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Abstract
Water scarcity and drought management is the burning issue in India and hence needs serious attention of researchers 
to develop rigorous plan and management. Areas that belong to various plateaus, e.g., Chotanagpur plateau, Deccan 
plateau, etc., are mostly affected by drought in India. In the past decade, Bankura District of West Bengal, which belongs 
to northeast part of Chotanagpur plateau, faced severe drought several times. However, the assessment of drought 
scenario in this area is far from conclusive statement till date. In this paper, we simulate standardized precipitation index 
(SPI) using double exponential (DE) and Holt–Winter exponential smoothing model (HW) for several time steps (e.g., 
3 months, 6 months, 12 months, 24 months and 48 months) in the time period of 1979–2014. The comparative analysis 
between two models indicates that DE is more accurate one. DE is observed with relatively low root mean squared error 
(RMSE) and high R2 value. Furthermore, drought-prone zones are demarcated using combined scores of principal com-
ponent analysis (PCA) and those combined scores are estimated using actual, HW and DE simulated SPI in several time 
steps. At the shorter (3 and 6 months) and longer time step (12, 24 and 48 months), the PCA demonstrates almost same 
results. The western and northwestern blocks of the district are severely affected by drought, and the southern portions 
are at mild condition. Spatially distributed RMSE in every time steps is also high in northwestern portions of the study 
region. Our result may be useful to understand the pattern of drought to take necessary action in management of water 
resources in Bankura District, West Bengal. Moreover, the study uses an unique methodology to simulate and assess 
meteorological drought, which is applicable in any region of the world.

Keywords Drought · Double exponential smoothing · Holt–Winter exponential smoothing

1 Introduction

Drought can be defined as the prolonged period of dry 
conditions [1, 2], and it is one of the most complicated and 
least understood natural hazards. It is one of the natural 
disasters that human being has suffered since the ancient 
era [3, 4], and it is the costliest, recurrent natural disaster 
[5]. A meteorological drought can be expressed as a result 
of a precipitation shortage or as a lack of precipitation over 

a region for a period of time [4]. According to the Olukay-
odo [6], meteorological drought is one of the most essen-
tial and primary drought types that need to be addressed 
with care and attention. Meteorological drought simula-
tion is a critical element in drought risk management [7]. 
Simulation models express the real behavior of a particular 
phenomenon needs to address appropriately to know the 
actual nature of a specific system [8]. Simulation of mete-
orological drought is more important than prediction to 
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understand drought-prone scenarios effectively [9]. Mishra 
et al. [10] asserted that the accurate assessment and sim-
ulation of drought are essential for proper planning and 
management of water resources. Drought preparedness 
and mitigation depend upon the large-scale drought mon-
itoring and simulation over a particular geographical area 
[11]. Many drought simulation models are already devel-
oped in the field of civil engineering. Mishra and Desai [12] 
developed ARIMA and multiplicative seasonal ARIMA mod-
els to forecast drought using SPI series. Zhang et al. [13] 
simulated SPI using the ARMA–GARCH model in China. 
Habibi et al. [14] simulated SPI12 by applying the Markov 
chain model. Morid et al. [15] simulated drought using arti-
ficial neural network (ANN) using effective drought index 
(EDI) and standard precipitation index (SPI). Mishra and 
Desai [16] simulated drought up to 6 months lead time by 
using and comparing linear stochastic models with the 
recursive multistep neural network. Barros and Bowden 
[17] applied self-organizing maps (SOM) and multivariate 
linear regression analysis to simulate SPI (in 12 months 
lead time) of Murray–Darling basin of Australia.

Mishra and Desai [12] argued that exponential smoothing 
techniques are the systematic empirical methods for simula-
tion and forecasting of meteorological drought with a rela-
tively higher accuracy rate. Holt and Winter originally devel-
oped exponential smoothing in the year of 1960, but later it 
was significantly modified by Kalehar [18]. Raha and Gayen 
[19] innovatively used exponential smoothing models and 
made realistic predictions of the drought of Bankura District, 
West Bengal [19]. They also argued that exponential smooth-
ing might be a leading model in simulation and prediction 
of drought phenomena though seriously neglected in the 
framework of drought simulation. Exponential smoothing 
models have seasonal adjustability, and they can perform 
more realistic simulations than other statistical models [12, 
20]. Forecasts produced by exponential smoothing methods 
are the weighted average of the past observations (Hynd-
man et al. [21]). In other words, the more recent observa-
tion gets higher associated weight. This framework gener-
ates reliable forecasts quickly for the wider range of time 
series, which is a great advantage (Billah et al. [22]). Raha 
and Gayen [19] stressed over the traditional exponential 
and Holt–Winter exponential smoothing, and also they have 
only considered 12 months time step in their research. They 
have failed to judge the seasonal flexibility of exponential 
smoothing. The present study simulates drought in different 
time steps using exponential smoothing and also compara-
tively assesses different exponential smoothing procedures 
in drought simulation and modeling. Station-wise assess-
ment of intensity and occurrence rate of meteorological 
drought is the most necessary parameters of realistic simu-
lation [23–27]. To visualize the drought phenomena effec-
tively, spatial interpolation method IDW is applied. This study 

attempts to simulate drought (in 1 month lead time) using 
two exponential smoothing models in the time period of 
1979–2014. Thus, this study has following objectives:

• Simulation of meteorological drought at 1 month lead 
time using Holt–Winter and double exponential smooth-
ing models

• Comparative assessment between double exponential 
and Holt–Winter exponential method in the simulation 
of meteorological drought.

There is increasing evidence that climate change will 
affect West Bengal, and especially drought will be one of 
the most challenging issues for Bankura [28−30]. Mishra 
and Desai [16] forecasted and analyzed drought in Kang-
sabati River Basin using an artificial recursive neural net-
work. Markov chain model was applied to estimate dryness 
of Purulia District by Banik et al. [30]. Lohar and Pal [31] 
showed that the mean monthly pre-monsoonal rainfall has 
decreased, and the temperature has increased significantly 
in the last decades of the twentieth century. According to 
Ghosh, [32] Bankura and its associated regions are expected 
to receive less rain in monsoonal season [33]. Bankura is 
likely to experience a 1ºC rise in average temperature dur-
ing 2025–2099 [32−33]. Over the past few years, the impact 
of climate change has felt severely in Bankura [34, 35]. Delay 
in arrival of monsoon season is observed in Bankura and its 
associated tract [32]. It is also noticed that summer becomes 
long, and drought has become more frequent [2, 36]. The 
problems are further being compounded with the growing 
population, lack of water resources and adaptation with 
water-intensive commercial crops. The Bankura, including 
Gangetic West Bengal (GWB), is less experienced in coping 
with drought. In such a pandemonium, spatiotemporal sim-
ulation of drought of Bankura is a good attempt.

Figure 1 denotes the location map of the study region. 
Bankura is an administrative division surrounded by Purba 
Bardhaman and Paschim Bardhaman District in the north, 
Purulia District in the west, Jhargram and Paschim Medin-
ipur in the south. Although the average rainfall of Bankura 
District is 1400 mm, but much rainfall happens for the 
months of June to September [27]. Hot westerly winds pre-
vail in Bankura from March to June in Bankura in the study 
area [36]. The study region becomes geographer’s attrac-
tion for last five to seven years due to excessive drought 
proneness-, poverty- and migration-related scenarios [27].

2  Datasets and methodology

Table 1 determines the list of meteorological stations 
with latitude, longitude and elevation (m). Rainfall data 
from 1979–2014 on daily bases downloaded from the 
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Fig. 1  Location map of the study area
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official website of Climate Forecast System Reanalysis 
(CFSR) in SWAT format. According to Dile and Srinivason 
[37], NCEP dataset is one of the most widely used trusted 
datasets that can easily be used in drought simulation 
and monitoring purposes. Here, daily rainfall data have 
been converted to monthly rainfall values. Figure  2 
denotes the location of meteorological stations marked 
within the Bankura District, West Bengal. Figure 3 sig-
nifies the overall methodological framework of this 
research. From rainfall data, SPI has been estimated in 3, 
6, 12, 24 and 48 months time frame. Peak drought inten-
sity (lowest SPI value), extreme to severe and moderate 
drought occurrence rate are assessed using observed 
and simulated models at above mentioned time steps. 
Hazard zones are also identified based on PCA score gen-
erated using three models.

2.1  Determination of drought

SPI was developed by Mckee et. al. [38] to monitor drought. 
The responsiveness of precipitation deficits of SPI was 
found more reliable within shorter and longer time steps 
[39]. Because of simplicity of calculation, ability to address 
different drought-related issues at a glance, SPI is found 
most suitable and reliable can be applicable in different 
parts of the world [40–42]. Calculation of SPI should be 
based on different time steps to denote drought effectively 
[43, 44]. Here, classification of SPI is based on 3 months, 
6 months, 12 months, 24 months and 48 months time step. 
Three months and 6 months are considered as short term 
and 12, 24, and 48 months time frame is considered as long-
term time frame. The analysis of SPI is performed in Mete-
orological Drought Monitoring (MDM) software prepared 
by Agrimetsoft team [44]. This software is a critical tool for 

Table 1  List of meteorological 
stations with latitude, 
longitude elevation, mean 
and standardized rainfall 
(1979–2014)

Id of stations-asso-
ciated Bankura

Longitude Latitude Elevation (m) Mean rainfall 
(mm)

Standard 
deviation (SD) of 
rainfall

229,869 86.875 22.9488 133 251.48 1579.505
229,872 87.1875 22.9488 61 164.35 217.435
229,875 87.5 22.9488 34 158.45 211.01
233,869 86.875 23.261 127 269.08 228.14
233,872 87.1875 23.261 95 157.22 257.34
233,875 87.5 23.261 46 157.89 212.49

Fig. 2  Locations of mete-
orological stations of Bankura 
District
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calculating and comparing drought in multiple locations at 
different time steps. Salehnia et. al. [45] and agrimetsoft.com 
express detailed procedure of calculation of SPI through 
MDM software as follows:

After arranging the station-wise rainfall data (x) in column 
format, that data are incorporated into the MDM software. 
Using the input data, deviation of total rainfall (x) from long-
term rainfall mean (x) is estimated by the software. After 
completion of the process, that total deviation is divided 
by the standard deviation of rainfall ( δ) which is basically as 
follows [45, 46]:

The long-term rainfall is then fitted to the probability dis-
tribution and then transformed into the normal distribution 
to the mean SPI for the location and the desired period is 
zero [36],

(1)SPI =
Xi − X

�
.

(2)SPI =
a −M

�

where a is the individual gamma distribution, M is mean, 
and δ is the standard deviation of rainfall.

Based on Mckee et. al. [38], drought severity classes are 
identified in Table 2.

2.2  Exponential smoothing models

Exponential smoothing is a technique to smooth time 
series data using the exponential window function. Expo-
nential smoothing technique assigns decreasing weights 

Fig. 3  Methodological framework

Table 2  Drought severity classes based on SPI

Severity class Nature of drought

 <  − 2.0 Extremely dry
 − 1.5 to − 1.99 Severely dry
 − 1.0 to − 1.49 Moderately dry
 − .99 to .99 Near normal
1.0–1.49 Moderately wet
1.5–1.99 Very wet
 > 2.0 + Extremely wet
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over time. This framework generates reliable forecast 
quickly and has a great advantage in real-time simulation 
[44]. The two basic exponential smoothing models are 
taken in this study which is as follows:

2.2.1  Holt–Winter exponential smoothing

Holt–Winter exponential smoothing is a statistical tech-
nique which is used here to simulate SPI at 3, 6, 12, 24 and 
48 months time steps. It provides effective way of simula-
tion of time series data. This method is efficient to cap-
ture seasonality [47]. There are three weights of smooth-
ing constants, viz. α, β, Y representing the level, trend and 
season, respectively, used to upgrade component for each 
period of time, t. The value of these constants lies within 
0 and 1. This value is selected depending on the weight 
(high smooth constant mean ensures more weight). The 
initial value taken in this research is 0.2. Holt–Winter model 
is applied in this research using following equations [47]:

Level:

Trend:

Seasonal:

Fitted:

where Lt is the level, bt is the trend, St is the season, Yt is 
the SPI, and t is the time period of Lt, bt, St and Yt compo-
nents. Ft is the forecast value ahead of one period, α, β, Υ 
level, trend and seasonal smoothing coefficient estimators, 
respectively, St is the seasonal duration. K is the integer 
part of (h − 1)/m, which ensures the estimates of seasonal 
indices, used for forecasting, come from the final year Y, 
i.e., here SPI. The level equation shows a weighted aver-
age between seasonally adjusted observation 

(

Yt − St−m
)

 
and the non-seasonal forecast 

(

Lt−1 + bt−1
)

 for time t. The 
initial value of seasonal component  s1 is determined using 
Eq. (7),

(3)Lt = �
(

Yt − St−m
)

+ (1 − �)
(

Lt−1 + bt−1
)

(4)bt = �
(

Lt − Lt−1
)

+ (1 − �)bt−1

(5)St = Υ
(

Yt − Lt
)

+ (1 − Υ)St−m

(6)Ft+h∕t = Lt + hbt + St+h−m(k+1)

(7)S1 = Y1 − Lm; S2 = Y2 − Lm … Sm = Ym − Lm

(8)Ls =
1

m

(

Y1 + Y2 + Y3 +⋯ Ym
)

.

The Holt–Winter model is also known as Winter’s triple 
exponential smoothing [47] as this method was originally 
developed by Winter. In this method, the seasonal com-
ponent is expressed in absolute terms with the scale of 
the observed series and in the level equation is seasonally 
adjusted by subtracting the seasonal component. Within 
each year, the seasonal component will add up approxi-
mately zero. Here, Yt − Lt in Eq. 5 is the weighted average of 
seasonally adjusted observation of SPI. Non-seasonal simu-
lated term is Lt−1 + bt−1 for time t. This method has great 
adjustability in interpreting seasonal and non-seasonal 
behavior [44].

2.2.2  Double exponential smoothing

Double exponential smoothing is applicable when the data 
show a trend. In this method, seasonal component and trend 
component are updated in each period [47, 48]:

Simulated:

Seasonal:

Trend:

Here, St is the weighted average observation of Yt. The 
one-period-ahead simulation is given by St + hbt . Equa-
tion (11) shows that bt is the weighted average of estimated 
trend at time t. The h-step-ahead simulation is equal to the 
last estimated level plus h times the last estimated trend 
value. Thus, Eq. 9 is the linear function of h.

2.3  Drought evaluation parameters—Intensity 
and frequency

Wu et. al [39], Ghosh [27] and Hayes et. al. [49] identified 
intensity and occurrence rate as the basic ingredients of 
drought. Statistical models may be applied to simulate SPI 
in different time steps. Comparative assessment of differ-
ent statistical models is one of the best keys in spatiotem-
poral simulation of drought (Hayes et. al. [50], Ghosh [51], 
Majumder et. al. [52], Touma et. al. [53], Chen et. al. [54]). 
Welner and Santner [55], Jeong et. al. [56] and Aryal and 
Zhu [57] analyzed changing pattern of drought frequency 
and intensity in different time steps. The present research 
utilizes peak intensity and occurrence rate as the drought 
evaluation parameters:

(9)Ft+h∕t = St + hbt .

(10)St = � ∗ xt + (1 − �) ∗
(

st−1 + bt−1
)

.

(11)bt = �
(

St − St−1
)

+ (1 − �)bt−1.
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2.3.1  Peak intensity  (PID)

ID denotes departure of a climate index from its normal 
value (Thomposon [58]). Here, drought event is defined 
as a period in which SPI is continuously reaching a value 
toward − 0.99 or less. Here,  PID denotes the lowest value 
of SPI which is simulated by observed and exponential 
smoothing models at different time steps. Lesser the 
value (− 0.99 or less) more will be the drought intensity.

2.3.2  Occurrence rate of drought  (FD)

FD is used to assess the drought liability during the study 
period (Wang et. al. [59]). The number of droughts per 
35 years is calculated as:

where FDj⋅35 is the frequency of droughts for timescale j in 
35 years, Nj is the number of months with droughts for the 
timescale j in the n year set, j is the timescale (e.g., here, 3, 
6, 12, 24 and 48 months), and n is the number of years in 
the dataset. FD is also known as the frequency of drought.

Drought intensity and occurrence rate are estimated 
using observed and simulated SPI in 3, 6, 12, 24 and 
48 months time steps, respectively.

2.4  Drought risk zone estimation using PCA

Principal component analysis (PCA) is one of the most 
effective and popular techniques to estimate drought 
risk zones (Cai et. al. [60], Dinpashoh et. al. [61]). PCA is 
a multivariate technique that reduces the dimensional-
ity of the dataset and computes a set of new orthogo-
nal variables in decreasing order (Demsar et. al. [62]). 
The technique of Joliffe [63] has been followed in this 
research, to estimate principal components. In this 
study, principal components are estimated in 3 months, 
6 months and 48 months time steps. Here, the technique 
of Joliffe 2002 is used to calculate principal components 
using intensity and frequency of drought in different 
time steps. Here, it is assumed that x is a vector of p ran-
dom variables. In this study, PCA is concerned with the 
correlation and covariance. A linear function �′x of the 
elements of x having maximum variance where α1 is a 
vector of p constants α11, α12,…, α1p, and ′ denotes trans-
pose, so that

(12)FDj⋅35 =
Nj

j ⋅ n
× 100(%)

Next, a linear function �′
2
x uncorrelated with �′

1
x having 

maximum variance, and so, at the k-th stage a linear function 
�′
k
x is found that has maximum variance subject to being 

uncorrelated with ��
1
x, ��

2
x,… ��

k−1
x . The k-th derived varia-

ble, �′
k
x , is the k-th PC. Here, �′

1
x the vector �1 maximizes such 

that var
�

��
1
x
�

− ��
1

∑

��
1
= 0 . To maximize �′

1

∑

�′
1
 , here the 

Lagrangian multipliers are used. ��
1

∑

��
1
− �

�

�
�

1

∑

�1 − 1
�

 
is maximized where � is the Lagrangian multiplier. With 
respect to �1 , differentiation of the function 

∑

�1 − ��1 = 0 
is done. Now, here Ip is considered as the identity matrix 
∑

�1 − � Ip = 0 where � is the eigenvalue of ∑ and �1 is 
the corresponding eigenvector. To decide which of the 
p eigenvectors gives maximum variances, the condition 
�

��
1
x
�

= ��
1

∑

��
1
= � is used. The k-th PC of x is 

[

��
k
x
]

= �k 
where �k is the k-th largest eigenvalue of ∑. �k is the cor-
responding eigenvector. The second PC �′

2
x maximizes 

�′
2

∑

�2 subject to being uncorrelated �′
1
x or equivalently 

subject to cov
(

��
1
x, ��

2
x
)

= 0 , i.e., cov(x, y) signifies covari-
ance between x and y. Differentiation with respect to �2 gives 
us 

∑

�2 − ��2 − ϕ�
�

1
�1 = 0 and multiplying the covariance 

equation with �
′

1
 �

�

1

∑

�2 − ��
�

1
�2 − ϕ ⋅ �

�

1
�1 = 0 is obtained. 

So, In case of second PC, 
∑

�2 − ��2 = 0 equation is 
obtained, and with respect to identity matrix, 

∑

�2 − � Ip = 0 
equation is obtained. Here, �2 is the corresponding eigen-
vector. The success of PCA is due to following two optional 
properties (Zou et. al. [64]):

a. Principal components sequentially capture maximum 
variability in the given dataset X, thus generating a 
minimum information loss

b. Principal components are uncorrelated so one princi-
pal component can be mentioned without referring to 
others;

2.5  Spatial analysis through IDW method

In order to generalize calculated SPI values in six stations 
to whole study area, inverse distance weighting (IDW) 
interpolation is used where power was considered as 2, 
searching neighborhood was standard with at least 10 
neighborhoods. The inverse distance weighting method is 
an established deterministic method of SPI mapping (Alam 
et. al. [24], Attore et. al. [65]) which can be applied in little 
or more spatial information. IDW is one of the frequently 
used techniques of spatial interpolation and mapping (Lu 
and Wong [66]).

(13)��x = �11x1 + �12x2 + �13x3 +⋯ + �1px1 =

p
∑

j=1

�1jxj .



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:909 | https://doi.org/10.1007/s42452-020-2730-3

2.6  Interrelationship assessment, error judgment 
and significance test of the models

2.6.1  Interrelationship assessment between models using 
 R2 value

Pearson’s correlation coefficient is the popular meas-
ure of the linear correlation between two variables. The 
value lies between − 1 and + 1 where − 1 represents total 
negative correlation and + 1 represents total positive 
correlation between variables, whereas 0 represents no 
correlation.

where xi is the observed value at time i, yi is the simulated 
value at time i, x  is the mean of the observed value, and 
y  is the mean of the simulated value. Positive R2 value 
indicates direct correlation, and negative value indicates 
inverse correlation.

2.6.2  Estimation of root mean squared error (RMSE)

Root mean squared error (RMSE) serves to aggregate 
the magnitude of errors in simulation of various time 
steps. RMSE has the great adjustability in calculation of 
accuracy measures in different time steps. Mavromatis 
[9] used RMSE in assessment of simulation models. The 
formula of RMSE is as follows

where Ov denotes observed value, Mv denotes the simu-
lated model value, and n is the number of observation.

In this study, Holt–Winter model (HW) and double 
exponential (DE) models are considered for simulation. 
So, two RMSEs are obtained:

Thus, combined RMSE can be stated as (from Eq. 16 
and Eq. 17):

(14)r =

∑n

i=1

�

xi − x
��

yi − y
�

�

∑n

i=1

�

x − x
�2
�

∑n

i=1
(x − x)

2

(15)RMSE =

√

√

√

√

n
∑

v=1

(

Ov −Mv

)2
∕n

(16)RMSE1 =

√

√

√

√

n
∑

v=1

(

Ov − HWv

)2
∕n

(17)RMSE2 =

√

√

√

√

n
∑

v=1

(

Ov − DEv
)2
∕n.

High RMSE value means there is a larger difference 
between the actual and simulated drought exists in the 
particular time step at a particular year or months (Zalen-
ski et. al. [67]). Lower RMSE value indicates higher accuracy.

2.6.3  Anderson–Darling test (AD test)

Anderson–Darling test compares empirical cumulative 
distribution of sample data series. This test is very effec-
tive when the data series becomes sufficiently large. The 
Anderson–Darling test is the hypothesized distribution is 
F, and cumulative distribution is  Fn and the formula can 
be written as

2.6.4  Kolmogorov–Smirnov test (KS test)

Kolmogorov–Smirnov test is a nonparametric test of the 
equality of continuous one-dimensional probability dis-
tribution with compare of a sample with reference prob-
ability distribution (Kolmogorov [68] and Smirnov [69]). 
Kolmogorov–Smirnov test statistic can be expressed as 
(Razali et. al. [70])

where I[−∞,x]

(

Xi
)

 is the indicator function, equal 1 if 
(

Xi
)

 ≤ x 
and equal to 0 otherwise.

The Kolmogorov–Smirnov statistic of a given cumula-
tive function F(x) is

where sup is the supremum of the set of distance between 
the Fnx and Fx . In our case, this model has been run at 95% 
significance level.

2.6.5  Ryan joiner test (RJ test)

Ryan Joiner test assesses correlation of a given data series 
(Yap and Sim [71]). It assesses the strength of the corre-
lation of a given data matrix. If it falls below the critical 
value, the null hypothesis can be rejected and alternative 

RMSE1 + RMSE2 =

√

√

√

√

n
∑

v=1

(

Ov − HWv

)2
∕n +

√

√

√

√

n
∑

v=1

(

Ov − DEv
)2
∕n.

(18)A2 = n

∞

∫
−∞

(Fn(x) − F(x)2

F(x)(1 − F(x))
dF(x).

(19)Fn(x) = 1∕n

n
∑

i=1

I[−∞,x]

(

Xi
)

(20)Dn = sup
x
(Fnx − Fx)
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hypothesis can be accepted. As the correlations of datasets 
are represented by this test, this procedure is important in 
judgment of simulation models.

3  Results

Figure 4a–j represents the scatter plots which represent 
the interrelationship between different model variables. 
The interrelationships of different model variables show 
that all the models at every time steps are strongly cor-
related with above 90% R-squared value. About 96–98% 
correlation coefficient is observed between double expo-
nential smoothing and observed models. Correlation coef-
ficient value decreases slightly between observed and 
Holt–Winter exponential smoothing. Significance level of 
every model is estimated by KS, AD and RJ test. Almost all 
models are significant at 0.01, 0.05 or 0.005 significance 
level. Table 5 (in supplementary file) represents the results 
of significance test.

3.1  Station‑wise comparison of 3 months 
and 6 months SPI

According to observed model, at the 3 months time step, 
drought (SPI value − 3.125) is at the peak in November 
1979 at the station 229,875. At the same time step, accord-
ing to observed model, extreme to severe (ES) and moder-
ate drought occur at the rate of 8% and 10%, respectively, 
at the station 233,869. According to observed model, at 
6 months time step, peak drought (SPI value − 5.061) is 
observed in January 1980 at station 233,875. At the same 
time step, according to observed model, ES and moderate 
drought occurrence rate (8% for ES and 10% for moder-
ate drought) is highest at 233,869 and 229,875 stations. 
At, 3 months and 6 months time steps, simulated curves 
follow observed curves to denote dry and wet conditions 
(Fig. 5a, b, d, e, g, h). At 3 months time step, SPI simulated 
by double exponential model is characterized by − 2.387 
value (peak intensity) which is observed in January 1993. 
At 3 months time step, the Holt–Winter model-simulated 
drought is at its peak in January 1979 at station 233,872. 
At 6 months time step, double exponential smoothing 
simulated drought reaches at the peak in April 1980 at 
the station 233,872. Similarly, Holt–Winter model-simu-
lated drought at the same time step reaches at the lowest 
level with -2.361 SPI value which is occurred in February 
1983 at station 229,872. Drought (category ES) simulated 
by double exponential and Holt–Winter model reaches at 

the highest rate of occurrence (about 7% for double expo-
nential and 11% for Holt–Winter) at the station 229,872. 
Similarly, double exponential and Holt–Winter exponential 
model simulated moderate drought occurs at the high-
est rate (e.g., 13% for double exponential and 10% for 
Holt–Winter) at stations 233,869 and 229,875, respectively. 
Overall at 3 months and 6 months time steps, drought 
intensity is at its peak in post monsoon phase. Station-wise 
drought occurrence rate and drought intensity at different 
time steps are denoted in Table 4 (in supplementary file).

3.2  Station‑wise drought comparison of 12 months, 
24 months and 48 months SPI

According to observed model, at 12 months time steps, 
drought intensity is at its peak with SPI value -5.291 
which is observed in December 1979 at station 233,872. 
At the same time step, according to observed model, ES 
and moderate droughts are observed in their highest 
rate of occurrence at the station 229,875 and 233,875. 
At 24 months time steps, according to observed model, 
peak drought intensity (SPI − 2.391) is observed in 
December 1980 at the station 233,872. At 24 months 
time steps, ES and moderate droughts are noticed with 
4% and 14% occurrence rate, respectively, at 233,872 and 
233,875 meteorological station. Similarly at 48 months 
time steps, drought is intensified at the station 233,872 
in December 1986 with − 1.513 SPI value. At this time 
step, ES and moderate drought reach their highest rate 
of occurrence (e.g., 5–15%) at 233,872, 233,875 and 
233,869 station.

The simulated SPI at long-term time frame also fol-
lows the observed curves (Fig. 5c, f, i and Fig. 6–f ). The 
SPI (at 12 months time steps) simulated by double expo-
nential model reaches at the lowest level (SPI − 5.667) in 
July 1980. Holt–Winter model-simulated drought (cat-
egory ES) at 12 months time steps reaches at the peak 
(SPI value − 3.771) in April 1980 at the station 233,872. 
At 24 months time steps, drought simulated by double 
exponential and Holt–Winter model reaches at the peak 
with − 2.291 SPI value which is observed in 1984 (please 
see Table 4 in supplementary section). At 12 months time 
step, the double exponential model simulated ES and 
moderate drought reach their highest rate of occurrence 
(about 13% and 11%, respectively) at the station 233,869. 
At the same time frame, Holt–Winter model simulated ES 
and moderate droughts are found in their highest rate of 
occurrence (about 14%) at 233,869 and 229,872 stations, 
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Fig. 4  Correlation between different model variables in different time steps



Vol.:(0123456789)

SN Applied Sciences (2020) 2:909 | https://doi.org/10.1007/s42452-020-2730-3 Research Article

respectively. At 24 months time frame, double exponen-
tial smoothing simulated ES and moderate droughts are 
identified with 7% and 14% occurrence rate at 233,869 and 
229,875 stations, respectively. At 48 months time step, the 
occurrence rate of extreme to severe drought is negligible. 
Moderate drought (double exponential model simulated) 
is observed with 17% occurrence rate at 48 months time 
step at 229,872 station. Figure 7a–f expresses station-wise 
drought occurrence rate. 

3.3  Spatial assessment

Overall northwestern and western portions of the dis-
trict face highest intensity of drought. This region also 
experiences highest occurrence rate of extreme to severe 
and moderate drought at almost all the time frames. At 
3 months and 6 months time frame, south and southwest-
ern portions experience − 2 to − 3 drought intensity value. 

On the other hand, − 3 to − 5 drought intensity is observed 
in north and northwestern portions of the study region 
(Fig. 8). At 12, 24 and 48 months time frame, the peak 
drought is observed at northwestern part of the study 
region (SPI value is − 1 to − 3). At 3 months and 6 months 
time frame, extreme to severe and moderate drought 
occurrence rate varies from 6 to 3% and 5 to 11%, respec-
tively. This fact is applicable for all models at above men-
tioned time steps. Southern and southwestern portion of 
the region experiences 3–4% extreme drought and 5–6% 
moderate drought at all the time steps. Drought occur-
rence rate is noticed at a significant level (5–6% extreme to 
severe, 10–11% moderate drought) in western and north-
western portion of the district at 3 months and 6 months 
time steps. At 12, 24 and 48 months time frame, extreme 
drought is observed in northwestern part of the district 
with 2–4% occurrence rate. Figure 8a–o denotes visualiza-
tion of drought intensity spatially. Figures 9a–o and 10a–o 

Fig. 5  3-Month, 6-month and 12-month observed and simulated 
SPI over 1 month lead time of some selected stations (for the effi-
cient understanding, we have mentioned here three stations—sta-

tion 229,872 and 229,875 have similar nature of drought with sta-
tion 233,869. 233,872 station has similar characteristics of 233,875)
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express extreme to severe and moderate drought occur-
rence rate spatially. As the time step increases, drought 
intensity decreases and extreme to severe drought 
becomes less frequent. On the contrary, as the time step 
advances, moderate drought becomes more frequent.

3.4  Drought‑prone zone identification

Table 3 identifies all variables used in PCA. At 3 months 
time steps V1, V2, V3, V10, V11,V12, V19, V20 and V21, at 
6 months time steps V4, V5, V6, V13, V14, V15, V22, V23 and 
V24 and at 48 months time step V7, V8, V9, V16, V17, V18, 
V25, V26 and V27 are considered. Similarly, at 12 months 
and 24 months time step, V28 to V45 variables are used. 
For every time step, first four components represent near 
about 80% of the dataset that is why first four components 
are considered for determination of PCA. For every time 
step, northwestern and western portions are demarcated 

as extreme to severe drought proneness. On the other 
hand, the eastern edge and southwestern portions are at 
mild to normal drought-prone condition. At all the time 
frame, Saltora, Mejhia, Gangajalghati, Chattna, Bankura-
I, Bankura-II, Indpur, Onda, Barjora, Sonamukhi and Hir-
bandh are the highest drought-prone blocks. Patrasayar, 
Indus, Kotulpur, Jaypur, Bishnupur, Taldangra and Simlipal 
are the moderate drought-prone blocks. Khatra and Rani-
bandh are the least drought-affected blocks. The drought-
affected region is marked in Fig. 11a–f.

3.5  Assessment of root mean square error (RMSE)

At 3 months and 6 months time step, the highest RMSE is 
observed in 1998–1999 at 229,869 stations. Station 233,869 
and 2338,75 achieve the highest RMSE in 2010–2012 at 
3 months and 6 months time steps (Fig. 12a, b, d, e, g, h). 0.1 
to 20 RMSE is observed in 12, 24 and 48 months time step. As 

Fig. 6  24-month and 48-month observed and simulated SPI over 1 
month lead time of some selected stations (for the efficient under-
standing, we have mentioned here three stations—station 229,872 

and 229,875 have similar nature of drought with station 233,869. 
233,872 station has similar characteristics of 233,875)
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time step increases, RMSE starts to decrease in a significant 
proportion. At 12 months time step, the highest error occurs 
in 2012–2014 at the station 229,869 and station 233,869 
(Fig. 12c, f ). At this time step, the highest RMSE is observed 
in 1998–2000 at station 233,875 (Fig. 12i). At 24 months time 
step, the 229,869 station at 1989–1991 achieved the high-
est error (Fig. 13a). However, station 233,872 and 233,875 
achieved the highest error in 2012–2014 (Fig. 13c, e). Similar 

nature is also observed in 48 months time frame (Fig. 13b, 
d, f ). High RMSE is observed at northern and northwestern 
parts at almost all the time frames (Fig. 14a–j). It is interest-
ing to note that extreme to severe drought-prone stations 
face higher amount of RMSE. In the 3 months time frame, 
southern and southwestern portions are experiencing total 
104–110 RMSE, whereas northern and northwestern por-
tions are experiencing total 111–116 RMSE. At 6 months time 

Fig. 7  % of Occurrence of extreme to severe and moderate drought using observed and simulated models (in 1 month lead time) (% fre-
quency of extreme to severe and moderate drought at 12 months and 24 months time step are almost similar with the 48 months time step)
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Fig. 8  Spatial distribution of peak drought intensity based on observed and simulated SPI (in 1 month lead time)
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Fig. 9  Spatial distribution of occurrence (%) of severe to extreme drought (as per observed and simulated models (1 month lead time))



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:909 | https://doi.org/10.1007/s42452-020-2730-3

Fig. 10  Spatial distribution of occurrence (%) of moderate drought [as per observed and simulated models (1 month lead time)]



Vol.:(0123456789)

SN Applied Sciences (2020) 2:909 | https://doi.org/10.1007/s42452-020-2730-3 Research Article

Table 3  Considered variables 
in PCA

Name of variables Used code

3-month observed highest drought intensity V1
3-month simulated (double exponential) highest drought intensity V2
3-month simulated (Holt–Winter) highest drought intensity V3
6-month observed highest drought intensity V4
6-month simulated (double exponential) highest drought intensity V5
6-month simulated (Holt–Winter) highest drought intensity V6
48-month observed highest drought intensity V7
48-month simulated (double exponential) highest drought intensity V8
48-month simulated (Holt–Winter) highest drought intensity V9
3-month observed extreme to severe drought frequency V10
3-month simulated (double exponential) extreme to severe drought frequency V11
3-month simulated (Holt–Winter) extreme to severe drought frequency V12
6-month observed extreme to severe drought frequency V13
6-month simulated (double exponential) extreme to severe drought frequency V14
6-month simulated (Holt–Winter) extreme to severe drought frequency V15
48-month observed extreme to severe drought frequency V16
48-month simulated (double exponential) extreme to severe drought frequency V17
48-month simulated (Holt–Winter) extreme to severe drought frequency V18
3-month observed moderate drought frequency V19
3-month simulated (double exponential) moderate drought frequency V20
3-month simulated (Holt–Winter) moderate drought frequency V21
6-month observed moderate drought frequency V22
6-month simulated (double exponential) moderate drought frequency V23
6-month simulated (Holt–Winter) moderate drought frequency V24
48-month observed moderate drought frequency V25
48-month simulated (double exponential) moderate drought frequency V26
48-month simulated (Holt–Winter) moderate drought frequency V27
12-month observed highest drought intensity V28
12-month simulated (double exponential) highest drought intensity V29
12-month simulated (Holt–Winter) highest drought intensity V30
24-month observed highest drought intensity V31
24-month simulated (double exponential) highest drought intensity V32
24-month simulated (Holt–Winter) highest drought intensity V33
12-month observed extreme to severe drought frequency V34
12-month simulated (double exponential) extreme to severe drought frequency V35
12-month simulated (Holt–Winter) extreme to severe drought frequency V36
24-month observed extreme to severe drought frequency V37
24-month simulated (double exponential) extreme to severe drought frequency V38
24-month simulated (Holt–Winter) extreme to severe drought frequency V39
12-month observed moderate drought frequency V40
12-month simulated (double exponential) moderate drought frequency V41
12-month simulated (Holt–Winter) moderate drought frequency V42
24-month observed moderate drought frequency V43
24-month simulated (double exponential) moderate drought frequency V44
24-month simulated (Holt–Winter) moderate drought frequency V45
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frame, southern and southwestern portions are experienc-
ing total 40–44 RMSE, whereas 45–51 total RMSE is observed 
in northern and northwestern portions. At 12  months, 
24  months and 48  months time step, 0.12–14 RMSE is 
observed at southern and southwestern portion, whereas 

northern and northwestern portions experience 14–19 
RMSE value. With respect to combined error of Holt–Winter 
and double exponential model, double exponential model 
produces better result with slightly low (2%–4%) RMSE.

Fig. 11  Drought-prone zone identification using PCA
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4  Discussion and conclusion

In summary, we simulate meteorological drought for 
Bankura District using double exponential and Holt–Win-
ter exponential model at several time steps. We also com-
pared the efficiency of these two models, which shows 
that double exponential smoothing model is more 
accurate one. In our analysis, intensity and frequency 
of drought act as most important parameters. Intensity 
and frequency of drought are portrayed using visual 
interpretative maps and statistical assessment for sev-
eral time steps. Our study shows that peak intensity of 

drought decreases with increasing time steps (Fig. 8a–o) 
and the scenario of drought shifts from extreme to mod-
erate condition (Figs. 5 and 6). RMSE also decreases with 
increasing time steps (Figs. 12 and 13). Our study reveals 
that drought scenario is worst for north and northwest-
ern region of Bankura, while the effect of drought is less 
severe in other regions (southeast, southwest) (Fig. 11a–e). 
Furthermore, we perform principal component analysis by 
combining the results from the two models, to delineate 
drought-prone zones of the district (Fig. 11a–e). Over-
all the principal component analysis (PCA) reveals that 
north and northwest portions of the study area are the ES 

Fig. 12  Estimation of root mean square error (RMSE) of some 
selected stations () at 3  months, 6  months and 12  months time 
steps (for the efficient understanding, we have mentioned here 

three stations—station 229,872 and 229,875 have similar nature of 
drought with station 233,869. 233,872 station has similar character-
istics of 233,875)
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Fig. 13  Estimation of root mean square error (RMSE) of some 
selected stations () at 24 and 48  months time frame (for the effi-
cient understanding, we have mentioned here three stations—sta-

tion 229,872 and 229,875 have similar nature of drought with sta-
tion 233,869. 233,872 station has similar characteristics of 233,875)

drought-affected zone, while drought is mild at southern 
portions of the study region.

This study includes several time steps for spati-
otemporal simulation of drought, which makes the 
study interesting and unique. The identification 
and monitoring of different drought-related param-
eters at the same time and effective identification of 

drought-prone zones make this study fruitful one for 
implementation. This study may also be useful to take 
actions for improved resiliency of the water manage-
ment infrastructure, including a more accurate drought 
forecasting tool for sustainable agricultural production 
in Bankura District.
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Fig. 14  Spatial distribution of root mean square error (RMSE) at different time steps
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