosurfactant yield b Emulsification index (E24) of biosurfactant produced from A. niger after exposure to different 
concentrations of EtBr for different time periods
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3.2 � Fermentation for biosurfactant production

Biosurfactant production was monitored after 168 h of 
fermentation. The maximum biosurfactant production 
(3.3 g/L) was attained from A. niger M2 spp. with highest 
emulsification index of 62.30%. The extraction of biosur-
factant was performed using acid-precipitation. Biosur-
factant is generally soluble at basic or neutral pH (i.e. 7). 
By decreasing the pH, biosurfactant start to precipitate 
and increase the turbidity of the solution. This effect was 
determined by gradually decreasing the pH using 6 N 
HCl and taking the absorbance at 600 nm at UV/vis spec-
trophotometer (Dynamica Scientific, HALO DB-20). The 
maximum biosurfactant precipitation was achieved at pH 
2. Further decrease in pH did not resulted any significant 
change (Fig. 2).

3.3 � Major functional groups: FTIR

Spectrum of biosurfactant produced from native A. niger 
(Fig. 3, orange line) showed a broad peak at 3366 cm−1 
which shows asymmetric stretching of N–H bonds of sec-
ondry amides of proteins. A peak at 2890 cm−1 shows strong 
stretching of C–H bonds of alkane alkene and alkynes. A 
intense peak at 1655 cm−1indicate C=O, C–N stretching and 
N–H bending of protein amides. A short peak at 1710 cm−1 
shows the presnece of C=O stretching of carboxylic acid, 
aldehyde and keton functional groups. A peak at 1500 cm−1 
indicate the presence of C=C bond of aromatic skeloton and 
peak at 1571 cm−1 shows N–H bonds of amines group. Peek 
at 1220 cm−1 indicate the presence of P=O bond of phos-
phodiester group of nuclic acid and phospholipids.

Biosurfactant from mutant strain A. niger M2 has been 
presented in Fig. 3 (blue line), which shows a broad peak 
at 3349 cm−1 which shows weak N–H stretching of primary 
and secondary amines and amides. Successive vibrations 
between 2000 and 2500 cm−1 indicates the presence of N–H, 
C–H bonds of alkane alkene and alkynes. A peak at 1710 cm−1 
show plane stretching of C=O bond which indicate the pres-
ence of ester, lipid and triglycerides functional group. A peak 
at 1551 cm−1 indicates the presence of N–H bending which is 
coupled with C–N bond stretching of amide functional group. 
Peaks at 1456, 1435 and 1400 cm−1 indicate the presence of 
CH3 asymmetric vibration, C–H bending and CH3 symmetric 
vibrations of protein respectively. A broad peak at 1051 cm−1 
shows C-O stretch of COH tyrosine protein. Peek at 702 cm−1 
show N–H out of plane deformation of protein.

3.4 � Optimization of biosurfactant

The biosurfactant yield from A. niger M2 was further opti-
mized in SSF using statistical tools (RSM). 4-level, 6-fac-
tors CCD was used which required 30 experiments and 

Fig. 2   Representation of biosurfactant precipitation (increase in 
turbidity of solution) at acidic range of pH

Fig. 3   FT-IR spectra of lyophilized biosurfactant produced by native and mutant strains of A. niger 
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the response (g/L of biosurfactant yield) was determined. 
Total biosurfactant yield was in the range of 2.8–5.5 g/L 
depending upon fermentation conditions provided. The 
lowest yield was obtained at 35 °C temperature, 5.5 pH, 
4.5 g substrate concentration and incubation of 168 h. 
The maximum biosurfactant yield (5.5 g/L) was obtained 
at 35 °C temperature, 7 pH, 5.57 g substrate concentra-
tion and an overall incubation period of 168 h. The model 
was analyzed using Design-Expert software and the 3D 
response surface graphs were constructed.

The response surface model significance and fitness 
were analyzed by the determination of ANOVA variant 
for quadratic model and each individual factor was tested 
using F-values and p-values. ANOVA for RSM quadratic 
model for biosurfactant production under optimized con-
ditions has been represented in Table 2. The high model F 
value (2.743) showed that the model is significant. The lack 
of fit value was insignificant indicating the model appro-
priateness. These results showed the quality and the fit-
ness of the RSM and its capability to predict the response 
within the range of variables used. RSM model suggested 
the quadratic equation for the total biosurfactant yield 
which can be expressed as follows:

Biosurfactant yield (g∕L) = 2.05 + 0.0784(X1) + 0.0166(X2) + 0.0157(X3)

+ 0.0353(X4) + 0.0441(X1 × X2) + 0.0206(X1 × X3)

+ 0.0212(X1 × X4)−0.0027(X2 × X3) + 0.0234(X2 × X4)

− 0.0134(X3 × X4) + 0.3274
(

X12
)

−0.5901
(

X22
)

− 0.9827
(

X32
)

+ 1.09
(

X42
)

where X1, X2, X3 and X4 are the codded values of the relat-
ing factors temperature, pH, incubation time and substrate 
concentration.

Temperature and pH are the great influencer of biosur-
factant production during fermentation. The optimum 
production occurs in the specific range where the micro-
organism is most active. In case of Aspergillus strains, the 
optimum growth temperature lies between 30 and 40 °C 
and a pH ranging from 6 to 7. This indicates the high tem-
perature and pH dependency of biosurfactant production 
process. In this study, maximum biosurfactant production 
was obtained at pH 7 and 35 °C temperature. Figure 4a 
presents the effect of temperature and pH on biosur-
factant yield at fixed value of substrate concentration and 
fermentation time. Since the optimum pH for Aspergillus 
strains is 6.5–7, the production was drastically reduced at 
end points of pH variable. Temperature was also the criti-
cal parameter that have been controlled in bioprocess. 
Strain A. niger M2 showed maximum activity at 30–40 °C 
temperature with maximum biosurfactant production at 
35 °C (Fig. 4a).

Incubation time was found to be one of the most 
influencer of biosurfactant production. Biosurfactant 

Table 2   Analysis of variance 
(ANOVA) for response surface 
model for the development of 
biosurfactant by A. niger M2

Source Sum of squares df Mean square F value p value

Model 22.15 14 1.58 36.29 0.000 Significant
A-temperature 0.116 1 0.117 2.68 0.002
B-pH 0.136 1 0.136 3.13 0.007
C-incubation time 0.434 1 0.434 9.96 0.006
D-substrate concentration 0.012 1 0.013 0.294 0.005
AB 1.95 1 1.95 44.63 < 0.000
AC 0.230 1 0.231 5.29 0.036
AD 0.024 1 0.024 0.551 0.009
BC 0.176 1 0.176 4.05 0.002
BD 0.000 1 0.001 0.009 0.925
CD 0.144 1 0.144 3.31 0.088
A2 0.176 1 0.176 4.04 0.062
B2 0.469 1 0.470 10.77 0.005
C2 0.030 1 0.031 0.702 0.415
D2 0.073 1 0.074 1.69 0.213
Residual 0.654 15 0.044
Lack of fit 0.588 10 0.059 4.46 0.0562 Not significant
Pure error 0.065 5 0.014
Cor total 22.80 29
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production was maximum after 168 h of incubation in 
SSF of banana stalks powder. The production was equally 
decreased at higher or lower values of incubation time 

than 168  h. Figure  4b shows the interaction between 
temperature and incubation time by keeping other factors 
constant. Any deviation from 168 h of incubation leads to 

Fig. 4   Response surface three-dimensional (3D) plots showing 
interaction between a temperature versus pH b temperature ver-
sus incubation time c temperature versus substrate concentration 

d pH versus incubation time e pH versus substrate concentration f 
incubation time versus substrate concentration
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the decline in biosurfactant production from A. niger M2. 
The strains showed maximum production after 168 h in 
the exponential growth phase of the specie.

The joint effect of temperature and substrate concen-
tration has been represented in Fig. 4c by keeping pH and 
incubation time constant. The biosurfactant yield was 
maximum at 4–5 g of substrate and the yield was equally 
decreased at upper and lower level of factor. The maxi-
mum biosurfactant production was achieved at 5.75 g of 
substrate concentration where the factor was at + 1 level 
of the design. Figure 4d shows the joint effect of pH and 
incubation time on biosurfactant production by keeping 
other factors constant. Maximum biosurfactant produc-
tion was obtained at pH 6 to 7 and 168 h of incubation in 
SSF. The production was equally declined at higher and 
lower level of these factors, but the pH was less influencing 
the production as compared with incubation time.

The effect of pH versus substrate concentration has 
been displayed in Fig. 4e by keeping constant values of 
temperature and incubation time. In the figure, substrate 
concentration positively influenced the biosurfactant 
production, means the yield was increased by increase in 
substrate concentration, whereas, at pH 6 to 7, yield was 
optimum which gradually decreased by moving towards 
extreme points, but the reduction was generally lower. Fig-
ure 4f shows the interaction between incubation period 
and substrate concentration by keeping temperature and 
pH constant. Highest yield was obtained at 6 to 7 g sub-
strate concentration and incubation period of 168 h.

4 � Discussion

The production of microbial surfactants has gained high 
importance from previous decade, especially due to their 
potential applications in biomedical and industrial bio-
technological sectors. Oil displacement, Emulsification 
activity and emulsification index has been used for the 
estimation of biosurfactant [32, 38–40]. Therefore, using 
such strategy, biosurfactant production from A. niger was 
screened after random mutagenesis for the selection of 
highest biosurfactant producer mutant strain. Further-
more, quantification using dry weight estimation made 
the selection more convenient. Biosurfactant production 
from fungal species have extensively been described 
from Aspergillus spp. [41–44] using various synthetic and 
biobased substrates, but herein, mutant A. niger (M2) pro-
duce significantly higher amount of biosurfactant (3.3 g/L) 
as compared with previous studies using native A. niger 
strain. The mutant (A. niger M2) exhibited high emulsifi-
cation index and oil displacement as compared to native 
strain (Table 1).

Despite having several commercially attractive char-
acteristics compared with synthetic surfactants, the pro-
duction of commercial scale biosurfactants from micro-
bial origin has not been realized because of their high 
production cost and significantly low yield. There are two 
basic strategies that are being adopted by the biotech-
nologists for economical biosurfactant production, which 
corresponds, the use of low-cost waste materials to reduce 
the overall substrate cost and the efficient bioprocesses, 
including optimized fermentation parameters involving 
multiple physical and nutritional factors [45]. The selection 
of appropriate substrate is a crucial step in the produc-
tion of biosurfactant, as the substrate account for overall 
10–30% cost of the experiment [45, 46]. Therefore, in this 
context, herein, a cost-effective process was developed 
for the production of biosurfactant using agro-industrial 
raw-material (banana stalks powder) with waste-to-value 
approach. The production of significant amount of biosur-
factant using banana stalks waste revealed the compatibil-
ity of the medium. Hence, the reported medium composi-
tion was selected for the next experiments.

The biosurfactant production during logarithmic 
growth phase and stationary phase of microorganisms 
have already been studied from various fungal species e.g., 
A. ustus [42], A. niger [43, 44], A. flavus [43, 46], A. versicolor 
[47], and Piper hispidum [48], and various factors influenc-
ing the total biosurfactant yield during fermentation have 
broadly been studied in previous few decades [42, 49–54]. 
From these, several studies have reported classical meth-
ods for optimization purpose by placing one factor as con-
stant and modifying another one. In this research, we have 
applied a proper tool (RSM) for the optimization of differ-
ent factors that influence biosurfactant production from 
A. niger M2 during fermentation. One of the advantages of 
this mutant (A. niger M2) is the highest amount of biosur-
factant production with maximum emulsification activity, 
which make it capable for several industrial applications 
such as microbially enhanced oil recovery [30, 38].

After optimization using RSM-CCD, maximum bio-
surfactant production (5.5 g/L) was attained which was 
2.5-folds higher than the biomass obtained from native 
strain and about 1.7-folds higher than the mutant strain 
(A. niger M2). These results clearly suggest a significantly 
higher amount of biosurfactant as compared with previ-
ous studies. The central composite design (CCD) during 
RSM enabled us to investigate different fermentation 
parameters that support biosurfactant overproduction. 
A close association was observed between R2 (0.820) 
and predicted R2 (0.794), which reflected the compat-
ibility and suitability of methodology to optimize biosur-
factant production. The maximum yield was obtained at 
35 °C temperature, 7 pH, 5.75 g substrate concentration 
and 168 h of overall fermentation period. Any change 
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(increase of decrease) in one of these parameters may 
cause decrease in biosurfactant production. The bio-
surfactant yield (5.5 g/L) from A. niger M2 is the high-
est reported yield from Aspergillus species in solid state 
fermentation.

In addition, the use of banana stalks waste as a sub-
strate in SSF for biosurfactant production by A. niger 
is novel. The production cost would be significantly 
reduced via experimental design described in this study 
using optimized fermentation conditions. The insights 
of fungal surfactants and their significant characteris-
tics have also been studied in this research. The stability 
of biosurfactant obtained from A. niger M2 over a wide 
temperature range indicates its activity at extreme envi-
ronmental conditions, which is an amazing feature for 
its potential use in biomedical and industrial biotechno-
logical sectors including microbial enhanced oil recovery 
and bioremediation [9, 12]. In conclusion, we have suc-
cessfully improved the biosurfactant production about 
1.5-folds after random chemical mutagenesis of A. niger 
using banana stalks powder as low-cost substrate follow-
ing waste-to-value idea (from 2.3 to 3.3 g/L).

5 � Conclusion

In this study, biosurfactant production was successfully 
enhanced about 1.5-folds after EtBr mutagenesis of A. 
niger using agro-industrial waste (banana stalks pow-
der) as low-cost substrate. Optimization of fermentation 
parameters was performed using statistical approach 
(RSM-CCD) to maximize the yield. After optimization, 
maximum biosurfactant yield (5.5  g/L) was attained, 
which was significantly higher from both native as well 
as mutant strains (before optimization) i.e., 2.5-folds and 
1.7-folds respectively. In conclusion, the biosurfactants 
produced from A. niger were a kind of surface-active sub-
stances, having potential applications in biomedical and 
industrial biotechnological sectors including enhanced 
oil recovery and bioremediation. To the best of our 
knowledge, this the first study reporting mutagenesis 
of A. niger for improved biosurfactant production and 
process optimization using cost-effective agro-industrial 
waste as substrate.
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