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Abstract
Performance assessment and timely failure detection of the electric submersible pump can reduce operation costs and 
maintenance in the oil and gas field. Features of equipment malfunction are changes in vibration signals. Evaluation 
of vibrations based on accelerometer sensors can detect failures and allows assessment of system failures. This paper 
proposes a reliable deep learning-based method for electric submersible pump faults detection. The frequency, time 
and spectral information of the vibrational signal are considered as input to the deep hybrid model. The spectral infor-
mation includes the spectrogram obtained using the short-time Fourier transform and the scalogram as a result of the 
continuous wavelet transform and provides a detailed study of the vibration signal. The proposed approach is compared 
with k-nearest neighbors, support vector machines, logistic regression, and random forest. The experimental evalua-
tion shows that the proposed deep hybrid model is superior to these machine learning methods, and can automatically 
and simultaneously detect failures of the electric submersible pump according to the vibration signal that is generated 
during system operation. The proposed approach gives good results and can help an expert in automatic diagnostics of 
equipment and several complex technical systems.

Keywords  Vibration signal · Fault diagnostics · Electrical submersible pump · Classification · Deep neural network · 
Convolutional neural network

1  Introduction

One of the most effective ways to artificially lift oil to the 
surface is to use the electric submersible pump (ESP) sys-
tems. ESPs are complex subsystems that support the lift 
of oil and gas to the surface on the shelf. Installation and 
possible disposal of ESP due to maintenance are expen-
sive operations. The system must reliably work after it is 
deployed. Removing faulty equipment should be avoided. 
Thus, a thorough assessment of the reliability is important 
[1]. Moreover, deep-sea work makes real-time monitoring 
of the system virtually impossible. This need motivates a 
thorough inspection of the equipment in a special test 
environment [2, 3]. Before installation, the ESP system is 

tested in the laboratory on large datasets. An intelligent 
diagnostic system helps professionals detect faults in 
equipment.

The expert should be provided with supporting infor-
mation about the quality of the system. Therefore, the 
decision of the intelligent diagnostic system should con-
sider the expert’s opinion.

The goal of this paper is to develop a reliable method 
for assessing the state of ESP using a deep hybrid model. 
The model combines the advantages of a deep neural net-
work (DNN) and a convolutional neural network (CNN). The 
frequency- and time-domain features of vibration signals 
are considered as input features for the DNN model.
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CNN can process two-dimensional (2D) images accord-
ing to the principle of the human brain, effectively extracts 
features from images, and also requires fewer training 
parameters, unlike DNN. The short-time Fourier transform 
(STFT) spectrogram and continuous wavelet transform 
(CWT) scalogram of the vibration signal are considered 
as inputs to CNN in this study. The spectrogram carries 
information about a fixed time–frequency representa-
tion of the signal, which does not allow obtaining a full 
understanding of what is happening. At the same time, 
the scalogram provides a more detailed view of the vibra-
tion signal. Therefore, the spectrogram and scalogram are 
sent to CNNs and fused for a more informative study of the 
signal. However, CNN gives unsatisfactory results on high-
dimensional images. In this regard, the size of the spec-
trogram and scalogram is reduced to 128 × 128 × 3 pixels.

The proposed approach is compared with k-nearest 
neighbors (KNN) [4], support vector machines (SVM) [5], 
logistic regression (LR) [6] and random forest (RF) [7] as 
the classifier of the ESP state for the implementation of 
an automatic diagnostic system. The results of this study 
show that the proposed deep hybrid model can automati-
cally and simultaneously extract features of vibration sig-
nals from accelerometers that are sensitive to failures in 
the time-, frequency- and time–frequency domains. Thus, 
the proposed hybrid model using deep neural networks 
can be applied in the diagnosis of ESP failures based on 
vibrational signals obtained from accelerometers. Testing 
of the proposed approach is carried out on an ESP system 
faults dataset that includes various types of failures.

The rest of this paper is organized as follows: a liter-
ature review is given in Sect. 2. Section 3 describes the 
features extracted from vibration signals. The proposed 
deep hybrid model is presented in Sect. 4. The experimen-
tal results on evaluating the effectiveness of the proposed 
approach for ESP faults detection are presented and ana-
lysed in Sect. 5. Conclusions are given in Sect. 6.

2 � Related work

Finding deviations from the normal operation of the ESP 
that could cause it to malfunction is an important research 
field. Researchers offer new methods and extend existing 
fault detection algorithms (Table 1). The currently pro-
posed approaches include vibration analysis and fault 
diagnosis to solve this problem [8–11].

The vibration signal carries the most important infor-
mation about the state of mechanical devices, including 
ESP. Fault-sensitive signs are extracted to intelligently 
analyse raw signals and improve diagnostic accuracy. A 
method of centrifugal pump fault (incorrect alignment, 

unbalance, and looseness) diagnosis based on empirical 
mode decomposition (EMD) method was proposed in [12].

A spectral regression-based approach for fault feature 
extraction of bearing accelerometer sensor signals was 
proposed [13]. K-Means method was considered to evalu-
ate the performance of spectral regression (SR), principal 
component analysis (PCA), factor analysis (FA), locality pre-
serving projections (LPP), Laplacian eigenmaps (LE) and 
linear discriminant analysis (LDA).

The stacked denoising autoencoder (SDA) based fault 
diagnosis method, where sparsity representation and 
data compression are used to obtain high-order features 
was proposed [14]. The SDA model was compared to PCA, 
SAE (stacked autoencoder) and AE methods and showed 
relatively better results, because of the ability to the data 
compression for highly reliable self-learning.

The automatic feature selection of ESP vibration sig-
nals was investigated in [15]. A binary ensemble feature 
selection (EFS) algorithm with KNN trained with different 
feature sets (time-domain and frequency-domain features) 
was also proposed. Application of feature selection with 
one-versus-one classification approach improved the clas-
sification accuracy.

An intelligent solution was proposed to diagnose faults 
before ESP installation [11]. KNN, SVM, decision trees (DT), 
RF with and without standardization were considered as 
classifiers. KNN with standardization showed the best 
results in various faults detection.

In [16], the performance of the extreme learning 
machine (ELM) for an automatic failures detection in ESP 
was studied. A sequential forward selection (SFS) algo-
rithm was considered for feature selection. ELM showed 
quite good results compared to KNN and SVM. Rauber 
et al. [17] compared the performance of ELM with and 
without kernel mapping with other classifiers. Also, three 
types of motor pump faults (shaft misalignment, pump 
blade unbalance, and mechanical rubbing) and faulty 
accelerometer sensors were evaluated [18].

In recent years, deep neural networks were applied to 
detect mechanical malfunctions. They found the appli-
cation in the feature extraction of vibrational signals, in 
solving the issue of imbalanced data, and as classification 
methods. Thus, a CNN based feature learning method for 
faults detection was proposed [19]. The method found 
application in image-based fault diagnosis systems [20, 
21].

DNN also found application in solving the issue of 
data imbalance in the diagnosis of mechanical failures. 
To increase the number of equipment failure patterns in 
an unbalanced dataset, Wang et al. (2019) proposed an 
approach based on the Wasserstein generative adversar-
ial network (WGAN) combined with SAE [22]. Comparing 
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with other methods, WGAN-SAE incorrectly classified only 
2.59% of samples.

In [21], the DCNN (deep CNN) was adopted to extract 
the features from grinding sound signals. The proposed 
method was compared with SVM, NB, and back-propaga-
tion neural network (BP). The time–frequency data with 
DCNN showed the best results.

A hierarchical learning rate-adaptive deep CNN 
(ADCNN) was proposed to detect bearing failures [23]. 
ADCNN automatically extracts fault features and shows 
better results than DCNN and an artificial support vector 
regression machine (SVRM) method [23].

An ensemble of DCNNs for bearing fault diagnosis 
and an improved Dempster–Shafer theory (IDSCNN) was 
described [24]. The proposed model has a high diagno-
sis accuracy and adaptability when compared with SVM, 
multi-layer perceptron neural network (MLP), DNN, DCNN 
with wide first-layer kernels (WDCNN) [25] and DSCNN 
models.

Fault diagnosis method using DCNN and RF ensemble 
learning using 2D gray-scale images obtained by CWT was 
proposed [26]. The proposed method was compared with 
BP, SVM, deep belief network (DBN), DAE, and CNN.

A parallel ensemble of DNN and CNN (CNNPEDNN), 
where the time-domain features are extracted by DNN 
(global features), are combined with the features extracted 
by CNN (local features) from the vibration signals [27].

The following conclusions can be drawn, summarizing 
the analysis of the current research state in the creation 
of an intelligent failure diagnosis system. First, very lit-
tle research has been devoted to applying deep neural 
networks to feature extraction and ESP failure detection. 
Second, models based on deep learning are used in fail-
ure diagnostics only as a replacement of known classifi-
cation methods. Also, all the functionality of deep neural 
networks is not taken into account. All this confirms the 
relevance of our study.

This paper proposes a new method for automatic 
detection of ESP failure from accelerometer signals based 
on deep hybrid model. The frequency, time, and spectral 
information of the vibration signal are considered as input 
data for the proposed model. The experiments on the ESP 
faults dataset show that the proposed approach signifi-
cantly increases the accuracy of failure diagnosis and can 
be applied in real expert systems in the future.

3 � Feature extraction

Vibration signals are widely used for fault detection in vari-
ous devices. The signals obtained by the accelerometer 
sensors are processed to obtain important information 
and then extract dominant vibration signal features [13, 

28, 29]. They include features of the time and frequency 
domains. Fast Fourier transform (FFT) spectrogram and a 
CWT scalogram are used for signal analysis in the time–fre-
quency domain [30].

3.1 � Time‑domain features

The time-domain features often include characteristics 
that are sensitive to faults [31, 32], so some dimensional 
characteristics, such as arithmetic mean (MN), standard 
deviation (SD), root mean square (RMS), kurtosis value 
(KV), skewness value (SV), peak-to-peak value (PPV), 
impulse factor (IF) and shape factor (SF) are calculated [33]. 
These features are defined as follows [31, 32]:

where x is an input signal, N is the number of data points.

3.2 � Frequency‑domain features

Analysis of the frequency domain allows obtaining the 
necessary information about the signal, which is not 
contained in the time domain [31]. These features often 
include spectral centroid (SC), spectral roll-off (SR) and 
others, and are calculated in the following way [31]:

(1)Xmn =
1

N

∑N

i=1
xi ,
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√
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2
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where s(m) is the magnitude of bin m and � is a threshold, 
that is assumed to be 0.85 according to [34]. Mean and 
standard deviation values of Xsc and Xsr are considered as 
features.

To present the vibrational signal, Mel-frequency ceps-
tral coefficients (MFCCs) that capture some of its impor-
tant properties are also considered. They were proposed 
by Davis and Mermelstein [35] and found application in 
the fields of speech recognition and analysis.

To obtain them the considered signal is divided into 
frames (in our case, their length is 2048 ms with a shift of 
512 ms). Frames are multiplied by a window function (for 
example, Hamming window). Each frame is subjected to 
FFT, and then, the MEL filter bank is applied to the received 

(9)Xsc =
∫ +∞

0
m ⋅ s(m)dm

∫ +∞

0
s(m)dm

,

(10)Xsr = � ∫
+∞

0

|s(m)|dm,

data [36]. A discrete cosine transform is taken to reduce 
the dimension. Twelve cepstral attributes are obtained for 
each frame, and then mean and standard deviation are 
calculated as representative features.

4 � Proposed approach

In this paper, we propose an approach to detect ESP faults 
from accelerometer signals. A model based on deep learn-
ing, which shows high accuracy during experiments, is 
considered.

A block diagram of the proposed approach, which con-
sists of the following steps: signal processing and feature 
extraction and a deep hybrid model application to ESP 
fault diagnosis, is shown in Fig. 1.

First, we calculate eight time-domain features directly 
from the ESP vibration signal and twenty-eight fre-
quency domain features based on the Fourier transform. 
Second, a scalogram based on a wavelet transform and 
a short-time Fourier based spectrogram are generated. 

Fig. 1   Flowchart of the proposed approach
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The obtained frequency-domain and time-domain fea-
tures and visual representations are sent to the branches 
of the deep hybrid model, where the normal state of the 
ESP and its malfunctions are determined.

It is proposed to use a simple deep neural network 
consisting of fully-connected layers for frequency- and 
time-domain features processing (TFDF-DNN), which 
are considered as a single vector. TFDF-DNN consists 
of two hidden layers containing 128 and 256 neurons, 
respectively. The last fully-connected layer of the model 
consists of 2500 neurons.

Spectrograms and scalograms are offered for image 
processing by deep CNN models, which are designated 
as SP-CNN model and SG-CNN model, respectively. 
RGB (Red–Green–Blue) images of 128 × 128 × 3 size are 
obtained using pre-processing and are given to the CNN 
model. The spectrogram is the most popular time–fre-
quency representation of a signal. Therefore, we con-
sider it in our study. A scalogram allows determining the 
various frequency components of the vibration signal. 
Its advantages over the spectrogram are that it better 
detects low-frequency and rapidly changing signal com-
ponents [37], which improve the classification charac-
teristics. Because CNN gives poor results with very large 
images, the signal is pre-divided into segments.

CNN input images are processed by convolution. The 
convolution layer can be calculated as follows:

where k is the number of layers, xk−1
mk−1

 is the mk−1 th image 
matrix of the k − 1 , Mk−1 is the number of image matrices 
in the k − 1 , w(mk )

mk−1
 is the mk−1 th channel of the (mk) th filter 

in the k , b(mk ) is the bias of the mk th filter in the k [21].
To reduce the dimension of the features of the previ-

ous layer, a maxpooling layer is used.
As an activation function, ReLU (rectified linear unit) 

is considered. It is calculated as follows:

Then, the results of the convolution level are fed to 
the BatchNormalization layer (normalizes to the average 
value of 0 and variance of 1). BatchNormalization allows 
speeding up the training process [38, 39]. The resulting 
image matrices are flattened.

The SP-CNN and SG-CNN models consist of four 
groups of convolutional and maxpooling layers. The 
number of filters for the first layer is 32, for the 2nd and 
3rd layers are 48, and for the fourth layer is 128. The sizes 
of the filters are 3 × 3, 3 × 3, 2 × 2, and 2 × 2. The pooling 
factor is taken as 2 × 2.

(11)xk
mk

=
∑Mk−1

mk−1

(
xk−1
mk−1

× w
(mk )

mk−1

)
+ b(mk ),

(12)fReLU(x
k
mk
) = max(0, xk−1

mk
).

The final layer of CNN-based models includes a fully-
connected layer of 1000 neurons. Then the features 
from TFDF-DNN ( FTDFD ), SP-CNN ( FSP ) and SG-CNN ( FSG ) 
are fused to obtain a merge feature vector, which is 
expressed as:

Then they are fed to a fully-connected layer.
The predictive probabilities for all classes are calcu-

lated using the softmax activation function:

where S is a number of ESP states (in our case S = 5).
The structure of the proposed deep model for the ESP 

fault state identification is shown in Fig. 2.
The detailed structures of the proposed one-dimen-

sional TFDF-DNN and two-dimensional DCNNs are dis-
played in Tables 2 and 3, respectively.

The two-dimensional DCNN models use the STFT 
spectrogram and CWT scalogram as inputs, and the 
TFDF-DNN model considers the time-domain and fre-
quency-domain features.

Parameters of the proposed model are configured 
through cross-validation. The parameters are selected 
according to Tables 2 and 3. Dropout layers are added to 
reduce overfitting. The experiment is repeated ten times 
to reduce the effect of various factors on the results.

Stochastic gradient descent (SGD) with Adam adap-
tive learning rate is used to update network weights 
(Table 4). Adam optimizer is easy to use and trains deep 
neural models on big data [40].

For the entire training process, the best learning rate 
is selected as follows:

where � is a learning rate, �t is the first moment vector, vt 
is the second moment vector, �1, �2 are the momentum 
factors, gt is a gradient for a timestep t  . Cross-entropy is 
used to calculate the loss [41].

(13)F = {FTDFT , FSP , FSG}.
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mk
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e
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Fig. 2   Architecture of the deep hybrid model for ESP fault detection

Table 2   The structure of the 
proposed two-dimensional 
CNN models

Layers Type Size Kernel Activation 
function

Dropout

1 Input layer 128 ×  128 ×   3 3  ×  3 ReLU
2 Convolution layer 128 ×  128  ×   32 3  ×   3 ReLU
3 Convolution layer 128 ×  128 ×  48 3 ×  3 ReLU 0.2
4 MaxPooling layer 2 × 2
5 Convolution layer 64 ×   64 ×  48 2 ×   2 ReLU
6 Convolution layer 64 ×  64 ×  128 2 ×   2 ReLU 0.2
7 Flatten layer 524,288
8 Fully-connected layer 1000 ReLU
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5 � Experimental setup

This section provides the experimental dataset descrip-
tion, the evaluation metrics, and the experimental 
results to evaluate the proposed approach based on 
deep learning.

5.1 � Dataset description

At an early stage in the operation of oil wells, the prod-
uct naturally flows to the surface. Artificial lift methods 
are used in dead wells or to increase production from 
current wells. An ESP that uses a submersible motor that 
drives a multi-stage centrifugal pump is considered an 
artificial method of lifting [42].

The experimental dataset was obtained in the labo-
ratories of the ESP manufacturers that supply Petrobras, 
the largest Oil and Gas Company of Brasil [16]. ESP per-
formance was evaluated by pumping water and carried 
out by experts (Table 5). The studied ESP consists of 
six components: two motors, two protectors, and two 
pumps [16]. For the ESP system considered in this paper. 
Accelerometers are attached to each component in three 
positions: at the top, in the middle and at the bottom. 
They are evenly distributed over ESP. Thus, 36 (6 × 3 × 2) 
accelerometers are connected in pairs with a phase shift 
of 90 degrees in the axial direction.

Vibration signals were obtained from each accelerom-
eter with a sampling frequency of 4096 Hz and a time 
interval of 2.44141e−4 s. The collected data is analysed 
and marked by an expert using the Fourier transform 
of the raw vibration signal. The dataset contains 9690 

labeled samples. Table 5 shows the percentage of the 
five classes contained in the dataset.

Figures 3 and 4 show typical fault signatures in the 
time-domain and frequency-domain for the considered 
fault categories (including sensor faults).

According to the 1st and 2nd harmonics of the shaft 
rotation frequency [43], the pump blade unbalances, and 
pump shaft misalignment can be detected. The presence 
of low-frequency noise in the vibration signal character-
izes the presence of rubbing [44]. A faulty accelerometer 
sensor is one of the malfunctions [11].

5.2 � Evaluation metrics

Performance evaluation of the proposed model is based 
on the following metrics: accuracy, precision, recall, and 
F-measure.

Accuracy is determined as the percentage of the correct 
results of the classifier:

where TP defines true positive values, TN are true nega-
tive values, FP are false positive values, and FN are false 
negative values.

Precision is used to determine the number of objects 
classified as positive that are truly positive:

Recall determines the part of the positive samples 
selected by the classifier:

F-measure combines recall and precision metrics:

All considered metrics are widely used performance 
indicators in machine learning [45].

(18)Accuracy =
TP + TN

TP + TN + FP + FN
,

(19)Precision =
TP

TP + FP
.

(20)Recall =
TP

TP + FN
.

(21)F −measure =
2 × Recall × Precision

Recall + Precision
.

Table 3   The structure of the proposed TDFD-DNN model

Layers Type Size Activation 
function

Dropout

1 Input layer 1 ×  36 ReLU
2 Fully-connected layer 128 ReLU 0.2
3 Fully-connected layer 256 ReLU 0.2
4 Fully-connected layer 2500 ReLU

Table 4   Training parameters of 
the proposed model

Parameters Value

Optimizer Adam
Batch size 128
Initial learning rate 0.001
Weight decay 0.9
Max epochs 25

Table 5   Summary of the experimental dataset

Class # of samples (%)

Normal 3774 (38.95)
Unbalance 2703 (27.89)
Accelerometer fault 1938 (20.00)
Misalignment 969 (10.00)
Rubbing 255 (2.63)
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5.3 � Experimental results

For an objective performance assessment of the system for 
ESP failures detection, the dataset is divided into a training 

set (80%) and a test set (20%). Thus, 7752 records are used 
to train the deep hybrid model, and 1938 records are 
used to validate the system. This procedure is performed 
twenty-five times. The model should distinguish classes 

Fig. 3   Vibration waveforms of the five considered categories: a normal operational condition, b misalignment, c rubbing, d faulty sensor 
and e unbalance
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with faults such as unbalance, misalignment, rubbing 
from the accelerometer error and the normal state of the 
system.

The proposed approach is implemented in Python 
2.7.13 using various libraries, including LibROSA, Ten-
sorflow, and Keras. All experiments were conducted on 

Fig. 4   Single-sided FFT-based frequency spectrum of the five considered categories: a normal operational condition, b misalignment, c rub-
bing, d faulty sensor and e unbalance
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Intel Xeon (R), CPU X5670 @ 2.93 GHz * 4 with 10 GB of 
RAM machine.

The experiments were conducted on six different 
configurations for further comparison, that is, the TD-
DNN, FD-DNN, TDFD-DNN, SP-CNN and SG-CNN models 
and the proposed deep hybrid model that combines the 
advantages of TDFD-DNN, SP-CNN, and SG-CNN. Mini-
batch Adam algorithm is considered to optimize the loss 
function and learn network parameters. The batch size 
is set to 128. The initial learning rate is set to 0.001. The 
maximum number of epochs is assumed to be 25. The 
weight delay is equal to 0.9. The final shared parameters 
completely bind the last layers of TDFD-DNN, SP-CNN, 
and SG-CNN and have 4500 neurons.

We repeated the training process ten times and tested 
it by random reassignment to avoid prejudice and dem-
onstrate reliability and stability. As shown in Fig. 5, the 
hybrid model has surpassed the other models.

The obtained results are presented in Table 6. It can 
be seen that the proposed hybrid model is superior to 
single classification models (TD-DNN, FD-DNN, TDFD-
DNN, SP-CNN, and SG-CNN) and reaches a mean level of 
accuracy of ~ 99.98%. Bold font is used to highlight the 
best performance.

The stability of the proposed approach was also evalu-
ated based on recall, precision and F-measure metrics. 
It showed low standard deviations (less than 0.50) and 
a significant improvement over other methods. The sec-
ond-best result showed the SG-CNN method.

In this paper, we compare the proposed approach 
with the KNN, LP, SVM, and RF methods. The analysis of 
the graphical representation of the ROC (receiver oper-
ating characteristic) curve evaluates the quality of the 
proposed deep hybrid model. The experimental results 
show that it is the best model for ESP faults detection 
from the extracted features that were obtained from 
vibration signals (the area under the curve was 100%) 
(Fig. 5).

According to the precision and recall metrics, KNN 
recognized the failure of the misalignment quite accu-
rately. SVM showed 100% result for misalignment, rub-
bing, a faulty sensor, and normal ESP condition classes. 

The unbalance class was accurately classified by the RF 
method. The LR method shows low results for the nor-
mal state of ESP and unbalance classes in comparison 
to other methods.

A comparison of the proposed approach with the 
methods KNN [15], KNN + [15], KNN + FS [15], KNN + EFS 
[15], and the method, proposed by Oliveira-Santos et al. 
[18], was also made. Table 7 shows the promising results 
of using the deep hybrid model for automatic diagnosis 
of ESP failures.

6 � Conclusions

The paper presents an improved method for detecting 
failures of ESP. A hybrid model was developed based on a 
simple DNN and two CNNs to obtain important informa-
tion from the features of vibration signals and increase 
the classification accuracy.

Experimental results showed that applying the pro-
posed model to the ESP faults detection such as pump 
blade unbalance, shaft misalignment, and mechanical 
rubbing, including detecting accelerometer malfunction, 
can achieve high results.

The deep hybrid model has achieved better results 
than the KNN, SVM, LR, and RF methods. Despite the 
high accuracy of the proposed model, it has some limi-
tations. A relatively small dataset of ESP accelerometers 
readings was considered, and the training time was quite 
long. However, the issue with computational complexity 
may be disregarded since in real systems a pre-trained 
model is used. The advantages of our approach are that 
it can be automated, applies to Big data analysis, and can 
be used to create an intelligent expert system.

In the future, it is planned to consider a bigger data-
set of vibration signals obtained using accelerometers at 
ESP. According to the results, we conclude that a deep 
hybrid model has great potential to be an effective and 
efficient tool for diagnosing and predicting ESP faults 
and may be a promising alternative for intelligent main-
tenance systems in the future.
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Fig. 5   ROC curves of assessing the classification accuracy of the considered methods for five classes: faulty sensor (SENS), normal opera-
tional condition (NORM), unbalance (UNB), misalignment (MIS) and rubbing (RUB)
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