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Abstract
A spinel structure of zinc aluminate (ZnAl2O4) particles provides a prospective material for photocatalytic applications. 
In this work, zinc aluminate spinel was prepared by an anion-exchange method derived from layered double hydrox-
ides (LDHs) followed by thermal treatment. The mechanism, photoactivity, and effects of both anion substitute and 
temperature have been investigated. The chemical composition, morphologies, phase structures, porous structures and 
photocatalytic properties of samples were analyzed using thermogravimetric analysis, scanning electron microscopy, 
energy-dispersive X-ray spectroscopy, powder X-ray diffraction, gas sorption analysis, and ultraviolet–visible spectroscopy 
in detail. The results of mesoporous α-ZnAl2O4 indicate that average crystallite size, total pore volume, and BET surface 
area obtain 9.3 nm, 0.337 cm3/g, and 206.13 m2/g, respectively. Moreover, zinc aluminate spinel shows well phase after 
heating at 700 °C and LDHs structures were completely collapsed. The photocatalytic performances of α-ZnAl2O4 have 
been applied in p-nitrophenol reduction under visible light irradiation and required time at least 9 min. Finally, the new 
improved method constructs an excellent material for pretreatment of liquid pollutants containing high-level concen-
tration at rapid treatment time.
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1  Introduction

Liquid pollutants discharged from cosmetic, paper print-
ing, textile, and other industries contaminate the ecosys-
tem and cause serious implications for animals, plants, 
and other organisms in aquatic life. Among phenolic com-
pounds, p-nitrophenol (hereafter pNP) is widely applied in 
various industries, but pNP as a recalcitrant organic con-
taminant obtains high toxicity in the aquatic environment 
[1–3]. Recently, several techniques such as adsorption [4], 
advanced oxidation [5], biological treatment [6], coagula-
tion and flocculation [7] have been developed to reduce 
phenolic compounds from watery solutions. Nevertheless, 
the materials for the removal of pNP obtain complicated 
problems, including low surface area and pore volume. 

Therefore, finding an inexpensive cost, the environmen-
tally friendly method is necessary for handling industrial 
wastewater containing phenolic compounds.

Semiconductor photocatalysis is a prospective method 
to remove credential organic pollutants in wastewater. Up 
to now, numerous active-photocatalysts such as CuO [8], 
Fe2O3 [9], SnO2 [10], TiO2 [11], WO3 [12], and ZnO [13] are 
highly potential applications in various industries. For an 
effective candidate and an efficient treatment, the devel-
opment of photocatalysts with high pore volume and 
surface area is essential. Furthermore, the previous semi-
conductors obtain fundamental problems such as high 
cost and low rates of degradation. Therefore, an excellent 
technique is being applied to the expandable proper-
ties of photocatalysts. This solution can be modified by 
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compositions and morphologies of the materials. Recently, 
several mixed metal oxides with spinel structures as pho-
tocatalysis applications under solar light irradiation have 
been discussed for the treatment of organic contaminants 
in water [14–17].

Mixed metal oxides, also known as spinels, have been 
broadly reported for their great applications in the sub-
jects of catalysis [18, 19], adsorption [20, 21], electrochem-
istry [22], and others. Spinels contain cationic and anionic 
sites with a 3:4 ratio, respectively. These materials can be 
represented by the general formula AB2X4, A and B refer to 
cations and X describes anion. Based on their anions, the 
spinels possess three groups such as oxyspinel (O2−), sele-
nospinel (Se2−), and thiospinel (S2−). These groups obtain 
several subgroups such as spinel (A2+ B3+

2 O4), ulvöspinel 
(A4+ B2+

2 O4), bornhardtite (A2+ B3+
2 Se4), tyrrellite (A1+ 

B3:5+
2 Se4), carrollite (A1+ B3:5+

2 S4), and linnaeite (A2+ B3+
2 

S4) [23]. Most especially, spinels offer an efficient path [24], 
high catalytic activity [25], improved stability [26], useful 
catalyst [27–30], and great recyclability [31]. The chemical 
structure of binary spinel (AB2O4) can be replaced by diva-
lent (A = Zn2+) and trivalent (B = Fe3+) metal ions, resulting 
in photocatalytically active microstructure of zinc ferrite 
(ZnFe2O4) [32]. Furthermore, the atomic ratio between A2+ 
and A3+/A4+ acquired high catalytic activity for dye degra-
dation [33, 34]. Nowadays, the solar-responsive spinel pho-
tocatalyst has been presented as a potential material for 
application in wastewater treatments [35]. Besides, oxyspi-
nels have been studied as excellent photocatalytic degra-
dation for methylene blue [36, 37] and methyl orange [38].

Meanwhile, several oxyspinels were prepared from 
inorganic anions (carbonate, nitrate, phosphate, and 
sulfate) pillared A2+–A3+ layered double hydroxides and 
followed by a thermal process that they performed the 
improved catalytic activities [39–46]. Afterward, we study 
the improved photocatalytic degradation of pNP through 
a solar-responsive oxyspinel derived from organic anion 
pillared LDH precursors under UV-light irradiation.

The aims of this work were to investigate the effects of 
both anion replacement and thermal treatment of start-
ing organic anion pillared LDH precursors and to study 
mechanism and photoactivity of the catalyst candidate for 
removing an organic pollutant in wastewater.

2 � Experimental section

2.1 � Materials

In this experiment, aluminum nitrate nonahydrate 
(Al(NO3)3⋅9H2O), p-nitrophenol (pNP, > 99%), and sodium 
borohydride (NaBH4) were acquired from Aladdin Chemi-
cal Co. Ltd. Sodium hydroxide (NaOH), kalium hydroxide 

(KOH), and N,N-dimethylformamide (DMF, 99.5%) were 
provided by Xilong Chemical. Zinc nitrate (Zn(NO3)2⋅6H2O, 
98%) and perylene 3,4,9,10-tetracarboxylic dianhydride 
(PTCDA, 97%) were used as supplied by Sigma-Aldrich. 
All chemicals were analytical grade and without further 
purification before use.

2.2 � Synthesis of NO3ˉ (H2O) ZnAl‑layered double 
hydroxide (LDH)

The ZnAl-NO3-LDH (hereafter ZAN-LDH) was prepared 
using a co-precipitation technique. Firstly, the solution 
containing 0.1 M Zn(NO3)2⋅6H2O and 0.05 M Al(NO3)3⋅9H2O 
was dissolved in CO2-free deionized water to form a 
blended solution. Secondly, the mixed solution was added 
by NaOH (2 M) until pH 7 in nitrogen ambience to avoid 
impurity by carbon dioxide. The third point, the resulted 
slurry was aged at 70 °C for 18 h. Also, the suspension was 
centrifuged and washed with sterile water repeatedly. 
Finally, the solid material was dried in the oven at 80 °C 
overnight.

2.3 � Synthesis of perylene‑3,4,9,10‑tetracarboxylic 
acid

Perylene-3,4,9,10-tetracarboxylic acid (abbreviated as 
PTCA) was synthesized from hydrolyzed perylene-3,4,9,10-
tetracarboxylic dianhydride (hereafter PTCDA) accord-
ing to previous reported literatures [47, 48]. The PTCDA 
(1 mmol) was dissolved by 5% KOH solution under stir-
ring between 60 and 70 °C. Furthermore, the solution was 
adjusted to acid (pH 5–6) with 0.1 M HCl after cooling to 
ambient temperature. In addition, the red suspension was 
filtered from the solution and the solid yield was directly 
dried in vacuum.

2.4 � Synthesis of PTCA (DMF) ZnAl LDH

PTCA-intercalated LDH (denoted as ZAP-LDH) was pre-
pared by an ion-exchange method as following: 1 gr ZAN-
LDH product was dispersed in 50 mL distilled water and 
added to 0.5 g PTCA dissolved in 50 mL DMF. Furthermore, 
the suspension was adjusted at neutral condition (pH 7) 
using 2 M NaOH and vigorously stirred for 6 h at 70 °C. 
Besides, the obtained product was recovered by filtration, 
washed with deionized water, and dried at 80 °C overnight.

2.5 � Synthesis of ZnAl2O4 spinel derived 
from ZAP‑LDH

The calcination of solid material was constructed by 
heating at 700 °C and 800 °C. The dried precipitates were 
loaded to a ceramic boat holder, heated into a tubular 



Vol.:(0123456789)

SN Applied Sciences (2020) 2:842 | https://doi.org/10.1007/s42452-020-2682-7	 Research Article

furnace to the required temperatures and the heating rate 
was maintained at 5 °C min−1 combined with argon inflow. 
Each product was labeled as α-ZnAl2O4 and β-ZnAl2O4, 
where ZnAl2O4 describes calcined ZAP-LDH. Also, α and β 
represent the temperature of the thermal process at 700 °C 
and 800 °C, respectively.

2.6 � Structural characterizations

All samples were characterized by PXRD, SEM, EDX, TGA-
DTA, N2 adsorption–desorption, and UV–Vis spectros-
copy. The PXRD patterns for ZAN-LDH, PTCA, ZAP-LDH, 
α-ZnAl2O4, and β-ZnAl2O4 were performed using a SHI-
MADZU LabX XRD-6000 with Cu radiation at 40 kV and 
30 mA (2θ in the range 3–70° for ZAN-LDH, PTCA, ZAP-
LDH, and the range from 20° to 70° for α-ZnAl2O4 and 
β-ZnAl2O4). The average crystal size in nm (DXRD) was cal-
culated from XRD peaks using Scherrer’s formula (1):

where β, λ, and θ represent the full width at half maximum 
or FWHM of peak (radian), the wavelength of Cu Kα radia-
tion (1.54056 Å), and the Bragg angle (°), respectively.

The surface morphology of solid products and UV–Vis 
absorbance spectra of the catalyst samples in the region of 
250–475 nm were observed by a JSM-6510A field-emission 
scanning electron microscope and a SHIMADZU UV-2450, 
respectively. The EDX spectra of chemical composition 
were obtained using JEOL JED-2300 at the accelerating 
voltage of 20 kV. In addition, thermogravimetric analyses 
at a heating rate of 10 °C min−1 in nitrogen atmosphere 
from environmental temperature to 700 °C were recorded 
on a SHIMADZU DTG-60 and N2 adsorption–desorption 
measurements at liquid nitrogen temperature (− 196 °C) 
were determined using a Micromeritics instruments TriStar 
II 3020.

2.7 � UV‑light photocatalytic performance

Photocatalytic degradation of pNP was prepared by taking 
0.025 mL pNP (0.6 mM and pH ~ 12), 0.75 mL NaBH4 (0.2 M), 
and 2.7 mL distilled water in test tubes containing 20 mg 
of catalyst. All tests were repeated in duplicate and a blank 
evaluation was also analyzed by the same procedure with-
out a catalyst. The decolorization of pNP due to adsorption 
was measured from initial and final observations.

(1)D
XRD

=
(0.9 ⋅ �)

(� ⋅ cos�)

3 � Results and discussion

3.1 � X‑ray powder diffraction analysis

Investigated materials, such as average crystallite size and 
phase structure from diffractograms, are shown in Fig. 1. 
The ZAN-LDH was synthesized by the co-precipitation 
technique in H2O at 70 °C. Typical properties of ZAN-LDH 
as a precursor were confirmed by a PXRD measurement. 
Furthermore, the representative signals are observed 
peaks at 2θ = 9.951°, 19.891°, and 29.494° corresponding 
to the (003), (006), and (009) planes, respectively. Conse-
quently, the angle of nitrate ion can be determined less 
than 90° from the host layers.

The ZAP-LDH was prepared by an anion-exchange route 
from the ZAN-LDH precursor in DMF at 70 °C. New X-ray 
diffraction peaks of ZAP-LDH obtain at 2θ = 4.853°, 9.865°, 
and 14.258°, which can be indexed to (003), (006), and 
(009) planes, respectively. Therefore, a new basal spacing 
(d003 = 1.82 nm) represents evidence of new pillared mate-
rial. The nitrate in the interlayer structure of ZAN-LDH is 
replaced by the PTCA-organic compound indicating rela-
tively weak interaction between layered sheets and NO3ˉ 
anion. The illustration of PTCA intercalated LDH interlayers 
is presented in Scheme 1.

The ZAP-LDH has electrostatically interacted between 
layered sheets and carboxylate groups of PTCA as an inter-
calated complex. The interaction of negatively charged 
PTCA, positively charged layers, and water confirms hydro-
gen-bonding. Furthermore, the XRD pattern of ZAP-LDH 
presents two significant parameters such as α and c. The 
α parameter defines average cation-cation length within 
layers (2d110) and also c parameter describes Coulomb 

Fig. 1   PXRD diffractograms of ZAN-LDH, PTCA, and ZAP-LDH
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force between layer and anion in interlayer spacing (3d003). 
Accordingly, the c-axis value of ZAP-LDH material shows 
an increase. Table 1 presents the indexing of X-ray patterns 
between ZAN-LDH and ZAP-LDH.

Thermal evolution constructs ZAP-LDH into ZnAl2O4, 
a spinel structure. Besides, the specific surface area of 
ZnAl2O4 increases in size after calcination treatment. Fur-
thermore, the calcined product obtains centered cubic spi-
nel phases (JCPDS No. 05-0669) as ZnAl2O4 and diffraction 
peaks at 2θ = 31.4°, 36.9°, 44.8°, 49.1°, 55.7°, 59.4°, and 65.3°, 
corresponding to the reflections from (220), (311), (400), 
(331), (442), (511), and (440) crystal planes, respectively. 

Figure 2 shows the X-ray patterns of the spinel obtained at 
calcination temperatures at 700 °C (α-ZnAl2O4) and 800 °C 
(β-ZnAl2O4).

The standard crystal of the ZnAl2O4 spinel obtained a 
good index at different temperatures in which the material 
equals a cubic configuration and acquires a good crystal-
linity. Based on Scherrer’s equation, the average sizes of 
α-ZnAl2O4 and β-ZnAl2O4 specimens calculated on the 
peak at 2θ = 36.75° are 9.3 nm and 10.1 nm, respectively.

3.2 � Thermogravimetric analysis and differential 
thermal analysis

Figure 3 illustrates the TGA-DTA curves between ZAN-LDH 
and ZAP-LDH under nitrogen gas. Two endothermic points 
at 90 °C and 230 °C prove removal from interlayer water 
(3.9%) and dehydroxylation (12.2%), respectively (Fig. 3a). 
In contrast, the endothermic peaks indicate displacement 
of weakly adsorbed water at 69 °C and removal of inter-
layer water at 181 °C. Further, nitrate ions decomposition 
yields 22% at a temperature between 304 °C and 582 °C. 
Moreover, a strong exothermic peak denotes the decom-
position of PTCA (34%) at 482 °C (Fig. 3b).

3.3 � Brunauer–Emmett–Teller surface area analysis

The nitrogen adsorption-desorption isotherms illustrate in 
Fig. 4. On the one hand, the ZAP-LDH obtains a micropo-
rous structure and follows type I sorption isotherm, indi-
cating relatively small external surfaces and successfully 
intercalated by PTCA as a pillared compound. The ZAP-
LDH results a significant porosity and an important surface 
area at least 72.96 m2/g. The type I corresponds with acti-
vated carbons, molecular sieve zeolites, and porous oxides.

On the other hand, type IV isotherms with H3 hysteresis 
loops are followed by α-ZnAl2O4 and β-ZnAl2O4, indicat-
ing a mesoporous scale. Calcined samples apply to rise 
slit-shaped pores and to improve specific surface area. 
The increasing temperature between 700 and 800 °C sig-
nificantly reduces the specific surface area from 206.13 to 
155.79 m2/g. In addition, the heating process shapes crys-
talline ZnAl2O4, but the carbonization removes organics 

Scheme 1   Schematic repre-
sentation of PTCA intercalated 
LDH interlayers

Table 1   Indexing of XRD patterns for ZAN-LDH and ZAP-LDH

Parameter ZAN-LDH ZAP-LDH

d003 (nm) 0.89 1.82
d006 (nm) 0.44 0.90
d009 (nm) 0.30 0.62
d110 (nm) 0.15 0.15
lattice parameter α (nm) 0.30 0.30
lattice parameter c (nm) 2.67 5.46

Fig. 2   X-ray diffraction patterns of α-ZnAl2O4 and β-ZnAl2O4
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as carbon cores and water from material to obtain porous 
particles. The surface area, pore volume, and average size 
of the samples are summarized in Table 2.

These burned materials construct increasing in sizes 
and pore volumes in a mesoporous scale at a temperature 
above 550 °C. Furthermore, nitrogen adsorption–desorp-
tion isotherms confirm slit-like structures on the pores as 
favorable porous materials.

3.4 � Scanning electron microscopy morphology 
analysis

Scanning electron microscopy (SEM) surfaces material 
morphologies of ZAP-LDH, α-ZnAl2O4, and β-ZnAl2O4 
are shown in Fig. 5. A uniformly ZAP-LDH sample derives 
numerous and regular pores as flake-like structures 
(Fig. 5a). The calcined samples obtain different morpholo-
gies depending on temperatures. For example, eliminated 
organic compounds as carbon cores and volatile sub-
stances assert lamellar structures breakdown into small 
pieces with pores at 700 °C and 800 °C (Fig. 5b, c). How-
ever, an anion-exchange route followed by heating treat-
ment turns ZAP-LDH material to carbon dioxide, mixed 
metal oxides as spinel-type, and water. In Fig. 5d, the 
chemical composition from the EDX spectra reveals that 
the ratio of stoichiometric atom concentration is Zn:Al:O 
≈ 14.6%:30.54%:54.86% ≈ 1:2:4, indicating that the as-
obtained product is ZnAl2O4.

3.5 � Comparison method

Table 3 offers different methods as a comparison from 
some physical properties. In this work, the results of 
ZnAl2O4 obtain a high surface area, a superior route, and 
comparable material. Otherwise, the other ways need a 
high energy source and outcome low surface area, but 
this anion-exchange technique followed by calcination 
receives an efficient energy source for synthesis. Also, 
the anion-substitute process acquires high pore volume, 
small crystallite size, and high surface area. This process 
produces suitable materials for catalytic purposes.

The photocatalytic reaction process of the α-ZnAl2O4 
catalyst was studied by reducing pNP to pAP and was 
recorded using a UV–Vis spectrometer. Scheme 2 illustrates 

Fig. 3   TGA-DTA curves of ZAN-LDH (a) and ZAP-LDH (b)

Fig. 4   Nitrogen (N2) adsorption–desorption isotherm curve of 
α-ZnAl2O4 and β-ZnAl2O4

Table 2   Specific surface area values of ZAP-LDH, α-ZnAl2O4, and 
β-ZnAl2O4

a BET surface area (m2/g)
b Total pore volume (cm3/g)
c Average pore diameter (nm)

Sample SBET
a Vtot

b Dc

ZAP-LDH 72.96 0.030 23.51
α-ZnAl2O4 206.13 0.337 7.02
β-ZnAl2O4 155.79 0.392 8.42
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a reduction from pNP to pAP with excess sodium borohy-
dride in aqueous solution to evaluate catalytic properties 
at several reaction times. The complete hydrogenation was 
identified by changing color from bright yellow (pNP) to 
colorless (pAP). Besides, the conversion of pNP to pAP was 
changed the nitro group by the amine group. The addition 

of NaBH4 as a reducing agent presents an effective tech-
nique to reduce pNP with metal catalysts under alkaline 
conditions. The reduction mechanism of pNP in aqueous 
solution over α-ZnAl2O4 can be expressed as

(2)

Fig. 5   Scanning electron 
microscopy images of the 
ZAP-LDH (a), α-ZnAl2O4 (b), 
β-ZnAl2O4 (c), and EDX spectra 
of the α-ZnAl2O4 product (d)

Table 3   Comparison of some 
physical properties of ZnAl2O4 
spinel prepared by different 
methods

a Temperature (°C)
b BET surface area (m2/g)
c Total pore volume (cm3/g)
d Mean crystallite size (nm)

Synthesis method Temperaturea SBET
b Vtot

c Sized References

Anion exchange-heating treatment 700 206.13 0.337 9.3 Our work
Metal-chitosan complexation 700 162.25 0.333 5.0 [49]

750 158.10 0.302 7.3 [50]
Green biosynthesis 900 14.40 0.054 64.0 [51]
Solvothermal 700 151.00 0.260 3–16 [52]
Co-precipitation 750 93.00 0.200 25.0 [53]
Sol–gel technique 800 124.80 0.299 10–30 [54]
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(3)

(4)

(5)

(6)

Scheme 2   The schematic 
reduction reaction of pNP 
to pAP in presence of the 
α-ZnAl2O4 catalyst and excess 
aqueous sodium borohydride
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Sodium borohydride (NaBH4) in aqueous solution forms 
sodium cation (Na+) and borohydride anion (BH4ˉ). The 
BH4ˉ fabricates activated hydrogen (Hˉ) and metaborate 
(BO2ˉ) after reacting with H2O. Furthermore, the com-
bination of activated hydrogen and α-ZnAl2O4 obtains 
new species as H-α-ZnAl2O4 on the surface of the cata-
lyst. Hydrogen atom on alcohol functional group of pNP 
is interacted with the hydrogen of borohydride anion to 
fabricate p-nitrophenolate and H2. However, the oxygen 
on the nitro group of p-nitrophenolate is substituted by 
activated hydrogen during the reaction to form the amine 
group of pAP via electron transfer on the catalyst surface. 
Therefore, the resulted pAP is desorbed from the catalyst 

(7)

(8)

surface and the final reaction produces other metaborate 
anions.

The catalytic reaction can be completed within 9 min 
when the α-ZnAl2O4 spinel as a catalyst has been added 
into the cuvette. The best catalytic capacity possesses high 
surface area and rate of surface absorption. Adsorption 
of the reactant on the catalyst takes place electron trans-
fers from BH4ˉ to pNP. First, the pNP reacts with NaBH4 to 
produce p-nitrophenolate (λmax = 400 nm). Second, the 
p-nitrophenolate and excess borohydride obtain an inde-
pendent reaction in the presence of α-ZnAl2O4 spinel. In 
addition, a peak intensity of p-nitrophenolate presents a 
decrease rapidly corresponding in the color from bright 
yellow to colorless, but a new intensity of p-aminophenol 
peak (λmax = 300 nm) appears an increase gradually (Fig. 6).

Fig. 6   UV–Vis absorption spectra of pNP by NaBH4 in the presence 
of the catalyst

4 � Conclusions

This study has been investigated by visible-light-active 
α-ZnAl2O4 calcined from anion-exchange LDH. The effect 
of anion exchange LDH followed by the heat process 
presents the best material of the mesoporous scale. The 
α-ZnAl2O4 spinel provides more active sites to adsorb 
reactant molecules as photocatalysts. Complete conver-
sion of p-nitrophenol to p-aminophenol was reached 
after 9 min under visible irradiation. Furthermore, total 
pore volume and BET surface area were obtained 0.337 
cm3/g and 206.13 m2/g, respectively. In conclusion, the 
active α-ZnAl2O4 spinel is claimed as a high surface area 
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material, a comparable product, a superior method, and 
an effective reducing agent.
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